JPS6322602B2 - - Google Patents

Info

Publication number
JPS6322602B2
JPS6322602B2 JP56129343A JP12934381A JPS6322602B2 JP S6322602 B2 JPS6322602 B2 JP S6322602B2 JP 56129343 A JP56129343 A JP 56129343A JP 12934381 A JP12934381 A JP 12934381A JP S6322602 B2 JPS6322602 B2 JP S6322602B2
Authority
JP
Japan
Prior art keywords
oxide
zinc oxide
added
mixing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56129343A
Other languages
Japanese (ja)
Other versions
JPS5831504A (en
Inventor
Hiroyoshi Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56129343A priority Critical patent/JPS5831504A/en
Publication of JPS5831504A publication Critical patent/JPS5831504A/en
Publication of JPS6322602B2 publication Critical patent/JPS6322602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化亜鉛あるいは酸化亜鉛と酸化マグ
ネシウムを主成分とし、焼結体自体が非直線抵抗
特性をもつ非直線抵抗体の製造方法に関するもの
である。 非直線抵抗体は一般にはバリスタと呼ばれ、そ
の優れた非直線電圧−電流特性が利用されて電圧
安定化、あるいはサージ吸収を目的とした避雷器
やサージアブソーバに広く利用されている。代表
的なものとして、近年開発された酸化亜鉛バリス
タがある。これは酸化亜鉛あるいは酸化亜鉛と酸
化マグネシウムを主成分とし、これに少量のビス
マス、アンチモン、コバルト、マンガン、クロム
等の酸化物を添加し、混合造粒、成形した後、空
気中で高温焼成し、その焼結体に電極を取り付け
て構成されるものである。その非直線抵抗特性は
非常に優れており、焼結体は酸化亜鉛粒子とその
周囲を取りまく添加物により形成される粒界層か
らなり、優れた非直線抵抗特性は酸化亜鉛粒子と
粒界層との界面に起因すると考えられている。し
かしながら、これらの非直線抵抗体の製造にあた
つては工業的に解決せねばならない問題点があ
る。その一つは主成物である酸化亜鉛あるいは酸
化亜鉛と酸化マグネシウムに添加され、粒界層を
形成するビスマス、アンチモン、コバルト、マン
ガン、クロム等の酸化物の量が極めて少量である
ことである。(添加物全体でも10%以下、各成分
によつては0.5%以下)となるため、主成分と添
加物とを均一に混合することが非常にむつかしい
ことである。このことは混合物スラリー中の成分
分布や、焼結体の微構造観察、元素分布などから
確められている。その結果として、非直線抵抗特
性の低下やその特性上のバラツキばかりでなく、
課電寿命、放電耐量等の他の性能の低下や、バラ
ツキなどが生じるという問題点があつた。 一般に、工業的には次のような製造方法がとら
れている。原料である酸化物粉末を所定量秤量の
上、水を中心とする液体とともに混合機に投入
し、所定時間、粉砕メデイアにより粉砕しながら
混合する。粉砕メデイアによる汚染を避けるため
粉砕メデイアを用いない間隙通過型の乳化機を用
いる場合もある。また、次の造粒工程のためにバ
インダ(例えばポリビニールアルコール)を加え
る場合もある。混合を十分に行うために長時間混
合する方法、液体に対する固形分量を小さくして
混合する方法、添加物成分を予じめ混合してから
主成分と混合する方法、添加物成分を予じの仮焼
結して微粉砕し、その後主成分と混合する方法等
が試みられている。しかしながらこれらの方法で
は極く微量の添加物成分を均一に分布させること
ができないばかりでなく、粉砕メデイアによる不
純物の混入がさけられず、電気的諸特性は低下
し、また製造工程が複雑になるなど前述の問題点
を解決したとはいえなかつた。また、粉砕メデイ
アを用いない方法では主成分原料自体の分散も不
十分となり、根本的な問題点の解決策とはいえな
かつた。 本発明は、このような欠点を解決するためのも
のであり、非直線抵抗特性や他の電気的諸特性を
改良するために主成分である酸化亜鉛あるいは酸
化亜鉛と酸化マグネシウムに加えられる微量の各
種の添加物とを十分に均一に混合させ、均質な特
性を有する非直線抵抗体の製造方法を提供するこ
とを目的とする。 以下、本発明の一実施例を詳細に説明する。 酸化亜鉛(ZnO)と酸化ビスマス(Bi2O3)の
粉末を97.5mol%と酸化コバルト(Co2O3)、酸化
マンガン(MnO)、酸化アンチモン(Sb2O3)、
酸化クロム(Cr2O3)の粉末を各々0.5mol%づつ
秤量する。これを固形分濃度が30%になるように
水と共にボールミルの中へ投入し、さらに無水マ
レイン酸とイソブチレンの共重合物を固形分で主
成分原料の固形分に対し0.5wt%になるように水
溶液として添加し、さらにバインダと潤滑剤とを
加え、24時間混合する。混合スラリーをスプレー
ドライヤで乾燥造粒し、直径80mm、厚さ30mmに圧
縮成形する。添加した分散剤、バインダ、潤滑剤
を予じめ除くため空気中で500℃で焼成する。さ
らに1050℃で側面に高抵抗層を形成させるため予
備焼成し、高抵抗形成物を塗布後、空気中で1100
〜1250℃で焼結させ得られた焼結体の両平面を研
磨し、500℃で再加熱し、両平面にアルミニウム
のメタリコン電極をとりつける。
The present invention relates to a method for manufacturing a nonlinear resistor whose main components are zinc oxide or zinc oxide and magnesium oxide, and whose sintered body itself has nonlinear resistance characteristics. A nonlinear resistor is generally called a varistor, and its excellent nonlinear voltage-current characteristics are utilized to make it widely used in lightning arresters and surge absorbers for the purpose of voltage stabilization or surge absorption. A typical example is the recently developed zinc oxide varistor. It is mainly composed of zinc oxide or zinc oxide and magnesium oxide, to which small amounts of oxides such as bismuth, antimony, cobalt, manganese, and chromium are added, mixed, granulated, molded, and then fired at high temperature in air. It is constructed by attaching electrodes to the sintered body. Its non-linear resistance properties are very excellent, and the sintered body consists of grain boundary layers formed by zinc oxide particles and additives surrounding them. It is thought that this is due to the interface with However, in manufacturing these nonlinear resistors, there are problems that must be solved industrially. One of these is that the amount of oxides such as bismuth, antimony, cobalt, manganese, and chromium, which are added to the main constituents zinc oxide or zinc oxide and magnesium oxide and form grain boundary layers, is extremely small. . (The total amount of additives is less than 10%, and depending on each component, it is less than 0.5%). Therefore, it is extremely difficult to uniformly mix the main ingredients and additives. This has been confirmed from the component distribution in the mixture slurry, observation of the microstructure of the sintered body, element distribution, etc. As a result, not only a decrease in non-linear resistance characteristics and variations in the characteristics, but also
There were problems such as deterioration of other performances such as charging life and discharge capacity, and variations. Generally, the following manufacturing method is used industrially. A predetermined amount of oxide powder as a raw material is weighed and put into a mixer together with a liquid mainly composed of water, and mixed while being pulverized by a pulverizing media for a predetermined period of time. In order to avoid contamination by the grinding media, a gap-passing type emulsifier that does not use the grinding media may be used. A binder (eg polyvinyl alcohol) may also be added for the next granulation step. Methods of mixing for a long time to achieve sufficient mixing, methods of mixing by reducing the amount of solids to liquid, methods of mixing additive components in advance and then mixing with the main component, methods of mixing additive components in advance Attempts have been made to temporarily sinter the material, pulverize it, and then mix it with the main component. However, with these methods, it is not only impossible to uniformly distribute extremely small amounts of additive components, but also the contamination of impurities by the grinding media is unavoidable, the electrical characteristics deteriorate, and the manufacturing process becomes complicated. It cannot be said that the above-mentioned problems have been solved. Further, in a method that does not use a grinding media, the main component raw material itself is not sufficiently dispersed, and cannot be considered as a solution to the fundamental problem. The present invention is intended to solve these drawbacks, and to improve non-linear resistance characteristics and other electrical characteristics, the present invention aims to improve the non-linear resistance characteristics and other electrical characteristics by adding trace amounts of zinc oxide or zinc oxide and magnesium oxide, which are the main ingredients. It is an object of the present invention to provide a method for manufacturing a nonlinear resistor having homogeneous characteristics by thoroughly and uniformly mixing various additives. Hereinafter, one embodiment of the present invention will be described in detail. 97.5 mol% zinc oxide (ZnO) and bismuth oxide (Bi 2 O 3 ) powder, cobalt oxide (Co 2 O 3 ), manganese oxide (MnO), antimony oxide (Sb 2 O 3 ),
Weigh out 0.5 mol% of each chromium oxide (Cr 2 O 3 ) powder. This was put into a ball mill along with water so that the solid content concentration was 30%, and then the copolymer of maleic anhydride and isobutylene was added to a ball mill so that the solid content was 0.5 wt% based on the solid content of the main component raw material. Add as an aqueous solution, then add binder and lubricant and mix for 24 hours. The mixed slurry is dried and granulated using a spray dryer, and compression molded to a diameter of 80 mm and a thickness of 30 mm. In order to remove the added dispersant, binder, and lubricant in advance, it is fired in air at 500°C. Furthermore, pre-baking is carried out at 1050℃ to form a high resistance layer on the side surface, and after applying the high resistance layer, it is heated at 1100℃ in air.
Both surfaces of the sintered body obtained by sintering at ~1250℃ are polished, reheated at 500℃, and aluminum metallic electrodes are attached to both surfaces.

