JP3974952B2 - Method for manufacturing piezoelectric body - Google Patents

Method for manufacturing piezoelectric body Download PDF

Info

Publication number
JP3974952B2
JP3974952B2 JP16011995A JP16011995A JP3974952B2 JP 3974952 B2 JP3974952 B2 JP 3974952B2 JP 16011995 A JP16011995 A JP 16011995A JP 16011995 A JP16011995 A JP 16011995A JP 3974952 B2 JP3974952 B2 JP 3974952B2
Authority
JP
Japan
Prior art keywords
site
piezoelectric body
calcination
piezoelectric
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16011995A
Other languages
Japanese (ja)
Other versions
JPH08333161A (en
Inventor
昌子 片岡
徹 江崎
孝宏 山川
繁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP16011995A priority Critical patent/JP3974952B2/en
Publication of JPH08333161A publication Critical patent/JPH08333161A/en
Application granted granted Critical
Publication of JP3974952B2 publication Critical patent/JP3974952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、圧電体に関し、特に主成分にPbを含有する圧電体(以下鉛系圧電体と称する)の製造方法に関する。
【0002】
【従来の技術】
鉛系圧電体は、ペロブスカイト構造を有し、ABO3で表される圧電体であるが、その圧電的特性が非常に優れているため、さまざまな分野で用いられている。例えば電話機のレシーバーやブザーなどの発音体、超音波ソナーやノッキングセンサーなどのセンサー、超音波モータなどのアクチュエーターなどに実用化されている。
【0003】
この鉛系圧電体を工業的に作る方法としては、AサイトのPb源としてPbOやPb34などを、BサイトのZr源としてZrO2やZrCO3などを、同じくTi源としてTiO2やTi(OH)4などを主原料とし、その他必要に応じてAサイトの原料にはBa、La、Sr、Caなどの元素の酸化物や炭酸塩を、Bサイトの原料にはMg、Nb、Sb、Mn、V、Cr、Fe、Bi、Niなどの元素の酸化物や炭酸塩を少量加え、それをミルなどで混合した後仮焼し、その仮焼物を粉砕、成形、焼成して製造する方法であった。なお、一般にAとBサイトに入る元素イオン及び酸素イオンの半径が、それぞれrA+rB=t√2(rB+rO)(但し、0.9≦t≦1.1)で表される式を満足することができれば、ペロブスカイト型構造を取り得るといわれており、前記に掲げた元素はいずれもこの式を満足している。
【0004】
しかし、Aサイトの50モル%以上がPbから成る圧電体の製造方法においては、高温で焼成するとPbが揮発するため、組成がずれて焼結し難くなり圧電特性に悪影響を与えたり、緻密な圧電体が得られ難いという問題があった。そのため、できるだけ低い温度で焼結すべく、SiO2やB23−SiO2ガラス、Bi23−CuO系ガラスなどの焼結助剤をさらに添加することが行われている。また、初めからPb分をA>Bとなるように多めに配合して焼成温度を下げることも行われている。
【0005】
【発明が解決しようとする課題】
しかしながら、この両方法とも低温で焼結し易いものの、仮焼時に粒子間に強固なネッキングを生じ易く、その後の粉砕では壊れない凝集体が残るため、焼結しても緻密化してない部分が残留する。この疎な部分に起因して圧電体が分極時に壊れ易いという問題があった。
【0006】
本発明は、上述した鉛系圧電体の製造方法が有する課題に鑑みなされたものであって、その目的は、焼結助剤の添加やPbを過剰に加えなくても焼結温度を低くすることができ、しかも分極時の破壊を起こり難くすることのできる圧電体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため、様々な実験を繰り返した結果、主構成元素がPbであるAサイトを構成する1種以上の元素の合計が、Bサイトを構成する元素の合計より少なくなるよう原料を配合して仮焼し、その仮焼物に不足分のAサイト元素の原料を加え、それを細かく粉砕した粉末を用いて焼結すれば、焼結温度を低くすることができ、しかもその焼結した圧電体の分極時の破壊が従来より起こり難いとの知見を得て本発明を完成した。
【0008】
上記Aサイト元素をBサイト元素より少なくする組成としては、モル比でA=mB(但し、0.95≦m≦0.99)とし、その組成になるよう原料を配合し、それを単一のペロブスカイト相となるように仮焼することとした。
【0009】
mをこの範囲にしたのは、次の理由による。それは、mが1以上の場合には、Aサイトを構成する元素が充足されているため、元素の一部が仮焼時にAサイトから粒界や粒子表面などに弾き出され、弾き出された元素によって形成される酸化物により局部的に液相を生じ、その液相によって粒子間に強固なネッキングを作ってしまうものと考えられ、これを上記のようにmを1より小さく、すなわちAサイト元素を不足にすれば、粒界や粒子表面に弾き出される元素が少なくなり、仮焼時に生じるネッキングが少なくなって分極時の破壊が改善されるものと思われる。
【0010】
逆にmが小さすぎる、すなわち0.95より小さいと、仮焼時のネッキングは起こり難いが、Aサイトの元素が少なすぎてペロブスカイト相以外の結晶相が生じ、ペロブスカイトの単一相とすることができないので、仮焼物に不足分を補って焼成してもペロブスカイト相以外の結晶相が残って混在し、高い圧電特性が得られなくなる。なお、mが0.95以上であっても、使用する原料種類や仮焼温度、その時間などの違いでペロブスカイト相以外の結晶相が生成することもあるので、単一相になるかどうかをあらかじめ実験で調べて最適な条件で仮焼するのがよい。
【0011】
また、上記仮焼後に不足分のAサイト元素を加える組成としては、モル比でA=nB(但し、1.00≦n≦1.02)とした。nをこの範囲にしたのは、nが1.00未満であるとAサイトが欠損するため、低温では焼結し難くなり、分極時の破壊が改善されず、逆に1.02を超えると仮焼時のネッキングは少ないが、その後の焼成でガラスが多くなってネッキングが増え、分極時の破壊も改善されず、その他圧電特性の低下や圧電体中の気孔が消滅し難くなるなど、この範囲を外れると好ましくないからである。
【0012】
この仮焼後に不足分を加えるのは、Aサイトの欠損を補うのに加えて、より低温で焼成可能となる働きを持つ。その理由は、Aサイトを構成する元素は比較的拡散し易いので、仮焼後に添加した元素が焼結助剤の働きをして焼結温度を下げるものと思われ、最終的にはその元素は、焼結終了までに欠損しているAサイトに入り込み圧電特性に悪影響を与えないものと思われる。これにより、分極時の破壊が改善されることに加えて、焼結助剤の添加やPbを過剰に加えなくても低温焼結が可能となる。
【0013】
この不足分を補う元素、あるいは仮焼前に不足にする元素については、Aサイトを欠損型にし、それを解消するためだけの元素であるので、前述のAサイトの元素のいずれを選んでも構わないが、それらの中では、Pb、Laが特にネッキングを発生させ易く、また仮焼後に焼成した場合に拡散し易い元素であるので、これらを抑え、促進する効果も大きいため、これらの元素を選定することが好ましい。
【0014】
さらに、上記不足分を加えた仮焼物を粉砕する細かさとしては、比表面積で5m2/g以上とした。これは、比表面積を5m2/g以上にしないと、仮焼時に生じるネッキングが少なくても、それを壊しきれなくなり、同時に、添加する不足分のAサイト原料の分散が悪くなるので、焼成後に欠陥が残り易く、圧電体が分極時に壊れ易くなることによる。仮焼物のみを細かく粉砕した後、不足分を加えて混合しても構わないが、工程が長くなりメリットはない。
【0015】
本発明の製造方法をさらに詳細に述べると、先ずAサイトには、前述の原料の中から、同じくBサイトにも前述の原料の中から必要な原料を選び、それらの原料をAサイトが所定の欠損となる組成になるよう配合してミルで混合する。混合が悪いとペロブスカイト相の生成量が少なくなることがあるので、よく混合する。混合した粉末を乾燥して700〜900℃の温度で仮焼した後、その仮焼物に所定の組成となるようAサイト原料を加えた後、慣用の方法、例えば、ボールミルや振動ミルあるいは大量に処理できる強制攪拌ミルなどで比表面積が5m2/g以上になるまで粉砕する。粉砕した粉末を成形(プレス成形、押出し成形、テープ成形など)、加工(所望形状への打抜き、切断、印刷、積層など)、焼成(脱脂、サヤ詰め、焼成など)、電極付け(導体印刷、導体焼き付け、リード線付けなど)、分極(洗浄、分極、洗浄、検査など)などの慣用の工程を経て、圧電体を作製する。
【0016】
以上、上記のような方法で製造することにより、低温で焼結することができ、しかも分極時に壊れ難い圧電体とすることができる。
【0017】
【実施例】
以下、本発明の実施例を比較例と共に挙げ、本発明をより詳細に説明する。
【0018】
(実施例1〜5)
(1)圧電体の作製
原料としてPb34、SrCO3、ZrO2、TiO2、MnCO3、Nb25の粉末を、モル比でPbxSryZr0.56Ti0.41Nb0.02Mn0.013(但し、x+y=m)で表わされる式中のx、yが表1に示す組成となるように配合し、それを直径が3〜10mmのジルコニアボールを充填した樹脂製ポットミルで24時間混合し、噴霧乾燥機で乾燥した。この乾燥物をアルミナ製のサヤを用いて800℃で2時間仮焼した。この仮焼物にさらに、PbsSrjZr0.56Ti0.41Nb0.02Mn0.013(但し、s+j=n)で表わされる式中のs、jが表1に示す組成となるように加え、直径が1mmのジルコニアビーズを用いた強制攪拌ミル(コトブキ技研工業社:AM−1)にて表1に示す比表面積になるまで粉砕した。
【0019】
この粉末を1トン/cm2の圧力で、直径20mm、厚さ2mmの円板にプレス成形し、その成形体をマグネシアのサヤに入れて1150℃で2時間焼成した。その焼成体の表面を#600のカーボランダム砥粒にて研磨して0.5mmの厚さに揃え、この両面にAgペーストを印刷して700℃×10分で焼き付け電極を形成した後、シリコンオイル中で1.7kVの電圧を60分間印加して分極し、1実施例毎に100枚の圧電体を作製した。
【0020】
(2)評価
仮焼した仮焼物の構成相については、X線回折法にて調べた。仮焼後粉砕した粉末の比表面積については、窒素吸着法によって求めた。分極時の破壊状態については、分極した圧電体を目視で調べ、割れたり、貫通孔が生じたりしたものを破壊されたとした。また、圧電体が緻密に焼結されているか否かをみるためアルキメデス法で焼結体の気孔率を、その焼結体の圧電特性の良否をみるため径方向振動の電気機械結合係数Kr(0.55以上が良)を併せて求めた。それらの結果を表1に示す。
【0021】
(比較例1〜6)
比較のために、仮焼前と仮焼後の組成比を表1に示す組成とする他は実施例と同じにして圧電体を作製し、実施例と同様に評価した。それらの結果を表1に示す。
【0022】
【表1】

