JPH0510804B2 - - Google Patents

Info

Publication number
JPH0510804B2
JPH0510804B2 JP59222905A JP22290584A JPH0510804B2 JP H0510804 B2 JPH0510804 B2 JP H0510804B2 JP 59222905 A JP59222905 A JP 59222905A JP 22290584 A JP22290584 A JP 22290584A JP H0510804 B2 JPH0510804 B2 JP H0510804B2
Authority
JP
Japan
Prior art keywords
added
life characteristics
nonlinear
raw materials
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59222905A
Other languages
Japanese (ja)
Other versions
JPS61102003A (en
Inventor
Zenichi Tanno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59222905A priority Critical patent/JPS61102003A/en
Publication of JPS61102003A publication Critical patent/JPS61102003A/en
Publication of JPH0510804B2 publication Critical patent/JPH0510804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は電気的特性の優れた電圧非直線抵抗体
の製造方法に関する。 [発明の技術的背景] 電圧非直線抵抗体(以下素子という)は、一般
にはバリスタと呼ばれ、その優れた非直線電圧−
電流特性が利用されて、電圧安定化或いはサージ
吸収を目的とした避雷器やサージアプソーバに広
く利用されている。代表的なものとして、近年開
発された酸化亜鉛系バリスタがある。これは酸化
亜鉛を主成分とし、これに少量のビスマス、アン
チモン、コバルト、マンガン、クロム等の酸化物
を添加し、混合造粒、成形した後、空気中で高温
焼成し、その焼結体に電極を取り付けて構成され
るものである。その非直線抵抗特性は非常に優れ
ており、焼結体は酸化亜鉛粒子とその周囲をとり
まく添加物により形成される粒界層から成り、優
れた非直線抵抗特性は酸化亜鉛粒子と粒界層との
界面に起因すると考えられており、電圧−電流特
性をある程度任意に調節し得る等多くの特長を備
えている。 [背景技術の問題点] ところで、これら酸化亜鉛系バリスタを電力用
避雷器に使用するには、次の様な問題点があつ
た。 近年送変電設備の建設費を軽減する目的で送電
電圧の超高圧化、絶縁保護レベルの低減化が要求
されており、これに対して避雷器用素子について
(1)非直線特性の改善、(2)高課電率での高寿命化の
努力が続けられている。これらに対する具体的施
策としては(イ)焼結温度、焼結パターンを変更す
る、(ロ)添加物の添加量を変化させる、(ハ)新しい添
加物を加える、(ニ)特に寿命特性改善のために酸化
硼素を含むガラスを添加する等の方法が採られて
いる。しかし(イ)〜(ニ)の方法では非直線特性あるい
は寿命特性のうち一方の特性が改善されると他方
の特性が悪化するという傾向があり両方の特性を
同時に向上させる事が難しかつた。非直線特性と
寿命特性を同時に向上させるために、最近の研究
においてはB2O3、Ag2O、SiO2等の酸化物を原料
に添加することが試みられている。これらの酸化
物を添加すると非直線特性及び寿命特性がもとに
向上した素子が得られる場合があが、各製造ロツ
ド、即ち素子間での寿命特性が変動しやすいとい
う問題があつた。このような寿命のバラツキは避
雷器用の素子を安定して工業生産するためには非
常に大きな問題であつた。 [発明の目的] 本発明は上記要望に鑑みなされたもので、寿命
特性の安定したしかも非直線特性の良好な電圧非
直線抵抗体の製造方法を提供するものである。 [発明の概要] かかる目的を達成するため、本発明は、主成分
であるZnOに副成分として少なくともBi2O3及び
Sb2O3を添加して得られた原料を混合し、成形
し、焼結する工程を備えた電圧非直線抵抗体の製
造方法において、前記混合の工程で、予め調整し
ておいた少なくともホウ素化合物及び銀化合物が
溶解されている水溶液を前記原料に混合すること
を特徴とする電圧非直線抵抗体の製造方法を提供
する。この製造方法で素子を製造することにより
微量のホウ素及び銀を他の成分の間に均一に分散
させることができ、寿命特性のバラツキが小さ
く、しかも非直線特性の良好な素子を得ることが
できる。 [発明の実施例] 以下、本発明の実施例を詳細に説明する。 本発明に係る素子の組成は主成分のZnOを99.7