【表】【table】

【表】 第1表は混合スラリーを従来の場合と比較した
ものである。この表から明らかなように本実施例
では混合スラリーの粘性は著しく低下し、PH(ペ
ーハー)は大きく変化し、その効果の相違は明白
である。また混合物スラリーの成分分布を調べた
結果従来例よりも均一に分布しており水に分散し
た粒子の大きさを調べた結果、ほゞ一次粒子にま
で分散しており、従来例では分散が不十分で、主
成分、添加物ともに凝集したままの状態で偏在が
認められた。 第2表は上述のようにして得られた非直線抵抗
体の電気的諸特性を示したものである。この表に
おいてV1nAは、交流抵抗分電流1mA流した時
の電圧である。V10KA/V1nA、V1nA/V0.1nA
V0.1nA/V0.01nAは同様にそれぞれの電流を流した
時の電圧の比であり、表示電流値の範囲における
非直線抵抗特性を表わすもので、値の小さいもの
程良い性能を示す。σは繰返し製造した1000個に
対するV1nAのバラツキを表わす。εは交流50Hz
における誘電率を表わす。放電耐量は2msのく
形波電流を5回流し、破壊した電流値における消
費エネルギーを単位体積あたりに換算したもので
ある。課電寿命試験は周囲温度140℃でV1nAの85
%の交流電圧(最大値)を2000時間印加した場合
の交流抵抗分電流の変化率を表わしたものであ
り、変化率の小さいものが性能の優れていること
を表わす。 第2表から明らかなように本発明に係る実施例
がいずれも優れた結果となつた。 先に述べたように混合物スラリー中の成分分布
が均一になり、かつ主成分も一次粒子にまで十分
に分散した結果、焼結体において、非直線抵抗特
性が生ずる原因となる先に述べた微細構造が焼結
体のどの部分も均一になつていることが調査の結
果明らかとなつた。種々の諸特性が改善されたの
はこれらが原因であると考えられる。 第1図は原料固形分濃度を30%としバインダ・
潤滑剤を加えた場合の無水マレイン酸とイソブチ
レンの共重合物の添加量の分散効果を表わす混合
スラリーの粘度を表わす図である。この図からわ
かるようにその効果は添加量0.1〜1.0wt%の際に
良好であることが容易に理解されよう。第2図は
最適添加量0.5wt%/原料wtにおける、混合スラ
リー固形分濃度と粘度の関係を表わす図であり、
著しく高い濃度での混合も可能であることを示し
ている。第3図は混合時間とV1nAのバラツキの
関係を示す図で、この図からも明らかなように混
合時間は実施例の1/4に短縮できることを示して
いる。 以上のべたように、本発明により、酸化亜鉛を
主体とする非直線抵抗体を製造する際に原料粉末
を水と共に混合する時、無水マレイン酸とイソブ
チレンの共重合体を添加することにより、主体成
分と添加成分が均一に混合でき、その結果、焼結
体中の微細構造が均一になり、非直線抵抗特性を
はじめ、放電耐量その他の諸特性が著しく改善さ
れる。このようにして得られた非直線抵抗体は電
力用機器を保護するために高い信頼性が要求され
る電力用避雷器素子などの用途には特に適してい
る。 また固形分濃度を著しく高くできること、混合
時間を著しく短縮できるなど工業的価値も大き
い。 尚、実施例において酸化亜鉛に対して、酸化ビ
スマス(Bi2O3)、酸化コバルト(Co2O3)、酸化
マンガン(MnO)、酸化アンチモン(Sb2O3)、
酸化クロム(Cr2O3)を使用したが、酸化亜鉛と
酸化マグネシウム(MgO)を主体としたもの、
さらに添加物として酸化鉛(PbO)、酸化バリウ
ム(BaO)、酸化ニツケル(NiO)、酸化第二錫
(SnO2)、二酸化ケイ素(SiO2)、酸化チタン
(TiO2)、酸化アルミニウム(Al2O3)、酸化銀
(Ag2O)、酸化ホー素(B2O3)各種のホウケイ酸
系ガラスフリツト、ホウケイ酸鉛ガラスフリツト
系等酸化亜鉛粒子の半導性を変えるもの、酸化亜
鉛粒子を取り囲む粒界層を構成する部分の性質を
変えるもの等すべての場合に本発明の有効性は何
ら損なわれることはない。また主体が酸化亜鉛と
酸化マグネシウムであつても同様の効果のあるこ
とが確められている。 また、本発明ではボールミルにより粉砕メデイ
アを用いる方法を用いたが、ボールミル以外の粉
砕メデイアを用いる混合機、また粉砕メデイアを
用いない間隙通過型の混合機においても本発明の
有効性は何ら損われることがないことが確認され
たことはいうまでもない。また、本発明により粉
砕メデイアの摩耗による不純物の混入が増大して
諸特性を損うことがなかつたことは実施例の結果
からも明らかである。 また、本実施例では分散剤の他にバインダと潤
滑剤を添加したがこれは次工程のためであり、本
発明の効果に何ら影響のないことはいうまでもな
い。 以上説明した様に、本発明によれば主成分とし
ての酸化亜鉛あるいは酸化亜鉛と酸化マグネシウ
ムに対して加えられる微量の各種添加物を十分に
均一に混合させることができ、非直線抵抗特性や
他の電気的諸特性を向上させるとともに、均質な
特性を有する非直線抵抗体の製造方法を提供でき
る。
[Table] Table 1 compares the mixed slurry with the conventional case. As is clear from this table, in this example, the viscosity of the mixed slurry was significantly lowered and the PH (pH) changed significantly, and the difference in effect is obvious. In addition, an examination of the component distribution of the mixture slurry revealed that the distribution was more uniform than in the conventional example, and an examination of the size of the particles dispersed in water revealed that they were dispersed to almost primary particles, whereas in the conventional example, the dispersion was poor. It was found that the main components and additives remained aggregated and were unevenly distributed. Table 2 shows the electrical characteristics of the nonlinear resistor obtained as described above. In this table, V 1nA is the voltage when 1mA of AC resistance current flows. V 10KA / V 1nA , V 1nA / V 0.1nA ,
Similarly, V 0.1nA /V 0.01nA is the ratio of the voltages when the respective currents flow, and represents the nonlinear resistance characteristic in the range of displayed current values, and the smaller the value, the better the performance. σ represents the variation in V 1nA for 1000 pieces manufactured repeatedly. ε is AC 50Hz
represents the dielectric constant at . The discharge withstand capacity is calculated by passing a 2 ms square wave current five times and converting the energy consumption at the current value at which the battery breaks down per unit volume. Power life test is 85 V 1nA at ambient temperature 140℃
% AC voltage (maximum value) is applied for 2000 hours, and the smaller the rate of change, the better the performance. As is clear from Table 2, all the Examples according to the present invention had excellent results. As mentioned earlier, as a result of the component distribution in the mixture slurry becoming uniform and the main components being sufficiently dispersed down to the primary particles, the aforementioned fine particles that cause non-linear resistance characteristics in the sintered body are reduced. The investigation revealed that the structure was uniform throughout the sintered body. It is thought that these are the reasons why various properties were improved. Figure 1 shows the binder and
FIG. 3 is a diagram showing the viscosity of a mixed slurry showing the dispersion effect of the amount of copolymer of maleic anhydride and isobutylene added when a lubricant is added. As can be seen from this figure, it is easy to understand that the effect is good when the amount added is 0.1 to 1.0 wt%. Figure 2 is a diagram showing the relationship between mixed slurry solid content concentration and viscosity at the optimum addition amount of 0.5wt%/wt of raw material.
This shows that mixing at extremely high concentrations is also possible. FIG. 3 is a diagram showing the relationship between the mixing time and the variation in V 1nA , and as is clear from this diagram, it is shown that the mixing time can be shortened to 1/4 of that in the example. As described above, according to the present invention, when mixing raw material powder with water when producing a non-linear resistor mainly composed of zinc oxide, by adding a copolymer of maleic anhydride and isobutylene, The components and additive components can be mixed uniformly, and as a result, the microstructure in the sintered body becomes uniform, and non-linear resistance characteristics, discharge withstand capacity, and other various characteristics are significantly improved. The nonlinear resistor thus obtained is particularly suitable for applications such as power surge arrester elements that require high reliability in order to protect power equipment. It also has great industrial value, such as being able to significantly increase the solid content concentration and significantly shortening the mixing time. In addition, in the examples, for zinc oxide, bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese oxide (MnO), antimony oxide (Sb 2 O 3 ),
We used chromium oxide (Cr 2 O 3 ), but we also used zinc oxide and magnesium oxide (MgO),
Additionally, additives such as lead oxide (PbO), barium oxide (BaO), nickel oxide (NiO), tin oxide (SnO 2 ), silicon dioxide (SiO 2 ), titanium oxide (TiO 2 ), and aluminum oxide (Al 2 ) are added. O 3 ), silver oxide (Ag 2 O), boron oxide (B 2 O 3 ), various borosilicate glass frits, lead borosilicate glass frits, etc. that change the semiconductivity of zinc oxide particles, surrounding zinc oxide particles The effectiveness of the present invention is not impaired in any way, such as when the properties of the portions constituting the grain boundary layer are changed. It has also been confirmed that the same effect can be obtained even when the main ingredients are zinc oxide and magnesium oxide. Further, although the present invention uses a method using a grinding media using a ball mill, the effectiveness of the present invention is not impaired in any way in a mixer using grinding media other than a ball mill, or in a gap-passing type mixer that does not use a grinding media. Needless to say, it has been confirmed that this is not the case. Furthermore, it is clear from the results of the Examples that the present invention did not cause an increase in contamination of impurities due to abrasion of the grinding media and thereby did not impair various properties. Further, in this example, a binder and a lubricant were added in addition to the dispersant, but these were added for the next step, and it goes without saying that they have no effect on the effects of the present invention. As explained above, according to the present invention, trace amounts of various additives added to zinc oxide or zinc oxide and magnesium oxide as the main components can be mixed sufficiently uniformly, and the non-linear resistance characteristics and other It is possible to provide a method for manufacturing a non-linear resistor having uniform characteristics as well as improving the electrical characteristics of the non-linear resistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る無水マレイン酸とイソブ
チレンの共重合物の添加量と粘度との関係図、第
2図は混合スラリー濃度と粘度との関係図、第3
図は本発明に係る混合スラリーの混合時間と特性
上のバラツキの関係を示す図である。
Figure 1 is a relationship diagram between the amount of maleic anhydride and isobutylene copolymer added and viscosity according to the present invention, Figure 2 is a relationship diagram between mixed slurry concentration and viscosity, and Figure 3 is a relationship diagram between the mixed slurry concentration and viscosity.
The figure is a diagram showing the relationship between the mixing time and the variation in characteristics of the mixed slurry according to the present invention.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛あるいは酸化亜鉛と酸化マグネシウ
ムを主成分とした粉末に、電圧非直線性を生じさ
せるための添加物を加えて混合する工程に於て、
無水マレイン酸とイソブチレンの共重合物を分散
剤として加えることを特徴とする非直線抵抗体の
製造方法。 2 無水マレイン酸とイソブチレンの共重合物の
添加量が固形分で、主成分の固形分に対して0.1
〜1.0wt%である特許請求の範囲第1項記載の非
直線抵抗体の製造方法。
[Claims] 1. In the step of adding and mixing an additive for producing voltage nonlinearity to zinc oxide or a powder mainly composed of zinc oxide and magnesium oxide,
A method for producing a nonlinear resistor, which comprises adding a copolymer of maleic anhydride and isobutylene as a dispersant. 2. The amount of copolymer of maleic anhydride and isobutylene added is 0.1% in solid content based on the solid content of the main component.
The method for manufacturing a nonlinear resistor according to claim 1, wherein the content is 1.0 wt%.
JP56129343A 1981-08-20 1981-08-20 Method of producing non-linear resistor Granted JPS5831504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56129343A JPS5831504A (en) 1981-08-20 1981-08-20 Method of producing non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56129343A JPS5831504A (en) 1981-08-20 1981-08-20 Method of producing non-linear resistor

Publications (2)

Publication Number Publication Date
JPS5831504A JPS5831504A (en) 1983-02-24
JPS6322602B2 true JPS6322602B2 (en) 1988-05-12

Family

ID=15007260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56129343A Granted JPS5831504A (en) 1981-08-20 1981-08-20 Method of producing non-linear resistor

Country Status (1)

Country Link
JP (1) JPS5831504A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139002A (en) * 1984-12-11 1986-06-26 株式会社東芝 Manufacture of non-linear resistor
NO334443B1 (en) 2012-08-22 2014-03-03 Viking Heat Engines As Pulse width regulating valve

Also Published As

Publication number Publication date
JPS5831504A (en) 1983-02-24

Similar Documents

Publication Publication Date Title
US4460497A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
US4452728A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum, boron and selected alkali metal additives
JPS6322602B2 (en)
KR920005155B1 (en) Zno-varistor making method
JPS605062A (en) Manufacture of zinc oxide varistor
JPH0128481B2 (en)
JPH05234716A (en) Zinc oxide varistor
JPH02164006A (en) Zinc oxide type varistor
JP3317015B2 (en) Zinc oxide varistor
JPH03112101A (en) Manufacture of varistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPS59103303A (en) Method of producing nonlinear resistor
JPH0212901A (en) Manufacture of zinc oxide varistor
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPH0510804B2 (en)
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPS59108301A (en) Method of producing nonlinear resistor
JPS6330765B2 (en)
JPH0131682B2 (en)
JPS61139004A (en) Non-linear resistor
JPS61139002A (en) Manufacture of non-linear resistor
JPS63132402A (en) Manufacture of voltage nonlinear resistor
JPH0128483B2 (en)