Figure 0003974952
【0023】
表1から明らかなように、実施例1〜5においては、仮焼前の圧電体の組成が本発明の範囲内にあってしかも仮焼物の構成相が単一のペロブスカイト相となっており、また仮焼後の組成及び粉末の細かさも本発明の範囲内にあるので、従来は1250℃前後の温度で焼結しないと緻密にできなかったものが、本発明の1150℃の低温でも気孔率が小さく十分緻密に焼結している。また、壊れた圧電体の枚数はいずれも2枚以下と少なく満足できるものであり、さらにKrも良であった。
【0024】
これに対して比較例1、2では、mが1以上なので、仮焼物にAサイトの原料を加えていないため、焼結温度が高く、この焼結温度では焼結不足となっている。そのため、気孔率が高目となり、破壊された圧電体の枚数も多くなっている。
【0025】
また、比較例3では、mが0.95より小さいため、ジルコニア相が混在しており、仮焼物にAサイトの原料を加えてnを1.00にしても、分極時に破壊された圧電体の枚数は実施例より増えており、Krも不良となっている。
【0026】
さらに、比較例4、5では、仮焼前の組成は本発明の範囲内にあるものの、仮焼後の組成が本発明の範囲外にあるので、破壊された圧電体の枚数が実施例より増え、気孔率、Krとも不良であった。
【0027】
さらにまた、比較例6では、実施例4と組成では同じであるが、焼結する粉末の細かさが粗いため、破壊枚数が大幅に増え、Kr、気孔率とも大幅に悪化している。
【0028】
【発明の効果】
以上の通り、本発明にかかる方法で圧電体を製造すれば、焼結助剤の添加やPbを過剰に加えなくても、Pbの揮発が少ない低い温度で焼結することができ、しかも従来より分極時の破壊が起こり難い圧電体とすることができた。このことにより、分極時の破壊が少ない圧電体を低温焼結によっても得ることのできる製造方法を提供することができた。[0001]
[Industrial application fields]
The present invention relates to a piezoelectric body, and more particularly to a method for manufacturing a piezoelectric body (hereinafter referred to as a lead-based piezoelectric body) containing Pb as a main component.
[0002]
[Prior art]
A lead-based piezoelectric body is a piezoelectric body having a perovskite structure and represented by ABO 3 , but is used in various fields because of its excellent piezoelectric characteristics. For example, it has been put to practical use in sounding bodies such as telephone receivers and buzzers, sensors such as ultrasonic sonar and knocking sensors, and actuators such as ultrasonic motors.
[0003]
As a method for industrially producing this lead-based piezoelectric material, PbO or Pb 3 O 4 or the like is used as the Pb source at the A site, ZrO 2 or ZrCO 3 is used as the Zr source at the B site, and TiO 2 or the like is used as the Ti source. Ti (OH) 4 or the like is used as a main raw material, and oxides or carbonates of elements such as Ba, La, Sr, and Ca are used as the raw material for the A site, and Mg, Nb, Manufactured by adding a small amount of oxides or carbonates of elements such as Sb, Mn, V, Cr, Fe, Bi, Ni, etc., mixing them with a mill, etc. and calcining, and crushing, molding and firing the calcined product It was a way to do. In general, the radii of element ions and oxygen ions entering the A and B sites are represented by r A + r B = t√2 (r B + r O ) (where 0.9 ≦ t ≦ 1.1), respectively. If the formula can be satisfied, it is said that a perovskite structure can be taken, and all of the elements listed above satisfy this formula.
[0004]
However, in the method for manufacturing a piezoelectric body in which 50 mol% or more of the A site is made of Pb, Pb volatilizes when fired at a high temperature, so that the composition shifts and it becomes difficult to sinter, and the piezoelectric characteristics are adversely affected. There was a problem that it was difficult to obtain a piezoelectric body. Therefore, in order to sinter at as low a temperature as possible, a sintering aid such as SiO 2 , B 2 O 3 —SiO 2 glass, Bi 2 O 3 —CuO-based glass is further added. In addition, the firing temperature is lowered by adding a large amount of Pb from the beginning so that A> B.
[0005]
[Problems to be solved by the invention]
However, although both of these methods are easy to sinter at low temperatures, they tend to cause strong necking between the particles during calcination, and agglomerates that remain unbroken by the subsequent pulverization remain. Remains. Due to this sparse portion, there is a problem that the piezoelectric body is easily broken during polarization.
[0006]
The present invention has been made in view of the problems of the above-described method for producing a lead-based piezoelectric body, and its purpose is to lower the sintering temperature without adding a sintering aid or adding excessive Pb. It is another object of the present invention to provide a method for manufacturing a piezoelectric body that can prevent breakdown during polarization.
[0007]
[Means for Solving the Problems]
As a result of repeating various experiments in order to achieve the above object, the present inventors have found that the total of one or more elements constituting the A site whose main constituent element is Pb is the sum of the elements constituting the B site. If the raw material is mixed and calcined so that the amount is less, and the calcined material is added with a short amount of A-site element raw material and sintered using finely pulverized powder, the sintering temperature can be lowered. In addition, the present invention was completed with the knowledge that the sintered piezoelectric body is less likely to break during polarization than before.
[0008]
The composition for reducing the amount of the A site element to be less than that of the B site element is A = mB (provided that 0.95 ≦ m ≦ 0.99) in terms of a molar ratio. Calcination was carried out so as to obtain a perovskite phase.
[0009]
The reason why m is in this range is as follows. That is, when m is 1 or more, the elements constituting the A site are satisfied, so that part of the elements are ejected from the A site to the grain boundary or the particle surface at the time of calcination, and depending on the ejected elements It is considered that a liquid phase is locally generated by the formed oxide, and that the liquid phase creates a strong necking between the particles. As described above, m is smaller than 1, that is, the A site element is changed. If the amount is insufficient, the number of elements that are ejected to the grain boundaries and the particle surface is reduced, so that necking that occurs during calcination is reduced and the destruction during polarization is expected to be improved.
[0010]
Conversely, if m is too small, that is, less than 0.95, necking during calcination is unlikely to occur, but there are too few elements at the A site, resulting in a crystal phase other than the perovskite phase, resulting in a single phase of perovskite. Therefore, even if the calcined material is fired with a shortage, a crystal phase other than the perovskite phase remains and is mixed, and high piezoelectric characteristics cannot be obtained. Even if m is 0.95 or more, a crystal phase other than the perovskite phase may be generated depending on the type of raw material used, the calcining temperature, the time, etc. It should be preliminarily calcined under the optimum conditions by examining in advance.
[0011]
The composition for adding the deficient A site element after the calcination was A = nB (where 1.00 ≦ n ≦ 1.02) in molar ratio. The reason why n is in this range is that if A is less than 1.00, the A site is deficient, so that it becomes difficult to sinter at low temperatures, and the breakdown during polarization is not improved. Necking at the time of calcination is small, but after firing, the amount of glass increases, necking increases, breakdown at the time of polarization is not improved, other deterioration of piezoelectric properties and pores in the piezoelectric body are difficult to disappear, etc. This is because it is not preferable to fall outside the range.
[0012]
Adding the deficiency after this calcination has the function of making it possible to fire at a lower temperature in addition to compensating for the deficiency of the A site. The reason is that the element constituting the A site is relatively easy to diffuse, so the element added after calcination seems to lower the sintering temperature by acting as a sintering aid. Seems to enter the deficient A site by the end of sintering and not adversely affect the piezoelectric properties. Thereby, in addition to improving the breakdown at the time of polarization, low temperature sintering becomes possible without adding a sintering aid or adding Pb excessively.
[0013]
The element that compensates for this deficiency, or the element that becomes deficient before calcination, is an element for making the A site deficient and eliminating it, so any of the above-mentioned A site elements may be selected. However, among them, Pb and La are elements that are particularly likely to cause necking, and that are easily diffused when calcined after calcination. It is preferable to select.
[0014]
Furthermore, the fineness of pulverizing the calcined product to which the above shortage was added was set to 5 m 2 / g or more in terms of specific surface area. This is because if the specific surface area is not more than 5 m 2 / g, even if there is little necking that occurs during calcination, it will not be able to break, and at the same time, the dispersion of the A site raw material to be added will be poor. This is because defects tend to remain and the piezoelectric body is easily broken during polarization. After finely pulverizing only the calcined material, it may be mixed by adding a deficiency, but there is no merit because the process becomes longer.
[0015]
The production method of the present invention will be described in more detail. First, necessary raw materials are selected for the A site from the above-mentioned raw materials and also for the B site from the above-mentioned raw materials. Mix in a mill so that the composition becomes deficient. If mixing is poor, the amount of perovskite phase produced may be small, so mix well. After the mixed powder is dried and calcined at a temperature of 700 to 900 ° C., the A-site raw material is added to the calcined product so as to have a predetermined composition, and then a conventional method, for example, a ball mill, a vibration mill, or a large amount It grind | pulverizes until the specific surface area becomes 5 m < 2 > / g or more with the forced stirring mill etc. which can be processed. Molding (press molding, extrusion molding, tape molding, etc.), processing (punching to desired shape, cutting, printing, laminating, etc.), firing (degreasing, filling with sheath, firing, etc.), attaching electrodes (conductor printing, A piezoelectric body is manufactured through conventional processes such as conductor baking, lead wire bonding, etc.) and polarization (cleaning, polarization, cleaning, inspection, etc.).
[0016]
As described above, by manufacturing by the above method, a piezoelectric body that can be sintered at a low temperature and that is not easily broken during polarization can be obtained.
[0017]
【Example】
EXAMPLES Hereinafter, the Example of this invention is given with a comparative example, and this invention is demonstrated in detail.
[0018]
(Examples 1-5)
(1) Pb 3 O 4 as a manufacturing raw material of the piezoelectric body, SrCO 3, ZrO 2, TiO 2, MnCO 3, the powder of Nb 2 O 5, Pb molar ratio x Sr y Zr 0.56 Ti 0.41 Nb 0.02 Mn 0.01 O 3 (x + y = m) where x and y in the formula are mixed so as to have the composition shown in Table 1, and mixed for 24 hours in a resin pot mill filled with zirconia balls having a diameter of 3 to 10 mm. And dried with a spray dryer. This dried product was calcined at 800 ° C. for 2 hours using an alumina sheath. In addition to this calcined material, s and j in the formula represented by Pb s Sr j Zr 0.56 Ti 0.41 Nb 0.02 Mn 0.01 O 3 (where s + j = n) have the composition shown in Table 1, and the diameter is It grind | pulverized until it became the specific surface area shown in Table 1 with the forced stirring mill (Kotobuki Giken Kogyo Co., Ltd .: AM-1) using a 1-mm zirconia bead.
[0019]
This powder was press-molded into a disk having a diameter of 20 mm and a thickness of 2 mm at a pressure of 1 ton / cm 2 , and the compact was put in a magnesia sheath and fired at 1150 ° C. for 2 hours. After polishing the surface of the fired body with # 600 carborundum abrasive grains and aligning it to a thickness of 0.5 mm, printing an Ag paste on both sides and forming a baking electrode at 700 ° C. for 10 minutes, silicon A voltage of 1.7 kV was applied in oil for 60 minutes for polarization, and 100 piezoelectric bodies were produced for each example.
[0020]
(2) Evaluation The constituent phase of the calcined calcined material was examined by the X-ray diffraction method. The specific surface area of the powder pulverized after calcination was determined by a nitrogen adsorption method. As for the breakdown state at the time of polarization, the polarized piezoelectric body was visually inspected, and it was assumed that the cracked or through-holed one was destroyed. In addition, the porosity of the sintered body is determined by the Archimedes method in order to check whether the piezoelectric body is densely sintered, and the electromechanical coupling coefficient Kr (radial vibration) in order to check the quality of the piezoelectric characteristics of the sintered body. 0.55 or more is good). The results are shown in Table 1.
[0021]
(Comparative Examples 1-6)
For comparison, a piezoelectric body was prepared in the same manner as in the example except that the composition ratio before and after calcination was changed to the composition shown in Table 1, and evaluated in the same manner as in the example. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0003974952
[0023]
As is apparent from Table 1, in Examples 1 to 5, the composition of the piezoelectric body before calcination is within the scope of the present invention, and the constituent phase of the calcination is a single perovskite phase, Moreover, since the composition after calcining and the fineness of the powder are also within the scope of the present invention, the porosity which has not been able to be dense unless conventionally sintered at a temperature around 1250 ° C. is low even at the low temperature of 1150 ° C. of the present invention. Is small and densely sintered. Also, the number of broken piezoelectric bodies was satisfactory, with all being two or less, and Kr was also good.
[0024]
On the other hand, in Comparative Examples 1 and 2, since m is 1 or more, since the raw material of the A site is not added to the calcined product, the sintering temperature is high, and the sintering temperature is insufficient. For this reason, the porosity is high, and the number of piezoelectric bodies destroyed is also increasing.
[0025]
Further, in Comparative Example 3, since m is smaller than 0.95, a zirconia phase is mixed, and even if n is set to 1.00 by adding the A-site raw material to the calcined material, the piezoelectric material destroyed during polarization The number of sheets is larger than that of the embodiment, and Kr is also poor.
[0026]
Furthermore, in Comparative Examples 4 and 5, the composition before calcination is within the scope of the present invention, but the composition after calcination is outside the scope of the present invention, so the number of piezoelectric bodies destroyed is greater than that of the examples. Increased, porosity and Kr were also poor.
[0027]
Furthermore, in Comparative Example 6, the composition is the same as in Example 4, but since the fineness of the powder to be sintered is coarse, the number of fractures is greatly increased, and both Kr and porosity are greatly deteriorated.
[0028]
【The invention's effect】
As described above, when a piezoelectric body is manufactured by the method according to the present invention, sintering can be performed at a low temperature with little volatilization of Pb without adding a sintering aid or excessive addition of Pb. It was possible to obtain a piezoelectric body that is less likely to break during polarization. As a result, it was possible to provide a manufacturing method capable of obtaining a piezoelectric body with little destruction during polarization by low-temperature sintering.

Claims (1)

組成としてABO3で表され、Aサイトの主構成元素がPbである圧電体の製造方法において、Aサイトの元素が、モル比でA=mB(但し、0.95≦m≦0.99)となるように原料配合して混合し、その混合物を単一のペロブスカイト相となるように仮焼した後、その仮焼物にさらにA=nB(但し、1.00≦n≦1.02)となるようにAサイト元素の原料を加え、それを比表面積が5m2/g以上になるまで粉砕した後、焼結することを特徴とする圧電体の製造方法。In the method of manufacturing a piezoelectric body represented by ABO 3 as a composition and the main constituent element of the A site is Pb, the elements of the A site are in a molar ratio of A = mB (provided that 0.95 ≦ m ≦ 0.99) After mixing and mixing the raw materials so that the mixture becomes a single perovskite phase, A = nB (where 1.00 ≦ n ≦ 1.02) is further added to the calcined product. A method for producing a piezoelectric body comprising: adding a raw material of the A-site element so that the specific surface area becomes 5 m 2 / g or more and then sintering.
JP16011995A 1995-06-05 1995-06-05 Method for manufacturing piezoelectric body Expired - Lifetime JP3974952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16011995A JP3974952B2 (en) 1995-06-05 1995-06-05 Method for manufacturing piezoelectric body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16011995A JP3974952B2 (en) 1995-06-05 1995-06-05 Method for manufacturing piezoelectric body

Publications (2)

Publication Number Publication Date
JPH08333161A JPH08333161A (en) 1996-12-17
JP3974952B2 true JP3974952B2 (en) 2007-09-12

Family

ID=15708281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16011995A Expired - Lifetime JP3974952B2 (en) 1995-06-05 1995-06-05 Method for manufacturing piezoelectric body

Country Status (1)

Country Link
JP (1) JP3974952B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212289B2 (en) * 2002-04-04 2009-01-21 Tdk株式会社 Method of manufacturing a piezoelectric ceramic
JP4403967B2 (en) * 2002-06-05 2010-01-27 パナソニック株式会社 Method for manufacturing piezoelectric device
WO2005102957A1 (en) * 2004-04-20 2005-11-03 Taiheiyo Cement Corporation Piezoelectric porcelain composition and piezoelectric device using it
JP2006131432A (en) * 2004-11-02 2006-05-25 Nec Tokin Corp Method of producing piezoelectric ceramic material
JP4998668B2 (en) * 2004-12-17 2012-08-15 Tdk株式会社 Piezoelectric ceramic manufacturing method and piezoelectric element manufacturing method
JP2006193414A (en) * 2004-12-17 2006-07-27 Tdk Corp Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP6530785B2 (en) * 2016-06-23 2019-06-12 日本化学工業株式会社 Method for producing alkali niobate compound

Also Published As

Publication number Publication date
JPH08333161A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
EP1876155B1 (en) Piezoelectric porcelain composition and piezoelectric ceramic electronic component
EP3370271B1 (en) Piezoelectric composition and piezoelectric device
EP3367453B1 (en) Piezoelectric composition and piezoelectric device
JP2013028478A (en) Dielectric ceramic composition and electronic component
KR20020064152A (en) Method for making barium titanate powder, barium titanate powder prepared by the method, dielectric ceramic compact, and monolithic ceramic capacitor
JP2003002739A (en) Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor
KR100475348B1 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
JP3974952B2 (en) Method for manufacturing piezoelectric body
EP2269965B1 (en) Piezoelectric ceramic and piezoelectric ceramic composition
US20080067897A1 (en) Production Method of Piezoelectric Ceramic, Production Method of Piezoelectric Element, and Piezoelectric Element
JP2884635B2 (en) Piezoelectric ceramics and method of manufacturing the same
JP2919360B2 (en) Dielectric porcelain composition
JPH07267733A (en) Piezoelectric porcelain composition
JP3481832B2 (en) Piezoelectric ceramic
JP2649341B2 (en) Grain boundary insulated semiconductor porcelain
JP2645815B2 (en) Grain boundary insulated semiconductor porcelain
JP4003920B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic sintered body and electronic component
JPH07315926A (en) Piezoelectric porcelain composition for ceramic filter device excellent in moisture resistance
JP3981221B2 (en) Piezoelectric ceramic
JPH08283069A (en) Piezoelectric ceramic and its production
JP2003020275A (en) Piezoelectric ceramic and composition therefor
JPH06116010A (en) Production of bismuth laminar compound
JPH0987016A (en) Piezoelectric ceramic material and its production
JPH06116024A (en) Production of bismuth laminar compound
KR20020048101A (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 7

EXPY Cancellation because of completion of term