〜86.9%、副成分のBi2O3を0.1〜3.0モル%、
Sb2O3を0.05〜3.0モル%、Co2O3を0.05〜2.0モル
%、MnOを0.05〜2.0モル%、NiOを0.05〜3.0モ
ル%、Al2O3を0.0005〜0.1モル%含むものを基本
としB、Agを0.002〜0.1重量%含んだ組成のもの
が適するものである。なおその他特性を改善する
目的でさらに他の副成分を添加してもよい。この
様な構成の素子を製造するにはまず、酸化亜鉛
(ZnO)の粉末と、酸化ビスマス(Bi2O3)、酸化
コバルト(Co2O3)、酸化マンガン(MnO)、酸
化アンチモン(Sb2O3)、酸化ニツケル(NiO)
の粉末を秤量し、これらの原料粉末に水、分散
剤、バインダー及び潤滑剤を加えて混合装置に入
れた。一方、水にホウ素化合物としてH3BO3(ホ
ウ酸)を、更に銀化合物としてAgNO3(硝酸銀)
を溶解して水溶液を調整し、この水溶液を混合装
置中の混合物に加え、更にAl2O3を添加して所定
時間混合した。 得られた混合物スラリーを、スプレードライヤ
ーで例えば平均粒径120ミクロンになる様に造粒
し、この得られた造粒粉をプレス成形し、直径50
mm厚さ30mmの円板に成形した。得られた成形体か
ら添加した分散剤、バインダー及び潤滑剤を予め
除くため空気中で500℃で焼成した後、1020℃で
板焼した。得られた仮焼素体に予め用意した高抵
抗層形成用スラリーをスプレーガンを用いて塗布
し、この仮焼素体を空気雰囲気中で1200℃の温度
で焼成した。このようにして得た焼結素体の両面
を平行に研磨し厚さ20mmとした後、アルミニウム
の溶射により電極を形成して、素子を得た。 こうして得られた本実施例の素子1〜13の特性
測定結果を従来例A、B及び比較例14、15ととも
に第1表に示す。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a voltage nonlinear resistor with excellent electrical characteristics. [Technical Background of the Invention] A voltage nonlinear resistor (hereinafter referred to as an element) is generally called a varistor, and its excellent nonlinear voltage -
Taking advantage of its current characteristics, it is widely used in lightning arresters and surge absorbers for the purpose of voltage stabilization or surge absorption. A typical example is the recently developed zinc oxide varistor. The main component is zinc oxide, to which a small amount of oxides such as bismuth, antimony, cobalt, manganese, chromium, etc. are added, mixed, granulated, molded, and then fired at high temperature in air to form a sintered body. It is constructed by attaching electrodes. Its non-linear resistance properties are very good, and the sintered body consists of grain boundary layers formed by zinc oxide particles and additives surrounding them. It is believed that this is due to the interface between [Problems with Background Art] By the way, the following problems arise when using these zinc oxide-based varistors in power surge arresters. In recent years, in order to reduce the construction costs of power transmission and substation facilities, there has been a demand for ultra-high transmission voltages and lower insulation protection levels.
Efforts are continuing to (1) improve nonlinear characteristics and (2) extend life at high charge rates. Specific measures to address these issues include (a) changing the sintering temperature and sintering pattern, (b) changing the amount of additives added, (c) adding new additives, and (d) particularly improving the life characteristics. Therefore, methods such as adding glass containing boron oxide have been adopted. However, in the methods (a) to (d), when one of the nonlinear characteristics or the life characteristics is improved, the other tends to deteriorate, making it difficult to improve both characteristics at the same time. In order to simultaneously improve nonlinear characteristics and lifetime characteristics, recent research has attempted to add oxides such as B 2 O 3 , Ag 2 O, and SiO 2 to raw materials. When these oxides are added, devices with improved nonlinear characteristics and lifetime characteristics can be obtained in some cases, but there is a problem in that the lifetime characteristics tend to vary between manufacturing rods, that is, between devices. Such variations in lifespan have been a very serious problem for stable industrial production of lightning arrester elements. [Object of the Invention] The present invention was made in view of the above-mentioned needs, and it is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor that has stable life characteristics and good nonlinear characteristics. [Summary of the Invention] In order to achieve the above object, the present invention includes ZnO as a main component and at least Bi 2 O 3 and as subcomponents.
In a method for manufacturing a voltage nonlinear resistor comprising the steps of mixing raw materials obtained by adding Sb 2 O 3 , molding, and sintering, in the mixing step, at least boron, which has been adjusted in advance, is The present invention provides a method for manufacturing a voltage nonlinear resistor, which comprises mixing the raw materials with an aqueous solution in which a compound and a silver compound are dissolved. By manufacturing an element using this manufacturing method, trace amounts of boron and silver can be uniformly dispersed among other components, making it possible to obtain an element with small variations in life characteristics and good nonlinear characteristics. . [Embodiments of the Invention] Examples of the present invention will be described in detail below. The composition of the device according to the present invention is that the main component, ZnO, is 99.7%
~86.9%, subcomponent Bi2O3 0.1 ~3.0 mol%,
Contains 0.05 to 3.0 mol% of Sb2O3 , 0.05 to 2.0 mol% of Co2O3 , 0.05 to 2.0 mol% of MnO, 0.05 to 3.0 mol% of NiO, and 0.0005 to 0.1 mol% of Al2O3 . A suitable composition is based on B and Ag in an amount of 0.002 to 0.1% by weight. In addition, other subcomponents may be added for the purpose of improving other properties. To manufacture a device with such a configuration, first, zinc oxide (ZnO) powder, bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese oxide (MnO), and antimony oxide (Sb 2 O 3 ), nickel oxide (NiO)
The powders were weighed, water, a dispersant, a binder, and a lubricant were added to these raw powders, and the mixture was placed in a mixing device. On the other hand, add H 3 BO 3 (boric acid) as a boron compound to water and AgNO 3 (silver nitrate) as a silver compound.
was dissolved to prepare an aqueous solution, this aqueous solution was added to the mixture in the mixing device, and Al 2 O 3 was further added and mixed for a predetermined time. The resulting mixture slurry is granulated using a spray dryer to give an average particle size of, for example, 120 microns, and the resulting granulated powder is press-molded to give particles with a diameter of 50 microns.
It was molded into a disk with a thickness of 30 mm. In order to remove the dispersant, binder and lubricant added from the obtained molded body in advance, it was fired in air at 500°C, and then plate fired at 1020°C. A previously prepared slurry for forming a high resistance layer was applied to the obtained calcined body using a spray gun, and the calcined body was fired at a temperature of 1200° C. in an air atmosphere. Both sides of the sintered element thus obtained were polished in parallel to a thickness of 20 mm, and then electrodes were formed by spraying aluminum to obtain an element. The characteristic measurement results of elements 1 to 13 of this example thus obtained are shown in Table 1 together with conventional examples A and B and comparative examples 14 and 15.

【表】【table】

【表】 ここで非直線特性をV1KA/V1nAで示し次式に
より求めた。 V1KA/V1nA =V(1KA電流通電時の電圧)/V(1mA電流
通電時の電圧) 更に寿命特性(ΔV1nA/V1nA)は温度120℃、
課電率85%で200時間課電し次の式より求めたも
のとする。 ΔV1nA/V1nA=V1nA(200時間後
)−V1nA(初期)/V1nA(初期)×100 第1表において従来例Aのガラスフリツトは酸
化ホウ素を含むガラスを用いたものである。又従
来例Bはホウ素、銀及びケイ素を水に不溶な酸化
物の形、B2O3、Ag2O、SiO2で添加した例であ
る。実施例1〜13はZnOに添加する副成分の添加
量及び原料に混合する水溶液中のH3BO3
AgNO3の量を夫々変化させたものである。なお
比較例14、15はH3BO3又はAgNO3どちらか一方
のみを加えたものである。 第1表に示すようにガラス成分をガラスフリツ
トで添加した従来例Aは寿命特性(ΔV1nA
V1nA)は比較的良好であるが非直接特性
(V1KA/V1nA)が悪く、またB2O3+Ag2O+SiO2
のように酸化物の形態で添加した従来例Bでは、
非直線特性(V1KA/V1nA)は良好であるが寿命
特性(ΔV1nA/V1nA)はかならずしも満足でき
るものではない。 これに対して本発明の実施例1〜13までは非直
性特性、寿命特性共に優れた非直線抵抗体が得ら
れている事がわかる。一方比較例14、15の様に
H3BO3、AgNO3のどちらかがかけると寿命特性
が若干悪化する。 第1図にはホウ素化合物及び銀化合物をシリカ
とともにB2O3+Ag2O+SiO2の原料形態で添加し
た従来例Bと、H3BO3+AgNO3の原料形態で添
加した従来例1の試料10個について寿命特性のバ
ラツキを試験した結果を示す。 なお試料条件はすでに述べたように温度120℃、
課電率85%で200時間課電とする。 第1図に示すように実施例1は試料間のバラツ
キが少なく全試料共安定した良好な寿命特性を示
している事がわかる。 これに対して従来例Bは10個の試料中2個(No.
3、7)は本実施例と同程度の寿命特性を示した
が、残りの8個はΔV1nA/V1nAの変化率が大き
くしかもバラツキも大きかつた。すなわちB2O3
+Ag2O+SiO2のように酸化物の原料形態で添加
すると不良率が高くなり、安定した生産が望まれ
る製造現場で用いるには好ましくないことがわか
つた。 次に作用について説明する。 本発明の実施例による素子の寿命特性が安定し
た直接の原因は明らかでないが、大略的には次の
事が考えられる。過去の研究によりZnOを主成分
とする素子の組成系においては、多くの場合ガラ
ス相を形成する成分を添加すると寿命特性が向上
することが知られている。 しかし従来例A、Bに示した様に、添加する原
料形態により非直線特性が悪化したり寿命特性の
悪化又はバラツキが大きくなるなど種々の問題が
生じるため非直線特性、寿命特性共に満足できる
ものは得られていないのが実情である。これは寿
命特性に効果のあるガラス相を形成する成分の量
が総計でも高々0.1wt%と非常に微量である事が
その大きな原因と考えられる。即ち添加されるガ
ラス相形成成分は極めて微量であるため、混合工
程において原料中に均一に分散しにくい。したが
つてガラス相形成成分が比較的均一に分散してい
る素子は寿命特性が良好になるが、分散が不均一
な素子は寿命特性が悪くなるので素子内に寿命特
性のバラツキが生じる。本発明はこの分散性の問
題に着目したものであり、ガラス相形成成分であ
るB2O3及びAg2Oを分散の悪い酸化物の形で添加
するのをやめ、水溶性のH3BO3及びAgNO3を使
用したことを特徴とする。H3BO3とAgNO3を溶
解した水溶液を原料と混合することにより、ホウ
素と銀が原料中に略均一に分散する。 なお、H3BO3,AgNO3の形で添加された原料
は仮焼工程中にそれぞれ分離、酸化し、B2O3
Ag2Oの形になつていると考えられる。 [発明の効果] 以上説明したように本発明によれば、ホウ素化
合物及び銀化合物を水溶液にして原料と混合する
ことにより非直線特性、寿命特性ともに優れた非
直線抵抗体を得ることができる。
[Table] Here, the nonlinear characteristics are expressed as V 1KA /V 1nA and were determined using the following formula. V 1KA /V 1nA = V (voltage when 1KA current is applied) / V (voltage when 1mA current is applied) Furthermore, the life characteristics (ΔV 1nA /V 1nA ) are determined at a temperature of 120℃,
Assume that electricity is applied for 200 hours at a charging rate of 85% and calculated using the following formula. ΔV 1nA /V 1nA =V 1nA (after 200 hours) - V 1nA (initial) / V 1nA (initial) x 100 In Table 1, the glass frit of Conventional Example A uses glass containing boron oxide. Conventional Example B is an example in which boron, silver, and silicon are added in the form of water-insoluble oxides, such as B 2 O 3 , Ag 2 O, and SiO 2 . Examples 1 to 13 are based on the amounts of subcomponents added to ZnO and H 3 BO 3 in the aqueous solution mixed with the raw materials.
