JPS6325219A - Production of zno crystal particle - Google Patents

Production of zno crystal particle

Info

Publication number
JPS6325219A
JPS6325219A JP61168691A JP16869186A JPS6325219A JP S6325219 A JPS6325219 A JP S6325219A JP 61168691 A JP61168691 A JP 61168691A JP 16869186 A JP16869186 A JP 16869186A JP S6325219 A JPS6325219 A JP S6325219A
Authority
JP
Japan
Prior art keywords
compound
zno
mol
powder
crystal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168691A
Other languages
Japanese (ja)
Inventor
Kiyoshi Matsuda
清 松田
Takeshi Suzuki
武志 鈴木
Takamichi Momoki
桃木 孝道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP61168691A priority Critical patent/JPS6325219A/en
Publication of JPS6325219A publication Critical patent/JPS6325219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled crystal particles having low anisotropy and uniform particle size and suitable for low-voltage circuit, in high efficiency, by adding a Ba or Sr compound and an Mg compound to specific ZnO powder, sintering the powdery mixture and hydrolyzing the sintered material. CONSTITUTION:A powdery mixture is produced by mixing (A) ZnO powder containing Al, In and/or Ga with (B) a barium compound (e.g. BaCO3) and/or a strontium compound (e.g. SrCO3) and (C) 0.5-14mol% Mg compound (e.g. MgO). The powder is compression molded and sintered e.g. at about 1,150 deg.C for about 4hr. The sintered product is hydrolyzed by boiling in pure water to dissolve the BaO layer and SrO layer. The obtained ZnO crystal particles are washed with water and dried.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は酸化亜鉛(ZnO)を主成分とした低電圧回路
用バリスタのZnO結晶粒子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing ZnO crystal particles for a varistor for a low voltage circuit, the main component of which is zinc oxide (ZnO).

(従来の技術) ZnOを主成分としたバリスタは濁れたコ1直線性を有
することよりサージ吸収機能を有するものとして多用さ
れている。
(Prior Art) Varistors containing ZnO as a main component are often used as having a surge absorbing function due to their cloudy co-linearity.

しかしてこの秤バリスタにおけるバリスタ電圧はZnO
焼結体表裏両面に設けられる電極間に存在する粒界層の
数によって決定される。このため低電圧回路用のバリス
タを得るにはバリスタ素子の厚さを薄くするか、または
ZnO粒子径を大きくし粒界層の数を少なくする必要が
ある。介立上がり電圧22Vのバリスタを考えると一般
に一粒界層当りの電圧は2.5V程度である。すなわち
通常の方法では焼結体の7−no粒子径は10〜20μ
mであるからfA粘結体さは0.2mm程度しかなく、
これでは)幾械的強度が低く、工程中割れを生ずる問題
があり実用的とは言えない。そのためZnO粉体原料に
該原料粒径より大きい粒径のZnO結晶(以下結晶核粒
子と称す)を少量添加し、粒成長を促進させZnO粒子
径を大きくする方法がトド々考えだされており、中でも
ZnO粉末に3a化合物もしくは3r化合物を少量添加
混合した粉末を成形−焼成して得られた焼結体を加水分
解する方法は粒成長促准剤として用いるBa化合物。
However, the varistor voltage in this scale varistor is ZnO
It is determined by the number of grain boundary layers existing between the electrodes provided on both the front and back surfaces of the sintered body. Therefore, in order to obtain a varistor for a low voltage circuit, it is necessary to reduce the thickness of the varistor element or to increase the ZnO particle size and reduce the number of grain boundary layers. Considering a varistor with a rising voltage of 22V, the voltage per grain boundary layer is generally about 2.5V. In other words, in the normal method, the 7-no particle size of the sintered body is 10 to 20μ.
m, so the fA viscosity is only about 0.2 mm,
This is not practical due to its low mechanical strength and the problem of cracking during the process. Therefore, a method has been devised to increase the ZnO particle size by adding a small amount of ZnO crystals (hereinafter referred to as crystal nucleus particles) with a particle size larger than the raw material particle size to the ZnO powder raw material to promote grain growth and increase the ZnO particle size. Among them, a method in which a sintered body obtained by molding and firing a powder obtained by adding and mixing a small amount of a 3a compound or a 3r compound to ZnO powder is hydrolyzed is a Ba compound used as a grain growth promoter.

