JPS62288115A - Production of zno crystal particle - Google Patents

Production of zno crystal particle

Info

Publication number
JPS62288115A
JPS62288115A JP61130478A JP13047886A JPS62288115A JP S62288115 A JPS62288115 A JP S62288115A JP 61130478 A JP61130478 A JP 61130478A JP 13047886 A JP13047886 A JP 13047886A JP S62288115 A JPS62288115 A JP S62288115A
Authority
JP
Japan
Prior art keywords
compound
zno
mol
added
zno crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61130478A
Other languages
Japanese (ja)
Inventor
Kiyoshi Matsuda
清 松田
Takeshi Suzuki
武志 鈴木
Takamichi Momoki
桃木 孝道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP61130478A priority Critical patent/JPS62288115A/en
Publication of JPS62288115A publication Critical patent/JPS62288115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce ZnO crystal particle having low anisotropy and useful for a varistor for low-voltage circuit, by mixing ZnO powder with a Ba compound and/or Sr compound and an Mg compound, forming and sintering the mixture and hydrolyzing the product. CONSTITUTION:ZnO powder is mixed with a Ba compound (e.g. BaCO3) and/or Sr compound (e.g. SrCO3) and 0.5-14mol% Mg compound (e.g. MgO) (in terms of MgO) and the powdery mixture is formed and sintered to obtain a sintered material, which is hydrolyzed by boiling in water to dissolve and remove the BaO layer and SrO layer. The product is washed with water and dried to obtain the objective particle.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は酸化亜鉛(ZnO)を主成分とした低電圧回路
用バリスタのZnO結晶粒子の製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention is directed to the production of ZnO crystal particles for varistors for low voltage circuits containing zinc oxide (ZnO) as a main component. Regarding the method.

(従来の技術) ZnOを主成分としたバリスタは優れた非直線性を有す
ることよりサージ吸収機能を右1゛るものとして多用さ
れている。
(Prior Art) Varistors containing ZnO as a main component have excellent nonlinearity and are therefore widely used for their surge absorption function.

しかしてこの種バリスタにおけるバリスタ電圧はZnO
焼結体表面に段けられる電極間に存在する粒界層の数に
よって決定される。このため低電圧回路用のバリスタを
得るにはバリスタ素子の厚さを薄くするか、またはZn
O粒子径を大きくし粒界層の数を少なくする必要がある
However, the varistor voltage in this type of varistor is ZnO
It is determined by the number of grain boundary layers existing between the electrodes arranged on the surface of the sintered body. Therefore, in order to obtain a varistor for low voltage circuits, the thickness of the varistor element must be reduced, or Zn
It is necessary to increase the O particle size and reduce the number of grain boundary layers.

今立上がり電圧22Vのバリスタを考えると一般に一粒
界層当りの電圧は2.5V程度である。
Considering a varistor with a rising voltage of 22V, the voltage per grain boundary layer is generally about 2.5V.

すなわち通常の方法では焼結体のZnO粒子径は10〜
20μmであるから焼結体厚さは0.2mmTF1度し
かなく、これでは機械的強度が低く、工程中割れを生ず
る問題があり実用的とは言えない。そのためZnO粉体
原料に該原料粒径より大きい粒径のZno結晶(以下結
晶咳粒子と称す)を受石添加し、粒成長を促進させZn
O粒子径を大きくする方法が種々考えだされており、中
でもZnO粉末にBa化合物もしくはSr化合物を少M
添加混合した粉末を成形−焼成して得られた焼結体を加
水分解する方法は粒成長促進剤として用いるBa化合物
、3r化合物を加水分解によって除去でき、結晶核粒子
径の制御が容易であることから多用されている。しかし
ながらこのような方法で得られる結晶核粒子径は第4図
に示すように最長部位Xと、Xに直角な方向の最上部位
Yの比X/Yが大きくバラツキ、細長い形状のものから
円形状に近いものまでさまざまであるため、この結晶核
粒子を使用して得られたバリスタ素体のZnO結晶状態
は第5図に示すように局部的に異状粒成長によるZnO
結晶1の存在によって極端に粒界層の数が少ない部位が
でき、その結果該部位の電気抵抗が低下し、電流が集中
し破壊にいたる欠点をもつものとなっていた。図中2は
電極である。しかして、これらの欠点を除去する方法と
して特開昭61−24201号に開示された、すなわち
ZnOにBaまたはSr化合物を加え成形し焼成してな
る焼結体を加水分解する際の成形をシート状とし、前記
焼結体の厚さを25〜300μmとするZnO結晶粒子
の製造方法があり、前記結晶核粒子径として例示したX
/Yの比を小さくし円形状に近い粒子形成に大きく貢献
できる。しかしながら、このような方法ではシート形成
のための特別な設面を有しまたシート状成形体からZn
O粒子を1フるまでに多くの工数を有し実用的でないば
かりか、成形圧力が少ないため、粒子自体の大きさは不
ぞろいであると同時に表面に凹凸をおびた粗雑な粒子と
なる欠点を有しかならずしら有効な手段とはいえなかっ
た。
In other words, in the normal method, the ZnO particle size of the sintered body is 10~
Since the thickness of the sintered body is 20 μm, the thickness of the sintered body is only 0.2 mm TF 1 degree, which is not practical due to its low mechanical strength and the problem of cracking during the process. Therefore, Zno crystals (hereinafter referred to as crystalline particles) with a particle size larger than the particle size of the raw material are added to the ZnO powder raw material to promote grain growth and increase the Zn
Various methods have been devised to increase the O particle size, including adding a small amount of Ba compound or Sr compound to ZnO powder.
In the method of hydrolyzing the sintered body obtained by molding and firing the added and mixed powder, Ba compounds and 3R compounds used as grain growth promoters can be removed by hydrolysis, and the crystal nucleus particle size can be easily controlled. It is often used for this reason. However, as shown in Fig. 4, the crystal nucleus particle diameter obtained by this method varies greatly in the ratio X/Y of the longest part X and the uppermost part Y in the direction perpendicular to X, ranging from elongated to circular As shown in Figure 5, the ZnO crystal state of the varistor element obtained using these crystal nucleus particles is locally caused by anomalous grain growth.
The presence of crystal 1 creates a region with an extremely small number of grain boundary layers, and as a result, the electrical resistance of the region decreases, causing current concentration, resulting in a defect that may lead to destruction. 2 in the figure is an electrode. Therefore, as a method to eliminate these drawbacks, a sheet forming process is disclosed in JP-A No. 61-24201, in which a sintered body formed by adding Ba or Sr compound to ZnO, forming and firing is hydrolyzed. There is a method for producing ZnO crystal particles in which the thickness of the sintered body is 25 to 300 μm, and the crystal nucleus particle size is
By reducing the ratio of /Y, it can greatly contribute to the formation of particles that are close to circular shapes. However, such a method has a special design surface for forming a sheet, and Zn is
Not only is it impractical because it takes a lot of man-hours to make one O particle, but the molding pressure is low, so the particles themselves have the disadvantage of being uneven in size and coarse particles with uneven surfaces. However, it could not be said that it was an effective means.

(発明が解決しようとする問題点) 以上のように上記いずれの手段を;14じても低電圧回
路用バリスタとして実用的にかつ所望の粒界層を得るこ
とは困難であった。
(Problems to be Solved by the Invention) As described above, even with any of the above methods, it is difficult to obtain a grain boundary layer that is practical and desired as a varistor for a low voltage circuit.

本発明は、上記の問題点を解決し、低電圧回路用バリス
タとして有効なZnO結晶粒子を得るためのy!IJ造
方法を提供することを目的とするものである。
The present invention solves the above problems and provides ZnO crystal particles that are effective as varistors for low voltage circuits. The purpose of this invention is to provide an IJ manufacturing method.

[発明の構成] (問題点を解決するための手段) 本発明のZnO結晶粒子の製造方法は、酸化亜m (Z
nO)粉体にバリウム(Ba)化合物とストロンチウム
(Br)化合物のうち少なくとも一種とマグネシウム(
MQ)化合物を添加した混合粉末を加圧成形し焼成して
なる焼結体を加水分解してなるもので、好ましくは前記
マグネシウム化合物をMoOに換算して0.5〜14モ
ル%添加したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing ZnO crystal particles of the present invention is a method for producing ZnO crystal particles using zinc oxide (ZnO).
nO) powder and at least one of a barium (Ba) compound and a strontium (Br) compound and magnesium (
MQ) A product obtained by hydrolyzing a sintered body obtained by press-molding and firing a mixed powder to which a compound has been added, preferably adding 0.5 to 14 mol% of the magnesium compound in terms of MoO. It is characterized by:

(作用) 以上のような構成になるZnO結晶粒子の製造方法によ
ればMgOを添加することによってZnOの結晶核粒子
の粒成長における異方性ずなわち第4図に示すYに対す
るXの成長が太きくなることが抑制され均一なZnO結
晶粒子を容易に得ることができる。
(Function) According to the method for producing ZnO crystal particles having the above-described structure, by adding MgO, an anisotropic pattern in the grain growth of ZnO crystal nucleus particles, that is, the growth of X with respect to Y shown in FIG. It is possible to easily obtain uniform ZnO crystal particles by suppressing thickening of the ZnO crystal particles.

(実施例) 以下本発明の実施例につき説明する。(Example) Examples of the present invention will be described below.

ZnO原料粉末にBaC○ 、S rCO3をそれぞれ
Bad、SrOに換算して0,5モル%を加えた粉末に
MCl0の添加量を0.5モル%、3モル%、8モル%
、12モル%、14モル%、16モル%とそれぞれかえ
て添加してなる6種類の混合粉末と、MQOを添加しな
い混合粉末を加えた7種類の粉末試料を準備し、該粉末
試料それぞれを十分に混合した後円板状に成形し、11
50℃で4時間焼成して得た焼結体を純水中で十分に煮
沸しBaO層、5rOuを溶解し得たZnO結晶核粒子
を十分に水洗、乾燥し、1vloo添加聞に対する結晶
核粒子形状すなわち異方性(第4図に示すX/Y)およ
びMGO添加mに対する結晶核粒子の平均粒径D5oを
顕微鏡写真で調べた結果、第1図および第2図に示すよ
うになった。つぎに主成分としてのZnO粉末にMgO
3,0モル%。
The amount of MCl0 added was 0.5 mol%, 3 mol%, and 8 mol% to the powder obtained by adding 0.5 mol% of BaC○ and SrCO3 in terms of Bad and SrO, respectively, to the ZnO raw powder.
, 12 mol %, 14 mol %, and 16 mol %, respectively, and 7 types of powder samples were prepared, including 6 types of mixed powders in which MQO was added instead of 12 mol %, 14 mol %, and 16 mol %, and 7 types of mixed powders in which MQO was not added. After mixing thoroughly, form into a disk shape, 11
The sintered body obtained by firing at 50°C for 4 hours was sufficiently boiled in pure water to dissolve the BaO layer and 5rOu. The ZnO crystal nucleus particles were thoroughly washed with water and dried, and the crystal nucleus particles for the addition of 1vloo were prepared. The shape, that is, the anisotropy (X/Y shown in FIG. 4) and the average grain size D5o of the crystal nucleus particles with respect to MGO addition m were investigated using micrographs, and the results were as shown in FIGS. 1 and 2. Next, MgO was added to the ZnO powder as the main component.
3.0 mol%.

B100.5モル%、5b203 0.05モル%、COO0,5モル%。B100.5 mol%, 5b203 0.05 mol%, COO 0.5 mol%.

Mn00.5モル%、NiO0,5モル%。Mn0.5 mol%, NiO0.5 mol%.

Cr00.5モル%を添加し十分混合したスラリーに前
記ZnO結晶粒子核をそれぞれスラリー固形分の5 W
 ’t%添加し、さらに十分に混合した後乾燥、造粒を
行ない、1200℃4時間焼結し形成した厚さ1.0履
のバリスタ素子両面に銀電極を設けてなるv1mA=2
2■のバリスタにおけるZno結晶粒子製法でのMgO
添加量に対するサージ試験後のΔv1TrLA(%)を
調べた結果、第3図に示すようになった。第3図におけ
る試験条件は電流波形8/20μsec、電流密度50
0A/ci、50回印加である。なお試料はいずれも各
々50個である。第1図から明らかなようにMqOを添
加しない結晶核粒子形状すなわち異方性(第4図に示す
X/Y)は1.5〜3.O(平均値で2.0)とバラツ
キが大きいのに対しMgOを添加した結晶核粒子形状す
なわち異方性(第4図に示すX/Y )は添加量によっ
て若干の差はあるものの1.1〜1.8(平均値で約1
.5)とバラツキが小さくなる結果を示し、第2図から
明らかなように結晶核粒子の平均粒径D5oはMaO添
加mが14モル%を越えると極端に小さくなる結果を示
し、第3図から明らかなようにM Q Oを添加しない
結晶核粒子を用いたバリスタのサージ耐tdはバラツキ
が非常に大きく絶対(1特性も劣るのに対し、MqOを
添加した結晶粒子を用いたバリスタのサージ耐量はバラ
ツキも小さく絶対値においてもずぐれた結果を示してい
る。
The above ZnO crystal grain nuclei were added to a slurry containing 00.5 mol % of Cr and thoroughly mixed.
't% added, thoroughly mixed, dried, granulated, and sintered at 1200°C for 4 hours to form a varistor element with a thickness of 1.0 shoes. Silver electrodes are provided on both sides of the varistor element. v1mA=2
MgO in the Zno crystal particle manufacturing method in the varistor of 2.
The results of examining the Δv1TrLA (%) after the surge test with respect to the amount added are shown in FIG. The test conditions in Figure 3 are current waveform 8/20 μsec, current density 50
0A/ci was applied 50 times. Note that the number of samples was 50 each. As is clear from FIG. 1, the crystal nucleus particle shape, that is, the anisotropy (X/Y shown in FIG. 4) without MqO added is 1.5 to 3. O (average value is 2.0) and has a large variation, whereas the shape of the crystal nucleus particle when MgO is added, that is, the anisotropy (X/Y shown in Fig. 4) is 1.0%, although there is a slight difference depending on the amount added. 1 to 1.8 (about 1 on average
.. 5) shows that the variation becomes smaller, and as is clear from Fig. 2, the average particle diameter D5o of the crystal nucleus particles becomes extremely small when the MaO addition m exceeds 14 mol%. As is clear, the surge resistance td of varistors using crystal grains to which MqO is not added has very large variations and is inferior in absolute terms (by 1 characteristic), whereas the surge resistance of varistors using crystal grains to which MqO is added is The variation is small, and the absolute value also shows inconsistent results.

以上から酸化亜鉛(ZnO)を主成分どした低電圧回路
用バリスタのZno結晶粒子の形成手段としてtVIG
Ofo、5〜14モル%を添加することによる優位性が
わかる。なお上記実施例では添加物としてバリウム(B
a)化合物とストロンチウム(Br)化合物両者を同時
に添加したものを例示して説明したが、いずれか一種の
みを添加したものでも同様の効果が得られる。
From the above, tVIG can be used as a means of forming Zno crystal particles for varistors for low-voltage circuits whose main component is zinc oxide (ZnO).
It can be seen that the addition of 5 to 14 mol % of Ofo is superior. In the above example, barium (B) was used as an additive.
Although the example in which both the a) compound and the strontium (Br) compound are added at the same time has been described, the same effect can be obtained even if only one of them is added.

[発明の効果] 以上述べたようにZno結晶粒子の製造にあたって、Z
nO粉末に添加する添加物としてBa化合物や3r化合
物のほかに0.5〜14モル%のMQ化合物を用いるこ
とによってZnOの結晶核粒子の異方性が小さくかつ該
粒子径の揃ったものが効率的に得られ、低電圧回路用の
ZnOの結晶粒子として最適なすぐれた効果を得ること
ができる。
[Effect of the invention] As mentioned above, in producing Zno crystal particles, Z
By using 0.5 to 14 mol% of MQ compound in addition to Ba compounds and 3r compounds as additives added to nO powder, ZnO crystal nucleus particles with small anisotropy and uniform particle size can be obtained. It is possible to obtain excellent effects that are efficiently obtained and are optimal as ZnO crystal particles for low voltage circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMgO添加量に対するZnO結晶核粒子形状の
X/Y比を示す特性曲線図、第2図はtVlo添加量に
対するZnO結晶核粒子径を示す特性曲線図、第3図は
MgO添加量に対するバリスタにおける△V1TrLA
を示す特性曲線図、第4図はZnO結晶核粒子形状の拡
大説明図、第5図は従来の参考例によるバリスタ素体の
ZnO結晶状態を示す拡大図である。 特  許  出  願  人 マルコン電子株式会社 0  2  4  6  8   To   12  
14  16 18  20MGO添加量 (モル%) 第1図 0245 F3 To 12 +41618MGIO添
加11(モル%) 第2図 MgO添加II(モル%) 第3図 ZnO結晶結晶子粉子明図
Figure 1 is a characteristic curve diagram showing the X/Y ratio of ZnO crystal nucleus particle shape with respect to the amount of MgO added, Figure 2 is a characteristic curve diagram showing the ZnO crystal nucleus particle size with respect to the amount of tVlo added, and Figure 3 is a characteristic curve diagram showing the amount of MgO added. △V1TrLA in the varistor for
FIG. 4 is an enlarged explanatory diagram of the ZnO crystal nucleus particle shape, and FIG. 5 is an enlarged diagram showing the ZnO crystal state of a varistor element according to a conventional reference example. Patent application Marcon Electronics Co., Ltd. 0 2 4 6 8 To 12
14 16 18 20 MGO addition amount (mol%) Fig. 1 0245 F3 To 12 +41618 MGIO addition 11 (mol%) Fig. 2 MgO addition II (mol%) Fig. 3 ZnO crystal crystallite powder bright diagram

Claims (1)

【特許請求の範囲】[Claims]  酸化亜鉛粉体にバリウム(Ba)化合物またはストロ
ンチウム(Br)化合物の少なくとも一種類と0.5〜
14モル%のマグネシウム(Mg)化合物を添加し混合
粉末を得る手段と、該混合粉末を成形−焼結し焼結体を
得る手段と、該焼結体を加水分解する手段とを具備した
ことを特徴とするZnO結晶粒子の製造方法。
Zinc oxide powder and at least one kind of barium (Ba) compound or strontium (Br) compound and 0.5~
A means for obtaining a mixed powder by adding 14 mol % of a magnesium (Mg) compound, a means for forming and sintering the mixed powder to obtain a sintered body, and a means for hydrolyzing the sintered body. A method for producing ZnO crystal particles, characterized by:
JP61130478A 1986-06-04 1986-06-04 Production of zno crystal particle Pending JPS62288115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130478A JPS62288115A (en) 1986-06-04 1986-06-04 Production of zno crystal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130478A JPS62288115A (en) 1986-06-04 1986-06-04 Production of zno crystal particle

Publications (1)

Publication Number Publication Date
JPS62288115A true JPS62288115A (en) 1987-12-15

Family

ID=15035207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130478A Pending JPS62288115A (en) 1986-06-04 1986-06-04 Production of zno crystal particle

Country Status (1)

Country Link
JP (1) JPS62288115A (en)

Similar Documents

Publication Publication Date Title
DE102017106405A1 (en) PIEZOELECTRIC CERAMIC SPUTTER TARGET, LEAD-FREE PIEZOELECTRIC THIN FILM AND PIEZOELECTRIC THIN FILM ELEMENT USING THE SAME
JPS62288115A (en) Production of zno crystal particle
US4397773A (en) Varistor with tetragonal antimony zinc oxide additive
JP2003212543A (en) Method for manufacturing barium titanate powder through oxalate
JP3974952B2 (en) Method for manufacturing piezoelectric body
JPS6325219A (en) Production of zno crystal particle
JPH0339028B2 (en)
JP2990088B2 (en) Manganese-containing composite oxide and method for producing composite perovskite compound composition using the composite oxide
JPH0630284B2 (en) Method for manufacturing voltage non-linear resistance element
JPH0210091B2 (en)
JP2548297B2 (en) Varistor manufacturing method
JP3103165B2 (en) Method of manufacturing piezoelectric body
JP2740648B2 (en) Method for producing soft magnetic oxide material
JPH0795482B2 (en) Varistor manufacturing method
JP2569208B2 (en) Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition
JP2000086336A (en) Production of positive temperature coefficient thermistor
JP3023920B2 (en) Manufacturing method of semiconductor porcelain
JP2558811B2 (en) Varistor manufacturing method
JPS63295463A (en) Zinc oxide varistor
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JPH02263403A (en) Manufacture of voltage non-linear resistor
JP2548298B2 (en) Varistor manufacturing method
JPH06204006A (en) Manufacture of zinc oxide varistor
JPH01289218A (en) Manufacture of varistor
JPH0224361B2 (en)