The amount of AgNO 3 was changed respectively. In Comparative Examples 14 and 15, only either H 3 BO 3 or AgNO 3 was added. As shown in Table 1, conventional example A in which the glass component is added with glass frit has a life characteristic (ΔV 1nA /
V 1nA ) is relatively good, but indirect characteristics (V 1KA /V 1nA ) are poor, and B 2 O 3 +Ag 2 O + SiO 2
In conventional example B, in which oxide was added in the form of an oxide,
Although the nonlinear characteristics (V 1KA /V 1nA ) are good, the life characteristics (ΔV 1nA /V 1nA ) are not necessarily satisfactory. On the other hand, it can be seen that in Examples 1 to 13 of the present invention, nonlinear resistors with excellent nonlinearity characteristics and life characteristics were obtained. On the other hand, as in Comparative Examples 14 and 15
When either H 3 BO 3 or AgNO 3 is applied, the life characteristics deteriorate slightly. Figure 1 shows Sample 10 of Conventional Example B, in which a boron compound and a silver compound were added together with silica in the raw material form of B 2 O 3 +Ag 2 O + SiO 2 , and Conventional Example 1, in which they were added in the raw material form of H 3 BO 3 +AgNO 3 . The results of testing the variation in life characteristics for each are shown below. As mentioned above, the sample conditions were a temperature of 120°C,
Electricity will be charged for 200 hours at a charging rate of 85%. As shown in FIG. 1, it can be seen that Example 1 exhibits good life characteristics with little variation among samples and all samples being stable. On the other hand, in conventional example B, 2 out of 10 samples (No.
3 and 7) exhibited life characteristics comparable to those of this example, but the remaining eight had a large rate of change in ΔV 1nA /V 1nA and also had large variations. i.e. B 2 O 3
It was found that when it is added in the form of an oxide raw material, such as +Ag 2 O + SiO 2 , the defective rate increases, making it undesirable for use in manufacturing sites where stable production is desired. Next, the effect will be explained. Although the direct cause of the stable life characteristics of the device according to the embodiment of the present invention is not clear, the following can be roughly considered. Past research has shown that in the composition systems of elements whose main component is ZnO, the life characteristics are often improved by adding components that form a glass phase. However, as shown in Conventional Examples A and B, there are various problems such as deterioration of non-linear characteristics and deterioration of life characteristics or large variations depending on the form of raw materials added, so it is impossible to satisfy both non-linear characteristics and life characteristics. The reality is that this has not been achieved. This is thought to be largely due to the fact that the total amount of components that form the glass phase, which has an effect on life characteristics, is extremely small, at most 0.1 wt%. That is, since the glass phase forming component added is in an extremely small amount, it is difficult to uniformly disperse it in the raw materials in the mixing step. Therefore, an element in which the glass phase-forming components are dispersed relatively uniformly has good life characteristics, but an element in which the glass phase forming components are dispersed unevenly has poor life characteristics, resulting in variations in the life characteristics within the element. The present invention focuses on this problem of dispersibility, and eliminates the addition of B 2 O 3 and Ag 2 O, which are glass phase forming components, in the form of oxides with poor dispersion, and instead uses water-soluble H 3 BO. 3 and AgNO 3 are used. By mixing an aqueous solution containing H 3 BO 3 and AgNO 3 with the raw material, boron and silver are almost uniformly dispersed in the raw material. Note that the raw materials added in the form of H 3 BO 3 and AgNO 3 are separated and oxidized during the calcination process, and become B 2 O 3 ,
It is thought to be in the form of Ag 2 O. [Effects of the Invention] As explained above, according to the present invention, a nonlinear resistor having excellent nonlinear characteristics and life characteristics can be obtained by making an aqueous solution of a boron compound and a silver compound and mixing them with raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例に係る寿命特性の素子毎
の分布を示した図である。
The figure is a diagram showing the distribution of lifetime characteristics for each element according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 主成分であるZnOに副成分として少なくとも
Bi2O3及びSb2O3を添加して得られた原料を混合
し、成形し、焼結する工程を備えた電圧非直線抵
抗体の製造方法において、前記混合の工程で、予
め調整しておいた少なくともホウ素化合物及び銀
化合物が溶解されている水溶液を前記原料に混合
することを特徴とする電圧非直線抵抗体の製造方
法。
1 ZnO, which is the main component, contains at least
In a method for manufacturing a voltage nonlinear resistor comprising the steps of mixing raw materials obtained by adding Bi 2 O 3 and Sb 2 O 3 , molding, and sintering, in the mixing step, adjustment is performed in advance. A method for manufacturing a voltage nonlinear resistor, comprising mixing the prepared aqueous solution in which at least a boron compound and a silver compound are dissolved with the raw materials.
JP59222905A 1984-10-25 1984-10-25 Manufacture of voltage non-linear resistor Granted JPS61102003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222905A JPS61102003A (en) 1984-10-25 1984-10-25 Manufacture of voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222905A JPS61102003A (en) 1984-10-25 1984-10-25 Manufacture of voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPS61102003A JPS61102003A (en) 1986-05-20
JPH0510804B2 true JPH0510804B2 (en) 1993-02-10

Family

ID=16789699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222905A Granted JPS61102003A (en) 1984-10-25 1984-10-25 Manufacture of voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPS61102003A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122701A (en) * 1982-01-14 1983-07-21 株式会社東芝 Method of producing voltage nonlinear resistor
JPS5934603A (en) * 1982-08-23 1984-02-25 株式会社東芝 Nonlinear resistor
JPS5968907A (en) * 1982-10-13 1984-04-19 三菱電機株式会社 Method of producing voltage nonlinear resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122701A (en) * 1982-01-14 1983-07-21 株式会社東芝 Method of producing voltage nonlinear resistor
JPS5934603A (en) * 1982-08-23 1984-02-25 株式会社東芝 Nonlinear resistor
JPS5968907A (en) * 1982-10-13 1984-04-19 三菱電機株式会社 Method of producing voltage nonlinear resistor

Also Published As

Publication number Publication date
JPS61102003A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPH11340009A (en) Nonlinear resistor
CA2050097C (en) Voltage non-linear resistor and method of producing the same
JPH0425681B2 (en)
JPH0510804B2 (en)
JP2656233B2 (en) Voltage non-linear resistor
JPH04245602A (en) Nonlinearly voltage-dependent resistor
JP2572884B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH05234716A (en) Zinc oxide varistor
JPS6249961B2 (en)
JPH04139702A (en) Voltage-dependent nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPS6322602B2 (en)
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JPH0732085B2 (en) Electrode material for voltage nonlinear resistors
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH04245601A (en) Nonlinearly voltage-dependent resistor
JPS61258403A (en) Manufacture of non-linear resistor
JPH0732086B2 (en) Electrode material for voltage nonlinear resistors
JPH0744089B2 (en) Method for manufacturing voltage non-linear resistor
JPH03195003A (en) Voltage-dependent nonlinear resistor
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JPS63132402A (en) Manufacture of voltage nonlinear resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees