JP2003020275A - Piezoelectric ceramic and composition therefor - Google Patents

Piezoelectric ceramic and composition therefor

Info

Publication number
JP2003020275A
JP2003020275A JP2001204931A JP2001204931A JP2003020275A JP 2003020275 A JP2003020275 A JP 2003020275A JP 2001204931 A JP2001204931 A JP 2001204931A JP 2001204931 A JP2001204931 A JP 2001204931A JP 2003020275 A JP2003020275 A JP 2003020275A
Authority
JP
Japan
Prior art keywords
nanb
composition
piezoelectric ceramic
weight
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001204931A
Other languages
Japanese (ja)
Inventor
Osamu Shiono
修 塩野
Shigeru Tanaka
田中  滋
Mitsuo Hayashibara
光男 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001204931A priority Critical patent/JP2003020275A/en
Publication of JP2003020275A publication Critical patent/JP2003020275A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a piezoelectric ceramic which can be burned at a low temperature in a short time without deteriorating its piezoelectric characteristics, and to obtain a composition therefore. SOLUTION: In the piezoelectric ceramic composed of a sintered compact essentially consisting of Sr2 NaNb5 O15 , the average grain size of the crystals of the sintered compact is <=10 μm, and further, the ceramic consists of a sintered compact obtained by incorporating Ti or Ti and Ba in 0.1 to 3.0% by weight expressed in terms of TiO2 and BaCO3 into a composition of Sr2-x Cax NaNb5-y Tay O15 (0.01<=x<=0.5, and 0.01<=y<=2.0).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアクチュエータ,振
動子,圧力センサ,フィルタ,トランス等に用いられる
新規な圧電磁器とその組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel piezoelectric ceramic used in actuators, vibrators, pressure sensors, filters, transformers, etc. and its composition.

【0002】[0002]

【従来の技術】圧電磁器組成物としては,PZTと呼ば
れるPbZrO−PbTiOを含有する多成分系材
料が主流である。鉛を含有しない系としては特開昭55-1
04970号公報,特開昭57-95869号公報に記載のNa
1−xLiNb0,特開平9ー165262号公報に記載
のNaNbO−BaNiO−KNbO等のペロブ
スカイト化合物,FC Report 15(1997)No.6(社団法人
日本ファインセラミックス協会発行)に記載の(Na
0.5Bi0.50.95Ca0.05Bi4Ti415+MnCO
(0.1wt%)のビスマス層状化合物,あるいはタングステ
ンブロンズ型化合物としてはFerroelectrics 160(199
4)記載のSr1.8Ca0.2NaNb515が知られてい
る。
As a piezoelectric ceramic composition, a multi-component material containing PbZrO 3 -PbTiO 3 called PZT is the mainstream. As a lead-free system, JP-A-55-1
Na described in JP-A-04970 and JP-A-57-95869
1-x Li x Nb0 3, perovskite compounds such as NaNbO 3 -BaNiO 3 -KNbO 3 described in JP-A-9-1 165262, FC Report 15 (1997) No.6 ( Institute
(Na published by Japan Fine Ceramics Association)
0.5 Bi 0.5 ) 0.95 Ca 0.05 Bi 4 Ti 4 O 15 + MnCO 3
(0.1 wt%) bismuth layer compound or tungsten bronze type compound as Ferroelectrics 160 (199
4) Sr 1.8 Ca 0.2 NaNb 5 O 15 described above is known.

【0003】又、特開平10−297969号公報、特開平11−
240759号公報、特開平11−278932号公報には、一般式S
NaNb15に対してTi,Bi又はCa,T
a等を含有する圧電磁器組成物が示されている。
Further, JP-A-10-297969 and JP-A-11-
No. 240759 and Japanese Patent Laid-Open No. 11-278932 disclose the general formula S
r 2 NaNb 5 O 15 with respect to Ti, Bi or Ca, T
A piezoelectric ceramic composition containing a, etc. is shown.

【0004】[0004]

【発明が解決しようとする課題】現在の代表的な圧電磁
器組成物であるPZTは鉛(酸化鉛)を含有する。環境
問題,法規制がクローズアップされるに従い,この材料
の廃棄処理にも考慮することが必要となってきており鉛
を含有しない,実用的な圧電特性を有する材料の出現が
強く望まれている。そこで,上述したような非鉛系の材
料,あるいは環境負荷を少しでも低減する観点から,P
bBi4Ti415系の様な鉛含有量の比較的小さい材料
も開発されているが,圧電特性的な理由から用途は限定
されている。
PZT, which is a typical typical piezoelectric ceramic composition at the present time, contains lead (lead oxide). As environmental issues and legal regulations have been highlighted, it has become necessary to consider disposal of this material, and the emergence of a material that does not contain lead and has practical piezoelectric properties is strongly desired. . Therefore, from the viewpoint of reducing the lead-free materials or the environmental load as described above, P
Materials having a relatively low lead content, such as bBi 4 Ti 4 O 15 series, have been developed, but their applications are limited due to piezoelectric characteristics.

【0005】ところで,実際のアプリケーションである
アクチュエータや圧電トランス等を考えた場合,圧電磁
器組成物はセラミックスをシート状にしたグリーンシー
トで作製することが多い。しかし,従来からの非鉛系の
材料は焼結温度が高いため,内部電極にPZTで用いら
れたAgの含有率の多いAg/Pdペーストを用いることが難
しい。そのため,積層数の多い構造体ではコスト高にな
ることがある。また,圧電磁器組成物を低温で焼成でき
れば,製造時の電力量を低減できるため,低コスト化が
可能となる。又、前述の公報には、特定の組成及び粒径
については言及されていない。
In consideration of actuators, piezoelectric transformers, etc., which are actual applications, the piezoelectric ceramic composition is often made of a green sheet made of ceramics. However, since conventional lead-free materials have high sintering temperatures, it is difficult to use Ag / Pd paste with a high Ag content used in PZT for internal electrodes. Therefore, the cost may increase in a structure having a large number of layers. Also, if the piezoelectric ceramic composition can be fired at a low temperature, the amount of electric power at the time of manufacturing can be reduced, so that the cost can be reduced. Further, the above-mentioned publication does not refer to a specific composition and particle size.

【0006】本発明の目的は、圧電特性を損なわず,低
温でかつ短時間で焼成できる圧電磁器とその組成物を提
供することにある。
An object of the present invention is to provide a piezoelectric ceramic and a composition thereof which can be fired at a low temperature in a short time without impairing the piezoelectric characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、Sr2NaN
515を主体とする焼結体よりなる圧電磁器におい
て,前記焼結体の結晶の平均粒径が10μm以下であるこ
とを特徴とする。
The present invention is directed to Sr 2 NaN.
A piezoelectric ceramic made of a sintered body containing b 5 O 15 as a main component is characterized in that the average grain size of crystals of the sintered body is 10 μm or less.

【0008】又、本発明は、Sr2-xCaxNaNb5
15(0.01≦x≦0.5),Sr2NaNb5 -yTay15(0.01
≦y≦2.0)及びSr2-xCaxNaNb5-yTay15(0.
01≦x≦0.5、0.01≦y≦2.0)いずれかの組成物にTi及
びBaの1種以上をTiO2及びBaCO3に換算して重
量で,0.1〜3.0%含有する焼結体よりなることを特徴と
する圧電磁器にある。
The present invention is also directed to Sr 2-x Ca x NaNb 5 O
15 (0.01 ≦ x ≦ 0.5) , Sr 2 NaNb 5 -y Ta y O 15 (0.01
≦ y ≦ 2.0) and Sr 2-x Ca x NaNb 5 -y Ta y O 15 (0.
01 ≦ x ≦ 0.5, 0.01 ≦ y ≦ 2.0) Sintered body containing 0.1 to 3.0% by weight of one or more of Ti and Ba in terms of TiO 2 and BaCO 3 in any composition. It is in a piezoelectric ceramic.

【0009】更に、Sr2-xCaxNaNb5-yTay15
は、0≦x≦0.5、0≦y≦2.0であり、Ti及びBaの1種
以上をTiO2及びBaCO3に換算して重量で,0.1〜
3.0%含有する焼結体よりなる結晶の平均粒径が10μm以
下である組成物とするものである。
Further, Sr 2-x Ca x NaNb 5-y Ta y O 15
Is 0 ≦ x ≦ 0.5 and 0 ≦ y ≦ 2.0, and one or more kinds of Ti and Ba are converted into TiO 2 and BaCO 3 by weight, and 0.1 to
The composition is a composition having an average grain size of 10 μm or less of crystals made of a sintered body containing 3.0%.

【0010】又、上述のものにMg,Mn,Li,La
及びBiの1種又は2種以上を各々MgCO3,MnC
,Li2CO3,La23及びBi23に換算して重
量で,0.01〜3.0%含有することが好ましい。
In addition to the above, Mg, Mn, Li, La
And one or more of Bi and MgCO 3 and MnC, respectively.
It is preferable to contain 0.01 to 3.0% by weight in terms of O 3 , Li 2 CO 3 , La 2 O 3 and Bi 2 O 3 .

【0011】更に、本発明は、Sr2NaNb515を主
体とする圧電磁器組成物において,仮焼結後の粉末粒径
が1μm以下、好ましくは0.5〜1.0μmであることを特
徴とする。
Further, the present invention is characterized in that, in the piezoelectric ceramic composition containing Sr 2 NaNb 5 O 15 as a main component, the powder particle size after calcination is 1 μm or less, preferably 0.5 to 1.0 μm. .

【0012】又、Sr2-xCaxNaNb515(0.01≦x
≦0.5),Sr2NaNb5-yTay1 5(0.01≦y≦2.0)
及びSr2-xCaxNaNb5-yTay15(0.01≦x≦0.
5、0.01≦y≦2.0)いずれかの組成物にTi及びBaの
1種以上をTiO2及びBaCO 3に換算して重量で,0.
1〜3.0%含有し、仮焼結後の粉末よりなることを特徴と
する圧電磁器組成物にある。
Further, Sr2-xCaxNaNbFiveO15(0.01≤x
≤0.5), Sr2NaNb5-yTayO1 Five(0.01 ≦ y ≦ 2.0)
And Sr2-xCaxNaNb5-yTayO15(0.01≤x≤0.
5, 0.01 ≤ y ≤ 2.0) either composition of Ti and Ba
TiO for one or more2And BaCO 3Converted to and weighted to 0.
It is characterized by containing 1 to 3.0% and consisting of powder after temporary sintering.
In the piezoelectric ceramic composition.

【0013】又、Sr2-xCaxNaNb5-yTay
15(0≦x≦0.5、0≦y≦2.0)の組成物にTi及びBaの
1種以上をTiO2及びBaCO3に換算して重量で,0.
1〜3.0%含有する仮焼結後の粉末よりなり、前記粉末は
粒径が1μm以下、好ましくは、0.5〜1.0μmであるこ
とを特徴とする圧電磁器組成物にある。
Further, Sr 2-x Ca x NaNb 5-y Ta y O
In a composition of 15 (0 ≦ x ≦ 0.5, 0 ≦ y ≦ 2.0), at least one of Ti and Ba is converted into TiO 2 and BaCO 3 , and the weight of the composition is 0.1.
The piezoelectric ceramic composition is characterized by comprising 1 to 3.0% of powder after calcination and having a particle size of 1 μm or less, preferably 0.5 to 1.0 μm.

【0014】前述の圧電磁器組成物は、Mg,Mn,L
i,La及びBiの1種又は2種以上を各々MgC
3,MnCO,Li2CO3,La23及びBi23
に換算して重量で,0.01〜3.0%含有することが好まし
い。
The above-mentioned piezoelectric ceramic composition is composed of Mg, Mn, L
One or more of i, La and Bi are MgC
O 3 , MnCO 3 , Li 2 CO 3 , La 2 O 3 and Bi 2 O 3
It is preferable that the content is 0.01 to 3.0% in terms of weight.

【0015】前述の様に、本発明は,鉛を含まない複数
種のタングステンブロンズ型化合物により構成された複
合化合物を主体とする圧電磁器組成物にある。更に、圧
電磁器組成物の基になる本焼結前の仮焼結後に粉砕され
た原料粉末の粒径を0.5〜1.0μmとすることが好まし
い。
As described above, the present invention resides in a piezoelectric ceramic composition mainly composed of a composite compound composed of a plurality of lead-free tungsten bronze type compounds. Further, it is preferable that the particle size of the raw material powder pulverized after the preliminary sintering before the main sintering which is the basis of the piezoelectric ceramic composition is 0.5 to 1.0 μm.

【0016】[0016]

【発明の実施の形態】(実施例1)Sr2-xCaxNaN
5-yTay15複合化合物について説明する。まず出発
原料としてSrCO3,CaCO3,Na2CO3,Nb2
5,Ta25を0.01≦x≦0.5、0.01≦y≦2.0となるよ
うに所定量秤量した。なお,SrCO3の代わりにSr
Oを用いても良い。次に添加物として,Ti又はTiと
Baの両方をTiO2,BaCO3に換算して複合酸化物
の重量に対し,0.1wt%以上3.0wt%以下の範囲で秤量し
た。次に,これらの出発原料を直径1〜10mmのジルコ
ニアボールにより24〜48時間,湿式混合を行い,それを
乾燥した後,1000〜1100℃で2〜12時間の仮焼を行っ
た。
BEST MODE FOR CARRYING OUT THE INVENTION (Example 1) Sr 2-x Ca x NaN
The b 5-y Ta y O 15 composite compound will be described. First, as a starting material, SrCO 3 , CaCO 3 , Na 2 CO 3 , and Nb 2 are used.
Predetermined amounts of O 5 and Ta 2 O 5 were weighed so that 0.01 ≦ x ≦ 0.5 and 0.01 ≦ y ≦ 2.0. In addition, instead of SrCO 3 , Sr
O may be used. Next, as additives, Ti or both Ti and Ba were converted into TiO 2 and BaCO 3 and weighed in the range of 0.1 wt% to 3.0 wt% with respect to the weight of the composite oxide. Next, these starting materials were wet mixed with zirconia balls having a diameter of 1 to 10 mm for 24 to 48 hours, dried, and then calcined at 1000 to 1100 ° C for 2 to 12 hours.

【0017】その後,ポットミルあるいはボールミルに
より2時間程度粉砕し、粒径1.0μm以下の粉末にして
混合を行い,PVA,PVB等のバインダを入れて加圧
成形し,1200〜1250℃で2〜24時間の焼成を行いバルク
焼結体を得た。このバルク焼結体をX線回折により構造
解析し,タングステンブロンズ型化合物であることを確
認した。得られた全試料の相対密度は94〜96%、結晶の
平均粒径1.0〜12.6μm以下であった。
Then, the mixture is pulverized by a pot mill or a ball mill for about 2 hours to obtain a powder having a particle size of 1.0 μm or less and mixed, and a binder such as PVA or PVB is added and pressure-molded. Firing was performed for a time to obtain a bulk sintered body. The structure of this bulk sintered body was analyzed by X-ray diffraction, and it was confirmed that it was a tungsten bronze type compound. The relative density of all the obtained samples was 94 to 96%, and the average crystal grain size was 1.0 to 12.6 μm or less.

【0018】次に焼結体を3mm×3mm×10mmの寸法に加工
し,室温〜200℃のシリコンオイル中で1〜5kV/mmの電圧
を30分間印加して分極処理を行った。その後,得られた
試料の圧電定数d33をインピーダンスアナライザーによ
る共振反共振法により測定した。
Next, the sintered body was processed into a size of 3 mm × 3 mm × 10 mm and subjected to polarization treatment by applying a voltage of 1 to 5 kV / mm for 30 minutes in silicon oil at room temperature to 200 ° C. After that, the piezoelectric constant d33 of the obtained sample was measured by the resonance anti-resonance method using an impedance analyzer.

【0019】図1はSr2-xCaxNaNb515について
Ca含有量と圧電定数との関係を示す図である。なお,
添加物はTiをTiO2に換算して複合酸化物の重量に
対し,0.1wt%添加し,焼成温度は1200〜1250℃である。
また,従来の圧電定数とは1300〜1400℃で焼成した時の
Tiを含まないもののd33特性である。図1のようにTi
を添加した試料は組成比が0.01≦x≦0.5の範囲で、従来
のものより圧電定数d33が向上した。最大で,130%に達
した。また,組成比xが0.5を超えると,1200〜1250℃で
焼成した場合,圧電定数が従来のものより低下した。こ
の傾向はBaでも同様であった。また,TiとBaの両
方をTiO2,BaCO3に換算して複合酸化物の重量に
対し,重量で、0.1〜3.0%加えても同様の傾向を示し
た。
FIG. 1 is a graph showing the relationship between the Ca content and the piezoelectric constant of Sr 2-x Ca x NaNb 5 O 15 . In addition,
As an additive, 0.1 wt% of Ti is converted to TiO 2 with respect to the weight of the composite oxide, and the firing temperature is 1200 to 1250 ° C.
In addition, the conventional piezoelectric constant is the d33 characteristic of a material that does not contain Ti when fired at 1300 to 1400 ° C. Ti as shown in Fig. 1
The piezoelectric constant d33 of the sample added with was higher than that of the conventional sample in the range of 0.01 ≦ x ≦ 0.5. The maximum reached 130%. When the composition ratio x exceeds 0.5, the piezoelectric constant is lower than that of the conventional one when fired at 1200 to 1250 ° C. This tendency was the same for Ba. Further, the same tendency was exhibited when both Ti and Ba were converted into TiO 2 and BaCO 3 and added by 0.1 to 3.0% by weight with respect to the weight of the composite oxide.

【0020】図2はSr2NaNb5-yTay15につい
てTa量と圧電定数d33との関係示す図である。なお,添
加物はTiをTiO2に換算して複合酸化物に対して重
量で,0.1%添加し,焼成温度は1200〜1250℃である。ま
た,従来の圧電定数とは1300〜1400℃で焼成した時の特
性である。図2のようにTiを添加した試料は組成比が
0.01≦y≦2.0の範囲で、従来のものより圧電定数が向上
した。最大で,115%に達した。また,組成比yが2.0を超
えると,1200〜1250℃で焼成した場合,圧電定数が従来
のものより低下した。この傾向はBaでも同様であっ
た。また,TiとBaの両方をTiO2,BaCO3に換
算して複合酸化物に対して重量で,0.1〜3.0%加えても
同様の傾向を示した。
FIG. 2 is a diagram showing the relationship between the amount of Ta and the piezoelectric constant d33 for Sr 2 NaNb 5-y Ta y O 15 . In addition, 0.1% by weight of the additive is added to the composite oxide by converting Ti into TiO 2 , and the firing temperature is 1200 to 1250 ° C. The conventional piezoelectric constant is the characteristic when fired at 1300 to 1400 ° C. As shown in FIG. 2, the composition ratio of the sample added with Ti is
In the range of 0.01 ≦ y ≦ 2.0, the piezoelectric constant was improved compared to the conventional one. The maximum reached 115%. When the composition ratio y exceeds 2.0, the piezoelectric constant is lower than that of the conventional one when fired at 1200 to 1250 ° C. This tendency was the same for Ba. Also, the same tendency was exhibited when both Ti and Ba were converted into TiO 2 and BaCO 3 and added by 0.1 to 3.0% by weight to the composite oxide.

【0021】図3は、上記の2種の組み合わせであるS
2-xCaxNaNb5-yTay15にTiをTiO2に換
算して複合酸化物全体に対して重量で、0.1%添加して12
00〜1250℃で焼成した試料の圧電定数d33を測定したと
ころ,図3のA,B,C,Dで囲まれた範囲の○印の組成比
で従来の1300〜1400℃で焼成したものより圧電特性が向
上する傾向,×印の組成比では低下する傾向が見られ
た。図3のA,B,C,Dで囲まれた範囲の組成比0.01≦x
≦0.5、0.01≦y≦2.0では先と同様にBaでも,Tiと
Baの両方をTiO2,BaCO3に換算して複合酸化物
の重量に対し,0.1wt%以上3.0wt%以下加えてもこの傾向
を示した。
FIG. 3 is a combination of the above two types S
r 2-x Ca x NaNb the 5-y Ta y O 15 in Ti by weight with respect to the entire composite oxide in terms of TiO 2, 12 by the addition of 0.1%
When the piezoelectric constant d33 of the sample fired at 00 to 1250 ° C was measured, it was found that the composition ratio of ○ in the range surrounded by A, B, C and D in FIG. There was a tendency for the piezoelectric characteristics to improve, and for the composition ratio marked with X to decrease. Composition ratio 0.01 ≦ x in the range surrounded by A, B, C and D in FIG.
In the case of ≦ 0.5 and 0.01 ≦ y ≦ 2.0, as in the case of Ba, even if both Ti and Ba are converted to TiO 2 and BaCO 3 and added to the weight of the composite oxide in an amount of 0.1 wt% or more and 3.0 wt% or less. This tendency was shown.

【0022】(実施例2)Sr1.8Ca0.2NaNb5
15を基に説明する。先と同様に,出発原料としてSrC
3,CaCO3,Na2CO3,Nb25を,Sr1.8
0.2NaNb51 5組成となるように秤量した。次にT
i又はTiとBaの両方をTiO2,BaCO3に換算し
て複合酸化物の重量に対し,0.1wt%以上3.0wt%以下とな
るように所定量秤量した。さらに添加物としてMg,M
n,Li,La,Biののうち1種または2種以上をM
gCO3,MnCO,Li2CO3,La23,Bi2
3に換算して圧電磁器組成物の重量に対し,0.01wt%以上
3.0wt%以下となるように所定量秤量した。この後の粉末
混合,加圧成形,脱脂,焼結等のプロセスは先に示した
ものと同様にして実施例1と同様の試料を作製した。ま
た,分極条件も同様である。得られたバルク焼結体はX
線回折により,構造解析し,タングステンブロンズ化合
物であることを確認した。得られた全試料の相対密度は
94〜96%であった。
Example 2 Sr 1.8 Ca 0.2 NaNb 5 O
It will be explained based on 15 . As before, SrC was used as the starting material.
O 3 , CaCO 3 , Na 2 CO 3 , Nb 2 O 5 and Sr 1.8 C
It was weighed so as to a 0.2 NaNb 5 O 1 5 composition. Then T
A predetermined amount of i or both Ti and Ba was converted to TiO 2 or BaCO 3 and was weighed so as to be 0.1 wt% or more and 3.0 wt% or less with respect to the weight of the composite oxide. In addition, Mg, M as additives
One or more of n, Li, La, and Bi are M
gCO 3 , MnCO 3 , Li 2 CO 3 , La 2 O 3 , Bi 2 O
Converted to 3 , 0.01 wt% or more based on the weight of the piezoelectric ceramic composition
A predetermined amount was weighed so as to be 3.0 wt% or less. Subsequent processes such as powder mixing, pressure molding, degreasing, and sintering were the same as those described above, and a sample similar to that of Example 1 was prepared. The polarization conditions are also the same. The obtained bulk sintered body is X
The structure was analyzed by line diffraction and it was confirmed to be a tungsten bronze compound. The relative density of all the obtained samples is
It was 94 to 96%.

【0023】表1は,Sr1.8Ca0.2NaNb5
15(組成比x=0.2,y=0にTiをTiO2に換算して複合
酸化物の重量に対し,0.1wt%添加)に各添加物の形で1w
t%加えた場合の電気機械結合係数k33と圧電定数d33の値
を示す。なお,No.6の試料は添加物を加えず,1300℃で
焼成した従来のSr1.8Ca0.2NaNb515の値であ
る。No.1〜No.5に示すように,添加物を加えた試料は従
来のNo.6に比べて,1.4〜1.6倍程度,圧電定数d33が向
上し,100pC/Nを超えるものが得られた。また,焼成温
度に関しては1180〜1230℃程度の温度で焼成しても圧電
特性が低下しないものもあることを確認した。
Table 1 shows Sr 1.8 Ca 0.2 NaNb 5 O
1 w in the form of each additive to 15 (composition ratio x = 0.2, y = 0, Ti converted to TiO 2 and added 0.1 wt% to the weight of the composite oxide)
The values of the electromechanical coupling coefficient k33 and the piezoelectric constant d33 when t% is added are shown. The sample of No. 6 is the value of the conventional Sr 1.8 Ca 0.2 NaNb 5 O 15 which was calcined at 1300 ° C. without adding any additive. As shown in No.1 to No.5, the sample with the additive has a piezoelectric constant d33 improved by 1.4 to 1.6 times as compared with the conventional No.6, and the value exceeding 100 pC / N can be obtained. It was Regarding the firing temperature, it was confirmed that the piezoelectric characteristics did not deteriorate even when firing at a temperature of about 1180 to 1230 ° C.

【0024】[0024]

【表1】 [Table 1]

【0025】これらの添加物について添加量と圧電定数
d33の関係を調べたところ,図4に示すようにSr1.8
0.2NaNb515(組成比x=0.2,y=0)にMgをMg
CO3として添加していくと添加量0.01〜3.0wt%の範囲
において従来の1300〜1400℃で作製した試料より圧電定
数d33が向上することを確認した。なお,本試料の焼成
温度は1180〜1230℃である。この傾向は表1に示した2種
類以上の添加物を加えた場合についても同様の効果があ
った。さらに,添加物を加える母材の複合化合物は先に
示した実施例1におけるSr2-xCaxNaNb5-yTay
15の0.01≦x≦0.5、0.01≦y≦2.0の範囲においても同
様の傾向を示した。
The amount of addition and the piezoelectric constant of these additives
Examination of the relationship between d33, as shown in FIG. 4 Sr 1.8 C
a 0.2 NaNb 5 O 15 (composition ratio x = 0.2, y = 0) with Mg
It was confirmed that when CO 3 is added, the piezoelectric constant d33 is improved as compared with the conventional sample manufactured at 1300 to 1400 ° C. in the addition amount range of 0.01 to 3.0 wt%. The firing temperature of this sample is 1180-1230 ℃. This tendency also had the same effect when two or more kinds of additives shown in Table 1 were added. Furthermore, the composite compound of the base material to which the additive is added is the Sr 2-x Ca x NaNb 5-y Ta y in Example 1 described above.
The same tendency was shown in the range of O 15 of 0.01 ≦ x ≦ 0.5 and 0.01 ≦ y ≦ 2.0.

【0026】(実施例3)圧電定数d33は焼結体の密度
と密接に関係するため,焼結体の結晶粒の大きさにより
特性が変化する。また,焼成条件によっても結晶粒の大
きさが変化する。そこで,圧電定数と平均粒径について
調べた。表2は作製した各試料の材料組成をまとめたも
のであり,表3はその結果である。
(Embodiment 3) Since the piezoelectric constant d33 is closely related to the density of the sintered body, the characteristics change depending on the size of the crystal grains of the sintered body. Also, the size of the crystal grains changes depending on the firing conditions. Therefore, we investigated the piezoelectric constant and average particle size. Table 2 is a summary of the material composition of each of the prepared samples, and Table 3 is the result.

【0027】表2において,試料No.a-1〜a-8及び試料N
o.b-1〜b-8は組成比を変化させたもの,試料No.c-1〜c-
8は組成比を固定して添加物を加えたもの,試料No.d-1
〜d-8はこれらを組み合わせたものである。なお,焼成
温度は1200〜1250℃であり,得られた全試料の相対密度
は94〜96%であった。また,これらの全試料はTiをT
iO2に換算して複合酸化物の重量に対し,0.1wt%添加
した。表3中の○,×印については,○印は従来手法の
焼成温度1300〜1400℃で作製した試料の圧電定数より向
上するまたは変化しないもの,×印は低下するまたは低
温焼結できなかったものを各々示す。
In Table 2, sample Nos. A-1 to a-8 and sample N
ob-1 to b-8 have different composition ratios, sample No. c-1 to c-
Sample No.d-1 is a sample with fixed composition ratio and additive.
~ D-8 is a combination of these. The firing temperature was 1200 to 1250 ° C, and the relative density of all the obtained samples was 94 to 96%. In addition, all these samples have Ti
0.1 wt% was added to the weight of the composite oxide in terms of iO 2 . Regarding ○ and × marks in Table 3, ○ marks are those which are improved or do not change than the piezoelectric constants of the samples prepared at the firing temperature of 1300 to 1400 ° C of the conventional method, and X marks are decreased or cannot be sintered at low temperature. Each one is shown.

【0028】表3に示すように各材料組成において平均
粒径が10μm以下のものは従来手法の1300〜1400℃で作
製した試料より圧電定数を向上または変化ないものが得
られた。また,試料No.a-,b-,c-,d-共に組成比の違
いや添加物の違いによっても同様の効果が得られること
が分かった。さらに,これらの組み合わせにおいても同
様であった。なお,表2,表3において同一の材料組成
にも係わらず,結晶粒の大きさに違いがあるのは結晶粒
の大きさが焼結時の焼結温度と保持時間によって制御で
きるためである。
As shown in Table 3, those having an average particle size of 10 μm or less in each material composition were obtained in which the piezoelectric constant was not improved or changed as compared with the sample prepared at 1300 to 1400 ° C. in the conventional method. It was also found that the same effects can be obtained for sample Nos. A-, b-, c-, and d- due to the difference in composition ratio and the difference in additives. Furthermore, the same was true for these combinations. In Tables 2 and 3, although the same material composition is used, the size of the crystal grains is different because the size of the crystal grains can be controlled by the sintering temperature and the holding time during sintering. .

【0029】以上より,焼結体の平均粒径10μm以下で
あれば,圧電特性を低下させることなく1200〜1250℃の
低温で焼成できる。
From the above, if the average particle size of the sintered body is 10 μm or less, it can be fired at a low temperature of 1200 to 1250 ° C. without deteriorating the piezoelectric characteristics.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】(実施例4)セラミックスの低温焼結手法
の一つに原料粉末の微細化がある。実施例3に示した通
り,焼結体の結晶粒と圧電定数とは密接に関係がある。
また,焼結過程は粒成長を伴うため,原料粉末時の粒径
が圧電定数に依存することは十分考えられる。そこで,
仮焼粉末時の粒径と焼結体時の結晶粒の関係を調べた。
その結果,焼結温度及び保持時間によって結晶粒の大き
さを制御できることはすでに述べたが,同一の焼成温
度,保持時間でも初期の原料粉末の大きさが小さい方が
焼結時の結晶粒の大きさが小さいことが分かった。詳細
に調べたところ,初期の原料粉末の大きさが0.5〜1.0μ
mであれば,焼結温度1200〜1250℃,保持時間2〜24時
間において,焼結体の結晶の平均粒径は10μm以下であ
ることが分かった。
(Example 4) One of the low temperature sintering methods for ceramics is the miniaturization of the raw material powder. As shown in Example 3, the crystal grains of the sintered body and the piezoelectric constant are closely related.
In addition, since the sintering process involves grain growth, it is fully conceivable that the grain size of the raw material powder depends on the piezoelectric constant. Therefore,
The relationship between the grain size in the calcined powder and the crystal grain in the sintered body was investigated.
As a result, it was already described that the crystal grain size can be controlled by the sintering temperature and the holding time. However, even if the firing temperature and the holding time are the same, the smaller the size of the starting raw material powder, the smaller It turned out to be small. A detailed examination showed that the initial raw material powder size was 0.5 to 1.0 μ.
It was found that the average grain size of the crystals of the sintered body was 10 μm or less when the sintering temperature was 1200 to 1250 ° C. and the holding time was 2 to 24 hours.

【0033】原料粉末時の粒径が0.5〜1.0μmであって
も,焼結温度1200〜1250℃,保持時間2〜24時間を超え
る場合は,焼結体の結晶の平均粒径が10μmを超えるも
のもあるが,この場合,焼結体作製に要する時間が増加
すること,電気炉に投入する電力量が増加すること等の
ために生産性が低下する。
Even if the grain size of the raw material powder is 0.5 to 1.0 μm, if the sintering temperature is 1200 to 1250 ° C. and the holding time exceeds 2 to 24 hours, the average grain size of the crystals of the sintered body is 10 μm. However, in this case, the productivity decreases because the time required for producing the sintered body increases and the amount of electric power supplied to the electric furnace increases.

【0034】また,原料粉末の粒径が0.5μmを下回っ
た場合は,上記作製条件で焼結体の結晶の平均粒径を10
μm以下に押さえることができるが,成形体作製時に冶
具に粉末が詰まり易くなる,バインダの量が多くなるた
めグリーンシート作製が若干難しくなり、更に、原料粉
末を微細化するのに時間を要する等の不備が生じる。
When the grain size of the raw material powder is less than 0.5 μm, the average grain size of the crystal of the sintered body is 10
It can be suppressed to less than μm, but the powder tends to be clogged in the jig during the production of the compact, the production of the green sheet becomes a little difficult due to the large amount of binder, and it takes time to make the raw material powder finer. Deficiency occurs.

【0035】[0035]

【発明の効果】本発明によれば,鉛を含有せず,圧電特
性を損なわずに,低温で焼成できる圧電磁器とその組成
物を提供できるものである。従って,本発明を用いれ
ば,環境に優しく、前述した広範囲な用途の圧電素子に
使用できるものである。
According to the present invention, it is possible to provide a piezoelectric ceramic which does not contain lead and can be fired at a low temperature without impairing the piezoelectric characteristics and a composition thereof. Therefore, according to the present invention, it is environmentally friendly and can be used for the piezoelectric element for a wide range of applications described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Sr2-xCaxNaNb515の組成比xと従来
手法で作製した試料の圧電定数に対する割合との関係を
示す特性図。
FIG. 1 is a characteristic diagram showing a relationship between a composition ratio x of Sr 2-x Ca x NaNb 5 O 15 and a ratio of a sample manufactured by a conventional method to a piezoelectric constant.

【図2】 Sr2NaNb5-yTay15の組成比yと従来
手法で作製した試料の圧電定数に対する割合との関係を
示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between the composition ratio y of Sr 2 NaNb 5-y Ta y O 15 and the ratio of the sample prepared by the conventional method to the piezoelectric constant.

【図3】 本発明の請求項第1項の範囲を示すSr2-x
CaxNaNb5-yTay 15の組成図。
FIG. 3 is an Sr showing the scope of claim 1 of the present invention.2-x
CaxNaNb5-yTayO 15Composition diagram.

【図4】 MgCO3添加量と添加物なしのSr1.8Ca
0.2NaNb515(組成比x=0.2,y=0)を従来手法で作
製した試料の圧電定数に対する割合との関係を示す特性
図。
FIG. 4 MgCO 3 addition amount and Sr 1.8 Ca without additive
FIG. 6 is a characteristic diagram showing the relationship between 0.2 NaNb 5 O 15 (composition ratio x = 0.2, y = 0) and the ratio of the sample manufactured by the conventional method to the piezoelectric constant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林原 光男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4G030 AA02 AA03 AA07 AA09 AA13 AA20 AA25 AA43 BA10 CA05 GA08 GA11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuo Hayashibara             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 4G030 AA02 AA03 AA07 AA09 AA13                       AA20 AA25 AA43 BA10 CA05                       GA08 GA11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Sr2NaNb515を主体とする焼結体よ
りなり、該焼結体の結晶の平均粒径が10μm以下である
ことを特徴とする圧電磁器。
1. A piezoelectric ceramic comprising a sintered body containing Sr 2 NaNb 5 O 15 as a main component, and the average grain size of crystals of the sintered body is 10 μm or less.
【請求項2】Sr2-xCaxNaNb515(0.01≦x≦0.
5),Sr2NaNb5-yTay15(0.01≦y≦2.0)及び
Sr2-xCaxNaNb5-yTay15(0.01≦x≦0.5、0.
01≦y≦2.0)いずれかの組成物にTi及びBaの1種以
上をTiO2及びBaCO3に換算して重量で,0.1〜3.0
%含有する焼結体よりなることを特徴とする圧電磁器。
2. Sr 2-x Ca x NaNb 5 O 15 (0.01 ≦ x ≦ 0.
5), Sr 2 NaNb 5-y Ta y O 15 (0.01 ≦ y ≦ 2.0) and Sr 2-x Ca x NaNb 5-y Ta y O 15 (0.01 ≦ x ≦ 0.5, 0.
01≤y≤2.0) 0.1 to 3.0 by weight of one or more of Ti and Ba in terms of TiO 2 and BaCO 3 in any composition.
A piezoelectric ceramic characterized by comprising a sintered body containing 100%.
【請求項3】Sr2-xCaxNaNb5-yTay15(0≦x
≦0.5、0≦y≦2.0)の組成物にTi及びBaの1種以上
をTiO2及びBaCO3に換算して重量で,0.1〜3.0%
含有する焼結体よりなり、前記焼結体の結晶の平均粒径
が10μm以下であることを特徴とする圧電磁器。
3. Sr 2-x Ca x NaNb 5-y Ta y O 15 (0 ≦ x
≦ 0.5, 0 ≦ y ≦ 2.0) and 0.1 to 3.0% by weight in terms of TiO 2 and BaCO 3 of at least one of Ti and Ba.
A piezoelectric ceramic comprising the sintered body contained therein, wherein the average grain size of the crystal of the sintered body is 10 μm or less.
【請求項4】請求項1〜3のいずれかにおいて、Mg,
Mn,Li,La及びBiの1種又は2種以上を各々M
gCO3,MnCO,Li2CO3,La23及びBi2
3に換算して重量で,0.01〜3.0%含有することを特徴
とする圧電磁器。
4. The method according to claim 1, wherein Mg,
One or more of Mn, Li, La and Bi are each M
gCO 3 , MnCO 3 , Li 2 CO 3 , La 2 O 3 and Bi 2
A piezoelectric ceramic containing 0.01 to 3.0% by weight in terms of O 3 .
【請求項5】Sr2NaNb515を主体とする組成物の
仮焼結後の粉末からなり、該粉末の粒径が1μm以下で
あることを特徴とする圧電磁器組成物。
5. A piezoelectric ceramic composition comprising a powder obtained by pre-sintering a composition mainly composed of Sr 2 NaNb 5 O 15 and having a particle size of 1 μm or less.
【請求項6】Sr2-xCaxNaNb515(0.01≦x≦0.
5),Sr2NaNb5-yTay15(0.01≦y≦2.0)及び
Sr2-xCaxNaNb5-yTay15(0.01≦x≦0.5、0.
01≦y≦2.0)いずれかの組成物にTi及びBaの1種以
上をTiO2及びBaCO3に換算して重量で,0.1〜3.0
%含有し、仮焼結後の粉末からなることを特徴とする圧
電磁器組成物。
6. Sr 2-x Ca x NaNb 5 O 15 (0.01 ≦ x ≦ 0.
5), Sr 2 NaNb 5-y Ta y O 15 (0.01 ≦ y ≦ 2.0) and Sr 2-x Ca x NaNb 5-y Ta y O 15 (0.01 ≦ x ≦ 0.5, 0.
01≤y≤2.0) 0.1 to 3.0 by weight of one or more of Ti and Ba in terms of TiO 2 and BaCO 3 in any composition.
%, And is composed of powder after provisional sintering, which is a piezoelectric ceramic composition.
【請求項7】Sr2-xCaxNaNb5-yTay15(0≦x
≦0.5、0≦y≦2.0)の組成物にTi及びBaの1種以上
をTiO2及びBaCO3に換算して重量で,0.1〜3.0%
含有し、仮焼結後の粉末からなり、該粉末の粒径が1μ
m以下であることを特徴とする圧電磁器組成物。
7. Sr 2-x Ca x NaNb 5-y Ta y O 15 (0 ≦ x
≦ 0.5, 0 ≦ y ≦ 2.0) and 0.1 to 3.0% by weight in terms of TiO 2 and BaCO 3 of at least one of Ti and Ba.
Containing and consisting of powder after calcination, the particle size of the powder is 1μ
A piezoelectric ceramic composition characterized in that it is m or less.
【請求項8】請求項5〜7のいずれかにおいて、Mg,
Mn,Li,La及びBiの1種又は2種以上を各々M
gCO3,MnCO,Li2CO3,La23及びBi2
3に換算して重量で,0.01〜3.0%含有することを特徴
とする圧電磁器組成物。
8. The method according to claim 5, wherein Mg,
One or more of Mn, Li, La and Bi are each M
gCO 3 , MnCO 3 , Li 2 CO 3 , La 2 O 3 and Bi 2
A piezoelectric ceramic composition containing 0.01 to 3.0% by weight in terms of O 3 .
JP2001204931A 2001-07-05 2001-07-05 Piezoelectric ceramic and composition therefor Pending JP2003020275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204931A JP2003020275A (en) 2001-07-05 2001-07-05 Piezoelectric ceramic and composition therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204931A JP2003020275A (en) 2001-07-05 2001-07-05 Piezoelectric ceramic and composition therefor

Publications (1)

Publication Number Publication Date
JP2003020275A true JP2003020275A (en) 2003-01-24

Family

ID=19041325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204931A Pending JP2003020275A (en) 2001-07-05 2001-07-05 Piezoelectric ceramic and composition therefor

Country Status (1)

Country Link
JP (1) JP2003020275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189487A (en) * 2007-02-01 2008-08-21 Murata Mfg Co Ltd Dielectric ceramic composition, and multilayer ceramic capacitor
WO2008102608A1 (en) * 2007-02-22 2008-08-28 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and multilayer ceramic capacitor
CN105541413A (en) * 2016-02-03 2016-05-04 陕西师范大学 High-d33 lead-free strontium calcium niobate sodium tungsten bronze piezo-ferroelectric ceramic material and preparation method thereof
CN112341160A (en) * 2020-11-06 2021-02-09 南京工业大学 Broadband high-Q low-temperature coefficient barium-magnesium-calcium-niobium-tantalum composite ceramic and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189487A (en) * 2007-02-01 2008-08-21 Murata Mfg Co Ltd Dielectric ceramic composition, and multilayer ceramic capacitor
WO2008102608A1 (en) * 2007-02-22 2008-08-28 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and multilayer ceramic capacitor
US7727921B2 (en) 2007-02-22 2010-06-01 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and monolithic ceramic capacitor
CN105541413A (en) * 2016-02-03 2016-05-04 陕西师范大学 High-d33 lead-free strontium calcium niobate sodium tungsten bronze piezo-ferroelectric ceramic material and preparation method thereof
CN112341160A (en) * 2020-11-06 2021-02-09 南京工业大学 Broadband high-Q low-temperature coefficient barium-magnesium-calcium-niobium-tantalum composite ceramic and preparation method thereof
CN112341160B (en) * 2020-11-06 2022-08-30 南京工业大学 Broadband high-Q low-temperature coefficient barium-magnesium-calcium-niobium-tantalum composite ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3482394B2 (en) Piezoelectric ceramic composition
US20040127344A1 (en) Lead-free piezoelectric ceramic composition wherein Cu is contained in (KxA1-x)y(Nb1-zBz)O3 perovskite compound, and process of preparing the same
JP3244027B2 (en) Piezoelectric ceramic composition
JP2001019542A (en) Piezoelectric ceramic and piezoelectric device by using the same
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
JP2001240471A (en) Piezoelectric ceramic composition and piezoelectric resonator
JP2009221096A (en) Piezoelectric/electrostrictive ceramic composition
CN1219297C (en) Piezoelectric ceramics composition and piezoelectric device using same
US8231803B2 (en) Piezoelectric ceramic and piezoelectric ceramic composition
CN1064941C (en) Piezoelectric ceramics compositions
JP2004155601A (en) Piezoelectric ceramic composition
JP2942535B1 (en) Piezoelectric porcelain composition
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
JP3468461B2 (en) Piezoelectric ceramic composition
EP4322233A1 (en) Lead-free piezoelectric porcelain composition and piezoelectric element
JP2003020275A (en) Piezoelectric ceramic and composition therefor
JPH11240759A (en) Piezoelectric porcelain for actuator
JPH07267733A (en) Piezoelectric porcelain composition
JP2866986B2 (en) Piezoelectric ceramic composition
CN1286475A (en) Piezoelectric ceramics composition and piezoelectric device using same
JPH07315926A (en) Piezoelectric porcelain composition for ceramic filter device excellent in moisture resistance
JP4370135B2 (en) Piezoelectric ceramic composition
JP2005194150A (en) Piezoelectric ceramics
JPH11112050A (en) Piezoelectric ceramic
JP2000281443A (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320