Sr化合物を加水分解によって除去でき、結晶核粒子径
の制御が容易であることから多用されている。しかしな
がらこのような方法で得られる結晶核粒子径は第4図に
示寸ように最長部位Xと、Xに直角な方向の最上部位Y
の比X/Yが大ぎくバラツキ、細長い形状のものから円
形状に近いものまでさまざまであるため、この結晶核粒
子を使用して得られたバリスタ素体の極端に粒界層の数
が少ない部位ができ、その結果該部位の電気抵抗が低下
し、電流が集中し破壊にいたる欠点をもつものとなって
いた。図中2は電極である。しかして、これらの欠点を
除去する方法として特開昭61−24201号に開示さ
れた、すなわちZnOにBaまたは3r化合物を加え成
形し焼成してなる焼結体を加水分解する際の成形をシー
ト状とし、前記焼結体の厚さを25〜300μmとする
ZnO結晶粒子の製造方法があり、前記結晶核粒子径と
して例示したX/Yの比を小さくし円形状に近い粒子形
成に大きく貢献できる。しかしながら、このような方法
ではシート形成のための特別な設備を有しまたシート状
成形体からZnO粒子を得るまでに多くの工数を有し実
用的でないばかりか、成形圧力が少ないため、粒子自体
の大きさは不ぞろいであると同時に表面に凹凸をおびた
粗雑な粒子となる欠点を有しかならずしも有効な手段と
はいえなかった。
It is widely used because Sr compounds can be removed by hydrolysis and the crystal nucleus particle size can be easily controlled. However, the crystal nucleus particle size obtained by such a method is determined by the size of the longest part X and the uppermost part Y in the direction perpendicular to X, as shown in Figure 4.
The ratio X/Y varies greatly, and varies from elongated to nearly circular, so the varistor element obtained using this crystal nucleus particle has an extremely small number of grain boundary layers. As a result, the electric resistance of the parts decreases, and current concentrates, resulting in a defect that may lead to destruction. 2 in the figure is an electrode. Therefore, as a method to eliminate these drawbacks, a sheet forming process is disclosed in JP-A No. 61-24201, which involves hydrolyzing a sintered body obtained by adding Ba or 3r compound to ZnO, forming it, and firing it. There is a method for producing ZnO crystal particles in which the sintered body has a thickness of 25 to 300 μm, which greatly contributes to the formation of particles with a circular shape by reducing the ratio of X/Y, which is exemplified as the crystal nucleus particle size. can. However, such a method requires special equipment for sheet formation and requires a large number of man-hours to obtain ZnO particles from a sheet-shaped compact, which is not only impractical, but also because the molding pressure is low. The size of the grains is not uniform, and at the same time, the grains are coarse and have an uneven surface, which cannot be said to be an effective means.

(発明が解決しようとする問題点) 以上のように上記いずれの手段を講じても低電圧回路用
バリスタとして実用的にかつ所望の粒界層を得ることは
困難であった。
(Problems to be Solved by the Invention) As described above, even if any of the above measures is taken, it is difficult to obtain a practical and desired grain boundary layer as a varistor for a low voltage circuit.

本発明は、上記の問題点を解決し、低電圧回路用バリス
タとして有効なZnO結晶粒子を得るための製造方法を
提供することを目的とするものである。
An object of the present invention is to solve the above problems and provide a manufacturing method for obtaining ZnO crystal particles that are effective as varistors for low voltage circuits.

[発明の構成] (問題点を解決するための手段) 本発明のZnO結晶粒子の製造方法はアルミニウム(1
)、インジウム(In)、ガリウム(Ga)のうち少な
くとも1g!を含む、酸化亜tD (ZnO)粉体にバ
リウム(Ba)化合物とストロンチウム(Sr)化合物
のうち少なくとも一種とマグネシウム(MO)化合物を
添加した混合粉末を加圧成形し焼成してなる焼結体を加
水分解してなるもので、好ましくは前記マグネシウム化
合物をMCl0に換惇して0.5〜14モル%添加した
ことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing ZnO crystal particles of the present invention includes aluminum (1
), indium (In), and gallium (Ga) at least 1g! A sintered body obtained by press-molding and firing a mixed powder obtained by adding at least one of a barium (Ba) compound, a strontium (Sr) compound, and a magnesium (MO) compound to suboxide tD (ZnO) powder containing Preferably, the magnesium compound is converted into MCl0 and added in an amount of 0.5 to 14 mol %.

(作用) 以上のような構成になるZnO結晶粒子の製造方法によ
ればMQOを添加することによってZnOの結晶核粒子
の粒成長における異方性すなわら第4図に示すYに対す
るXの成長が大ぎくなることが抑制され均一なZnO結
晶粒子を容易に1qることができる。
(Function) According to the method for manufacturing ZnO crystal particles having the above-described structure, by adding MQO, anisotropy in grain growth of ZnO crystal nucleus particles, that is, growth of X with respect to Y shown in FIG. It is possible to easily obtain 1 q of uniform ZnO crystal particles by suppressing the increase in size of ZnO crystal particles.

(実施例) 以下本発明の実施例につき説明する。(Example) Examples of the present invention will be described below.

AfJ原子として20ppm含むZnO原料粉末にBa
C0、SrCO3をそれぞれBad。
Ba is added to the ZnO raw powder containing 20 ppm as AfJ atoms.
Bad for C0 and SrCO3.

SrOに換口して0.5モル%を加えた粉末にMCl0
の添加量を0.5モル%、3モル%、8モル%、12モ
ル%、14モル%、16モル%とそれぞれかえて添加し
てなる6種類の混合粉末と、MQOを添加しない混合粉
末を加えた7種類の粉末試料を準備し、該粉末試料それ
ぞれを十分に混合した後円板状に成形し、1150℃で
41111m焼成して得た焼結体を純水中で十分に煮沸
しBaO層、sro層を溶解し得たZnO結晶核粒子を
十分に水洗、乾燥し、MgO添加聞に対する結晶核粒子
形状寸なわち異方性(第4図に示すX/Y )およびM
QO添加けに対する結晶核粒子の平均粒径D5oを顕微
鏡写真で調べた結果、第1図および第2図に示1゛よう
になった。つぎに主成分としてのZnO粉末にMqO3
,0モル%、  3i203 0.5モル%、3b  
○  0,05モル%、CO○0.5モル%、MnOO
,5モル%、Ni00.5モル%、Cr  OO,5−
Eル%を添加し十分混合したスラリーに前記ZnO結晶
粒子核をそれぞれスラリー固形分の5wt%添加し、さ
らに十分に混合した後乾燥、造粒を行ない、1200℃
4時間焼結し形成した厚さ1゜0mのバリスタ素子両面
に銀電極を設けてなるv1mA=22Vのバリスタにお
けるZnO結晶粒子製法でのMqO添加添加対するサー
ジ試験後のΔV1rrLA(%)を調べた結果、第3図
に示すようになった。第3図における試験条件は電流波
形8/20μsec、電流密度500A/i、50回印
加である。なお試料はいずれも各々50個である。第1
図から明らかなようにMoOを添加しない結晶核粒子形
状すなわち異方性(第4図に示すX/Y)G、tl 、
2〜3゜2(平均値で2.3)とバラツキが大きいのに
対し、MgOを添加した結晶核粒子形状すなわら異方性
(第4図に示すX/Y )は添加量によって若干の差は
あるものの1.0〜2.0〈平均値で約1.5)とバラ
ツキが小さくなる結果を示し、第2図から明らかなよう
に結晶核粒子の平均粒径D5oはMgO添加(dが14
Tニル%を越えると極端に小さくなる結果を示し、第3
図から明らかなようにMqOを添加しない結晶核粒子を
用いたバリスタのナージ耐聞はバラツキが非常に大きく
絶対値特性も劣るのに対し、MQOを添加した結晶粒子
を用いたバリスタのサージ耐量はバラツキも小さく絶対
値においてもすぐれた結果を示している。
MCl0 was added to the powder to which 0.5 mol% was added in exchange for SrO.
6 types of mixed powders in which the amount of MQO added is changed to 0.5 mol%, 3 mol%, 8 mol%, 12 mol%, 14 mol%, and 16 mol%, and mixed powder without MQO added. Seven types of powder samples were prepared, each powder sample was thoroughly mixed, formed into a disk shape, and fired at 1150°C for 41111 m. The obtained sintered body was thoroughly boiled in pure water. The ZnO crystal nucleus particles that were able to dissolve the BaO layer and the sro layer were thoroughly washed with water and dried, and the shape and size of the crystal nucleus particles, that is, the anisotropy (X/Y shown in Fig. 4) and M
The average particle diameter D5o of the crystal nucleus particles with respect to the addition of QO was examined using micrographs, and the results were as shown in FIGS. 1 and 2. Next, MqO3 is added to ZnO powder as the main component.
,0 mol%, 3i203 0.5 mol%, 3b
○ 0.05 mol%, CO ○ 0.5 mol%, MnOO
,5 mol%, Ni00.5 mol%, CrOO,5-
5 wt% of the solid content of the slurry was added to the slurry which had been thoroughly mixed with Ele%.
We investigated ΔV1rrLA (%) after a surge test for MqO addition using the ZnO crystal particle production method in a v1mA = 22V varistor with silver electrodes on both sides of a varistor element with a thickness of 1°0m formed by sintering for 4 hours. The result was as shown in Figure 3. The test conditions in FIG. 3 are a current waveform of 8/20 μsec, a current density of 500 A/i, and 50 applications. Note that the number of samples was 50 each. 1st
As is clear from the figure, the shape of the crystal nucleus particle without adding MoO, that is, the anisotropy (X/Y shown in Figure 4)G, tl,
While there is a large variation of 2 to 3°2 (average value is 2.3), the shape of the crystal nucleus particle with MgO added, that is, the anisotropy (X/Y shown in Figure 4), varies slightly depending on the amount added. Although there is a difference between 1.0 and 2.0 (approximately 1.5 on average), the results show that the variation is small, and as is clear from FIG. d is 14
When Tnyl% is exceeded, the result becomes extremely small, and the third
As is clear from the figure, the surge resistance of the varistor using crystal grains to which MqO is not added is very variable and the absolute value characteristics are inferior, whereas the surge resistance of the varistor using crystal grains to which MQO is added is The variation is small and the absolute values also show excellent results.

なお上記実施例ではZnO結晶粒子の原料としてのZn
Oに添加するものとしてアルミニウム(Aρ)を用いる
ものを例示して説明したが、アルミニウム(All )
に変えインジウム(r、n)またはガリウム(Ga)を
単独で添加するか、あるいはアルミニウム(Al)、イ
ンジウム(In)、ガリウム(Ga)のうち2種以上添
加しても同様の効果を得ることができる。
In addition, in the above example, Zn as a raw material for ZnO crystal particles
The explanation has been given using aluminum (Aρ) as an additive to O, but aluminum (All )
The same effect can be obtained by adding indium (r, n) or gallium (Ga) alone, or by adding two or more of aluminum (Al), indium (In), and gallium (Ga). Can be done.

以上からAll、In、Gaのうち少なくとも1種を含
む酸化亜鉛(ZnO)を主成分とした 4低電圧回路用
バリスタのZnO結晶粒子の形成 ・手段としてMgO
を0.5〜14モル%を添加することによる優位性がわ
かる。なお上記実施例では添加物としてバリウム(Ba
)化合物とストロンチウム(Sr)化合物両者を同時に
添加したものを例示して説明したが、いずれか−種のみ
を添加したものでも同様の効果が得られる。
From the above, formation of ZnO crystal particles for varistors for low-voltage circuits whose main component is zinc oxide (ZnO) containing at least one of All, In, and Ga ・MgO as a means
It can be seen that the addition of 0.5 to 14 mol % is advantageous. In the above example, barium (Ba
) compound and a strontium (Sr) compound are added at the same time, but the same effect can be obtained even if only one of the species is added.

[発明の効!$!] 以上述べたようにZnO結晶粒子の製造にあたって、ア
ルミニウム(All ) 、インジウム(In)、ガリ
ウム(Ga)のうち少なくとも1種を含むZnO粉末に
添加する添加物としてBa化合物やSr化合物のほかに
0.5〜14モル%のMO化合物を用いることによって
ZnOの結晶核粒子の異方性が小さくかつ該粒子径の揃
ったものが効率的に得られ、低電圧回路用のZnOの結
晶粒子として最適なすぐれた効果を(qることができる
[Efficacy of invention! $! ] As mentioned above, in the production of ZnO crystal particles, in addition to Ba compounds and Sr compounds, additives are added to ZnO powder containing at least one of aluminum (All), indium (In), and gallium (Ga). By using 0.5 to 14 mol% of the MO compound, it is possible to efficiently obtain ZnO crystal nucleus particles with small anisotropy and uniform particle diameter, which can be used as ZnO crystal particles for low voltage circuits. You can get the best and best effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMgO添加添加対するZnO結晶核粒子形状の
X/Y比を示す特性曲線図、第2図はMQOWi加吊に
対するznO結晶核粒子径を示す特性曲線図、第3図は
MgO添加添加対するバリスタにおける八V  mAを
示す特性曲線図、第4図はZnO結晶核粒子形状の拡大
説明図、第5図は従来の参考例によるバリスタ索体のZ
 n30結晶状態を示す拡大図である。 特  許  出  願  人 マルコン電子株式会社 〜+00添加l(モル%) 第1図 0246810124446 +a MQO添加1!&(モル%) Mao添加添加上ル%)
Figure 1 is a characteristic curve diagram showing the X/Y ratio of ZnO crystal nucleus particle shape for MgO addition, Figure 2 is a characteristic curve diagram showing the ZnO crystal nucleus particle size for MQOWi suspension, and Figure 3 is MgO addition. 4 is an enlarged explanatory diagram of the ZnO crystal nucleus particle shape, and FIG. 5 is a characteristic curve diagram showing 8 V mA in a varistor according to a conventional reference example.
FIG. 3 is an enlarged view showing the n30 crystal state. Patent application Hito Marukon Electronics Co., Ltd. ~ +00 addition l (mol%) Figure 1 0246810124446 +a MQO addition 1! &(mol%) Mao addition addition top %)

Claims (1)

【特許請求の範囲】[Claims]  アルミニウム(Al)、インジウム(In)、ガリウ
ム(Ga)のうち少なくとも1種を含む酸化亜鉛粉体に
バリウム(Ba)化合物またはストロンチウム(Sr)
化合物の少なくとも一種類と0.5〜14モル%のマグ
ネシウム(Mg)化合物を添加し混合粉末を得る手段と
、該混合粉末を成形−焼結し焼結体を得る手段と、該焼
結体を加水分解する手段とを具備したことを特徴とする
ZnO結晶粒子の製造方法。
Barium (Ba) compound or strontium (Sr) is added to zinc oxide powder containing at least one of aluminum (Al), indium (In), and gallium (Ga).
A means for obtaining a mixed powder by adding at least one type of compound and 0.5 to 14 mol% of a magnesium (Mg) compound; a means for obtaining a sintered body by molding and sintering the mixed powder; and a means for obtaining a sintered body by molding and sintering the mixed powder. 1. A method for producing ZnO crystal particles, comprising: means for hydrolyzing ZnO crystal particles.
JP61168691A 1986-07-16 1986-07-16 Production of zno crystal particle Pending JPS6325219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168691A JPS6325219A (en) 1986-07-16 1986-07-16 Production of zno crystal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168691A JPS6325219A (en) 1986-07-16 1986-07-16 Production of zno crystal particle

Publications (1)

Publication Number Publication Date
JPS6325219A true JPS6325219A (en) 1988-02-02

Family

ID=15872674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168691A Pending JPS6325219A (en) 1986-07-16 1986-07-16 Production of zno crystal particle

Country Status (1)

Country Link
JP (1) JPS6325219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212901A (en) * 1988-06-30 1990-01-17 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide varistor
JPH04116943U (en) * 1991-03-29 1992-10-20 山崎産業株式会社 Floor surface treatment equipment and related technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212901A (en) * 1988-06-30 1990-01-17 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide varistor
JPH04116943U (en) * 1991-03-29 1992-10-20 山崎産業株式会社 Floor surface treatment equipment and related technology

Similar Documents

Publication Publication Date Title
US4169071A (en) Voltage-dependent resistor and method of making the same
JP2825366B2 (en) Piezoelectric ceramics
US3788867A (en) Batio3-mgo-nb2o5 dielectric ceramic compositions and method
US3373120A (en) Semiconductive ceramic compositions with positive temperature coefficient of resistance
JPS6325219A (en) Production of zno crystal particle
GB1589940A (en) Voltage-dependent resistor and preparation thereof
US3963631A (en) Method of preparing ferroelectric ceramics
JP2884635B2 (en) Piezoelectric ceramics and method of manufacturing the same
US3316184A (en) Barium titanate ceramic composition
JP2884631B2 (en) Piezoelectric ceramics and manufacturing method thereof
US2853392A (en) Ceramic dielectric materials
JP2548297B2 (en) Varistor manufacturing method
JPS62288115A (en) Production of zno crystal particle
JP2626620B2 (en) Porcelain composition
US2689186A (en) Ceramic dielectric materials
JPH0630284B2 (en) Method for manufacturing voltage non-linear resistance element
JPH0795482B2 (en) Varistor manufacturing method
JPH0629140B2 (en) Piezoelectric element material and manufacturing method thereof
JP2558811B2 (en) Varistor manufacturing method
JP2861659B2 (en) Method for producing dielectric porcelain composition
RU2023706C1 (en) Ceramic material used for manufacture of predominantly low-frequency capacitors and process for producing same
JPH0332881B2 (en)
JPH0645104A (en) Manufacture of semiconductor procelain with positive temperature coefficient of resistance
JPH0552642B2 (en)
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition