JPH06116010A - Production of bismuth laminar compound - Google Patents

Production of bismuth laminar compound

Info

Publication number
JPH06116010A
JPH06116010A JP4259957A JP25995792A JPH06116010A JP H06116010 A JPH06116010 A JP H06116010A JP 4259957 A JP4259957 A JP 4259957A JP 25995792 A JP25995792 A JP 25995792A JP H06116010 A JPH06116010 A JP H06116010A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
bismuth
temporary
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4259957A
Other languages
Japanese (ja)
Other versions
JP3080277B2 (en
Inventor
Kazuhide Kaneko
和秀 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04259957A priority Critical patent/JP3080277B2/en
Publication of JPH06116010A publication Critical patent/JPH06116010A/en
Application granted granted Critical
Publication of JP3080277B2 publication Critical patent/JP3080277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enhance the orientation property of easily polarizable axes of a bismuth laminar compd. by a simpler method than hot pressing. CONSTITUTION:A compact formed from powdery starting materials mixed in such a compsn. ratio as to give the objective bismuth laminar compd. is preliminarily sintered under uniaxial pressurization and then subjected to normal sintering under uniaxial pressurization from a direction perpendicular to the direction of this pressurization. Since the grains of the compact are made linear and orient even in a one-dimensional direction, the orientation property of the easily polarizable axes 10 is further enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧力センサ、高周波フィ
ルタなどとして利用可能な、圧電性を有するビスマス層
状化合物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bismuth layered compound having piezoelectricity, which can be used as a pressure sensor, a high frequency filter and the like.

【0002】[0002]

【従来の技術】圧電性を有するセラミックスとしては、
チタン酸バリウム(BaTiO3 )、チタン酸鉛(Pb
TiO3 )、チタン酸ジルコン酸鉛固溶体(PZT)、
ビスマス層状化合物(SrBi4 Ti4 15)などが知
られている。例えばPZTは特に高い感度を有するた
め、圧電アクチュエータとして利用されている。またビ
スマス層状化合物は、感度はPZTほど高くないが強度
が大きく、キュリー温度が500〜800℃と高く広い
温度範囲で使用できるため、圧力センサとしての利用が
期待されている。
2. Description of the Related Art As ceramics having piezoelectricity,
Barium titanate (BaTiO 3), lead titanate (Pb
TiO 3 ), lead zirconate titanate solid solution (PZT),
Bismuth layered compounds (SrBi 4 Ti 4 O 15 ) and the like are known. For example, PZT is used as a piezoelectric actuator because it has a particularly high sensitivity. Further, the bismuth layered compound is not as high in sensitivity as PZT, but has a high strength and a high Curie temperature of 500 to 800 ° C. and can be used in a wide temperature range. Therefore, it is expected to be used as a pressure sensor.

【0003】ビスマス層状化合物からなる圧力センサな
どは、酸化ビスマス(Bi2 3 )、酸化チタン(Ti
2 )、炭酸ストロンチウム(SrCO3 )などの原料
粉末を所定比率で混合して粉末原料を調製し、この粉末
原料から所定形状の成形体を形成した後焼結して焼結体
とし、それを分極処理して製造されている。ところでビ
スマス層状化合物は、高キュリー温度で高温特性に優れ
た圧電素子であるが、結晶異方性が大きいのに結晶がラ
ンダムに配向した状態で焼結されるため、圧電性の感度
が小さいという欠点がある。そこで、特開昭52−86
198号公報には、ホットプレスなどを用い、焼結時に
一方向に圧力を加えることにより、板状の結晶の結晶軸
を一方向に揃え、以て感度を向上させる製造方法が開示
されている。この製造方法によれば、ビスマス層状化合
物の板状結晶がプレス方向に直角な方向に配向した状態
で焼結され、分極容易軸がプレス方向に直角な方向に揃
うため、圧電性の感度が向上する。
A pressure sensor made of a bismuth layered compound includes bismuth oxide (Bi 2 O 3 ) and titanium oxide (Ti).
O 2 ), raw material powders such as strontium carbonate (SrCO 3 ) are mixed at a predetermined ratio to prepare a powder raw material, and a compact having a predetermined shape is formed from the powder raw material and then sintered to obtain a sintered body. Is manufactured by polarization processing. By the way, a bismuth layer compound is a piezoelectric element excellent in high-temperature characteristics at a high Curie temperature, but has a large crystal anisotropy, but since the crystals are sintered in a randomly oriented state, the piezoelectric sensitivity is low. There are drawbacks. Therefore, JP-A-52-86
Japanese Unexamined Patent Publication No. 198 discloses a manufacturing method in which the crystal axes of plate-like crystals are aligned in one direction by applying pressure in one direction during sintering using a hot press or the like, thereby improving the sensitivity. . According to this manufacturing method, the plate crystals of the bismuth layered compound are sintered in a state of being oriented in the direction perpendicular to the pressing direction, and the axes of easy polarization are aligned in the direction perpendicular to the pressing direction, improving the piezoelectric sensitivity. To do.

【0004】[0004]

【発明が解決しようとする課題】ところが上記公報に開
示されたホットプレス法では、装置自体が高価であるば
かりでなく、一度にプレス処理できる焼結体が通常は1
個であり、生産性が低いため製造コストも高いものにな
っていた。本発明はこのような事情に鑑みてなされたも
のであり、上記ホットプレス法より簡単な方法で、ビス
マス層状化合物の分極容易軸の配向性を高めることを目
的とする。
However, in the hot pressing method disclosed in the above publication, not only the apparatus itself is expensive, but a sintered body that can be pressed at one time is usually 1
Since it is an individual piece and the productivity is low, the manufacturing cost is also high. The present invention has been made in view of such circumstances, and an object thereof is to enhance the orientation of the easy axis of polarization of the bismuth layered compound by a method simpler than the above hot pressing method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する第1
発明のビスマス層状化合物の製造方法は、ビスマス層状
化合物となる組成比で複数の原料を混合して粉末原料と
する混合工程と、粉末原料から成形体を形成する成形工
程と、成形体を一軸加圧しながら仮焼結して仮焼結体と
する仮焼結工程と、仮焼結体を仮焼結工程の加圧方向と
直角方向に一軸加圧しながら焼結する本焼結工程と、か
らなることを特徴とする。
[Means for Solving the Problems] First to solve the above problems
The method for producing a bismuth layered compound of the invention comprises a mixing step of mixing a plurality of raw materials at a composition ratio to form a bismuth layered compound into a powder raw material, a molding step of forming a molded body from the powder raw material, and a uniaxial addition of the molded body. From the temporary sintering step of temporarily sintering while pressing to form a temporary sintered body, and the main sintering step of sintering the temporary sintered body while uniaxially pressing in a direction perpendicular to the pressing direction of the temporary sintering step. It is characterized by

【0006】混合工程及び成形工程は、従来の製造方法
と同様に行うことができる。またビスマス層状化合物と
しては、一般式(Mx Biy )Ti4 15で表される一
般的なものを用いることができる。ここでMは1〜5価
の金属元素であり、Sr,Be,Mg,Ca,Ba,R
aなどのアルカリ土類金属、Li,Na,K,Rb,C
sなどのアルカリ金属あるいはPbなどから種々選択で
きる。また、性能を損なわない範囲でMn,Ni,Cr
などの金属元素を共存させてもよい。
The mixing step and the molding step can be performed in the same manner as the conventional manufacturing method. As the bismuth layer compound, a general compound represented by the general formula (Mx Biy) Ti 4 O 15 can be used. Here, M is a metal element having a valence of 1 to 5, and Sr, Be, Mg, Ca, Ba, R
Alkaline earth metal such as a, Li, Na, K, Rb, C
Various kinds can be selected from alkali metals such as s and Pb. In addition, Mn, Ni, Cr within the range that does not impair the performance
Metal elements such as

【0007】仮焼結工程は900〜1050℃の温度で
行うのが望ましい。この温度が900℃より低いと仮焼
結工程におけるビスマス層状化合物の生成が不十分とな
り、所望の効果を得にくい。一方1050℃より高くな
ると焼結が進み過ぎて、本焼結工程時の結晶の配向が不
十分となり所望の効果が得にくい。また、焼結が不十分
となり、本焼結体の強度などに不具合が生じる場合があ
る。
It is desirable that the pre-sintering step be performed at a temperature of 900 to 1050 ° C. If this temperature is lower than 900 ° C., the formation of the bismuth layer compound in the pre-sintering step becomes insufficient, and it is difficult to obtain the desired effect. On the other hand, if the temperature is higher than 1050 ° C., the sintering proceeds too much, and the orientation of the crystals in the main sintering step becomes insufficient, so that it is difficult to obtain the desired effect. In addition, sintering may be insufficient, and problems may occur in the strength of the sintered body.

【0008】[0008]

【作用】ビスマス層状化合物は、その結晶構造から極め
て異方性の強い材料であり、分極容易方向が特定の方向
に限られる。また結晶の形状も板状であり、形状的にも
一方向に配向し易い。しかし通常の製造方法による成形
・焼結では、分極容易軸がランダムとなってしまい、圧
電特性の向上が望めない。
The bismuth layered compound is a material having extremely strong anisotropy due to its crystal structure, and the easy polarization direction is limited to a specific direction. Moreover, the crystal is also plate-shaped, and is easily oriented in one direction. However, in the molding / sintering by the usual manufacturing method, the axis of easy polarization becomes random, and improvement in piezoelectric characteristics cannot be expected.

【0009】そこで本発明の製造方法では、図1に示す
ように、P1 方向から成形体を一軸加圧しながら仮焼結
する。これにより、ビスマス層状化合物の板状結晶は、
偏平面が加圧方向に対して直角方向に配向しながら成長
する。得られた仮焼結体では、図2に示すように結晶が
層状に重なり合い、一つの層内では分極容易軸10は同
一平面内にあるものの、二次元的にはランダムな配向と
なっている。
Therefore, in the manufacturing method of the present invention, as shown in FIG. 1, the compact is pre-sintered while being uniaxially pressed from the P 1 direction. Thereby, the plate crystal of the bismuth layered compound is
The flat surface grows while being oriented in a direction perpendicular to the pressing direction. In the obtained pre-sintered body, the crystals are layered as shown in FIG. 2, and the easy axis of polarization 10 is in the same plane in one layer, but has a two-dimensional random orientation. .

【0010】さらに本発明では、仮焼結工程の加圧方向
1 に対して直角方向P2 から仮焼結体を加圧しなが
ら、本焼結工程を行う。これにより図2に示すように結
晶は針状結晶となり、一次元的にも配向するようにな
る。したがって本焼結体の結晶の分極容易軸の配向性が
極めて向上し、圧電特性が向上する。
Further, in the present invention, the main sintering step is performed while pressing the temporary sintered body from the direction P 2 perpendicular to the pressing direction P 1 of the temporary sintering step. As a result, the crystal becomes a needle-like crystal as shown in FIG. 2 and is also oriented one-dimensionally. Therefore, the orientation of the easy polarization axis of the crystal of the present sintered body is significantly improved, and the piezoelectric characteristics are improved.

【0011】[0011]

〔実施例〕〔Example〕

(1)混合工程 出発原料として、酸化ストロンチウム(SrCO3 ),
酸化ビスマス(Bi23 ),酸化チタン(TiO2
及び酸化マンガン(MnO)を用い、それぞれの原料粉
末を、組成比がSrBi4 Ti4 15となるように、か
つMnOをMn重量換算で0.1重量%含むように秤量
して、エタノールとともにポットミル中で48時間湿式
混合した。
(1) Mixing process As a starting material, strontium oxide (SrCO 3 ),
Bismuth oxide (Bi 2 O 3 ), titanium oxide (TiO 2 )
And manganese oxide (MnO) were used to weigh the respective raw material powders so that the composition ratio was SrBi 4 Ti 4 O 15 and MnO was contained in an amount of 0.1 wt% in terms of Mn weight. Wet mix in a pot mill for 48 hours.

【0012】混合粉末を脱エタノール乾燥し、800℃
で2時間仮焼した。この仮焼粉末を再びポットミル中で
48時間湿式混合し、脱エタノール乾燥して粉末原料と
した。 (2)成形工程 この粉末原料にポリビニルアルコール(PVA)を約3
重量%加えて造粒し、それを10mm角の立方体状キャ
ビティをもつ金型中に供給して、1t/cm2の圧力で
成形した。 (3)仮焼結工程 得られた成形体を昇降温速度200℃/hで加熱し、9
00℃〜1050℃で2時間保持して仮焼結した。また
保持温度に達した時点で10MPaの圧力を一軸方向P
1 から成形体に印加し、温度保持中その圧力印加を保持
した。 (4)本焼結工程 得られた仮焼結体1をZrO2 製パッド材の上に置き、
それをアルミナ製容器内に収納しアルミナ製の蓋をして
炉内に配置し、昇降温速度200℃/h、温度保持は1
100〜1300℃で2時間大気中で加熱保持して焼結
した。また保持温度に達した時点でP2 =10MPaの
圧力を、前記P1 と直角方向P2 から仮焼結体1に印加
し、温度保持中その圧力印加を保持した。 (5)分極工程 得られた本焼結体2を、図3に示すように加圧軸P1
びP2 と平行に厚さ1mmの板状に切り出し、正方形形
状の両表面に銀ペーストを塗布し、焼き付けて銀電極を
形成した。そして200℃に加熱されたシリコンオイル
中で、8kV/mmの電圧を10分間印加してそれぞれ
分極処理を行った。
The mixed powder is dehydrated with ethanol and dried at 800 ° C.
It was calcined for 2 hours. The calcined powder was wet-mixed again in the pot mill for 48 hours, and dried with ethanol to obtain a powder raw material. (2) Molding process Polyvinyl alcohol (PVA) was added to the powder raw material in about 3 parts.
The mixture was added by weight% and granulated, and the granules were fed into a mold having a cubic cavity of 10 mm square and molded at a pressure of 1 t / cm 2 . (3) Temporary Sintering Step The obtained compact was heated at a temperature rising / falling rate of 200 ° C./h, and
Preliminary sintering was performed by holding at 00 ° C to 1050 ° C for 2 hours. When the holding temperature is reached, the pressure of 10 MPa is applied in the uniaxial direction P
It was applied to the molded body from 1 and the pressure application was maintained while maintaining the temperature. (4) Main Sintering Step The obtained temporary sintered body 1 is placed on a ZrO 2 pad material,
It was placed in an alumina container, covered with an alumina lid, and placed in the furnace.
Sintering was performed by heating and holding at 100 to 1300 ° C. for 2 hours in the atmosphere. Further, when the holding temperature was reached, a pressure of P 2 = 10 MPa was applied to the pre-sintered body 1 from the direction P 2 perpendicular to the P 1, and the pressure application was maintained during the temperature holding. (5) Polarization step The obtained main sintered body 2 was cut into a plate shape having a thickness of 1 mm in parallel with the pressure axes P 1 and P 2 as shown in FIG. 3, and silver paste was applied to both surfaces of the square shape. It was applied and baked to form a silver electrode. Then, in silicon oil heated to 200 ° C., a voltage of 8 kV / mm was applied for 10 minutes to perform polarization treatment.

【0013】本焼結体2では分極容易軸10は加圧方向
1 及びP2 と垂直に配向しているので、この切り取ら
れたビスマス層状化合物では分極容易軸10は厚さ方向
に平行に配向していることとなる。 〔比較例1〕実施例と同様に形成された成形体をZrO
2 製パッド材の上に置き、それをアルミナ製容器内に収
納しアルミナ製の蓋をして炉内に配置し、昇降温速度2
00℃/h、温度保持は1100〜1300℃で2時間
大気中で加熱保持して焼結した。仮焼結工程及び焼結中
の加圧は行わなかった。そして焼結体を厚さ1mmとな
るまで研磨し、それについて実施例と同様に分極工程を
行った。 〔比較例2〕比較例1の方法において、保持温度に達し
た時点で10MPaの圧力を成形体に印加し、温度保持
中その圧力印加を保持した。そして得られた焼結体を加
圧方向と平行に厚さ1mmの板状に切り出し、それにつ
いて実施例と同様に分極工程を行った。 (評価)得られたそれぞれの素子について、それぞれ圧
電性の感度を測定した。結果を表1に示す。ここで圧電
性の感度とは、図4に示すように、試料に力Fを加えた
場合に発生する電荷の量をEとしたときに、単位力当た
りの電荷(E/F,単位pC/N)をいう。
In the sintered body 2, since the easy polarization axis 10 is oriented perpendicular to the pressing directions P 1 and P 2 , the easy polarization axis 10 is parallel to the thickness direction in the cut bismuth layer compound. It will be oriented. [Comparative Example 1] A molded body formed in the same manner as in the example was processed with ZrO.
Place it on the pad material made of 2 and store it in an alumina container, cover it with an alumina lid and place it in the furnace.
The temperature was maintained at 00 ° C./h and the temperature was maintained at 1100 to 1300 ° C. for 2 hours in the air while being heated and sintered. No pressure was applied during the pre-sintering step and during sintering. Then, the sintered body was polished to a thickness of 1 mm, and the same was subjected to the polarization step as in the example. [Comparative Example 2] In the method of Comparative Example 1, a pressure of 10 MPa was applied to the molded body when the holding temperature was reached, and the pressure application was maintained while the temperature was maintained. Then, the obtained sintered body was cut out into a plate shape having a thickness of 1 mm in parallel with the pressing direction, and the polarization step was performed on it in the same manner as in the example. (Evaluation) The piezoelectric sensitivity of each of the obtained devices was measured. The results are shown in Table 1. Here, the piezoelectric sensitivity means the charge per unit force (E / F, unit pC / when the amount of charge generated when a force F is applied to the sample is E, as shown in FIG. N).

【0014】[0014]

【表1】 表1より、本発明の製造方法により得られた圧電素子
は、従来の製造方法である比較例で得られたものに比べ
て感度が60〜100%も向上している。これは、仮焼
結時及び本焼結時にそれぞれ異なる方向に圧力を印加し
て焼結したことによる効果であることが明らかである。
[Table 1] From Table 1, the piezoelectric element obtained by the manufacturing method of the present invention has a sensitivity improved by 60 to 100% as compared with the piezoelectric element obtained by the comparative example which is a conventional manufacturing method. It is clear that this is the effect of applying pressure in different directions during the pre-sintering and the main-sintering and sintering.

【0015】[0015]

【発明の効果】すなわち本発明の製造方法によれば、ホ
ットプレス法と同様に分極容易軸が一方向に配向したビ
スマス層状化合物を容易に製造することができる。そし
て2回の焼結工程で一軸加圧するだけでよいので、一度
に多数の成形体を処理することができ、生産性に優れて
いるため、ホットプレス法に比べて生産コストを低減す
ることができる。
According to the manufacturing method of the present invention, it is possible to easily manufacture a bismuth layered compound in which the easy polarization axis is oriented in one direction as in the hot pressing method. Since it is only necessary to uniaxially pressurize in the two sintering steps, a large number of compacts can be processed at one time and the productivity is excellent, so that the production cost can be reduced as compared with the hot pressing method. it can.

【0016】そして本発明により製造されたビスマス層
状化合物は、完全に一方向に分極容易軸が配向している
ので、他の方向からの振動モードを受けず、高精度なフ
ィルタ、高精度な加速度センサなどとして利用すること
ができる。
In the bismuth layered compound produced by the present invention, since the easy axis of polarization is perfectly oriented in one direction, it does not receive a vibration mode from the other direction, and has a high precision filter and a high precision acceleration. It can be used as a sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で得られた仮焼結体の説明図で
ある。
FIG. 1 is an explanatory view of a temporary sintered body obtained in an example of the present invention.

【図2】本発明の実施例で得られた本焼結体の説明図で
ある。
FIG. 2 is an explanatory diagram of a main sintered body obtained in an example of the present invention.

【図3】本発明の実施例における本焼結体からの試験片
の切り出し位置を示す説明図である。
FIG. 3 is an explanatory view showing a cutout position of a test piece from the present sintered body in an example of the present invention.

【図4】力と電荷出力の関係を示し、圧電性の感度の定
義を示す説明図である。
FIG. 4 is an explanatory diagram showing the relationship between force and charge output and showing the definition of piezoelectric sensitivity.

【符号の説明】 1:仮焼結体 2:本焼結体 10:
分極容易軸
[Explanation of Codes] 1: Temporary Sintered Body 2: Main Sintered Body 10:
Polarization easy axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ビスマス層状化合物となる組成比で複数
の原料を混合して粉末原料とする混合工程と、 該粉末原料から成形体を形成する成形工程と、 該成形体を一軸加圧しながら仮焼結して仮焼結体とする
仮焼結工程と、 該仮焼結体を該仮焼結工程の加圧方向と直角方向に一軸
加圧しながら焼結する本焼結工程と、からなることを特
徴とするビスマス層状化合物の製造方法。
1. A mixing step of mixing a plurality of raw materials at a composition ratio of a bismuth layered compound to obtain a powder raw material, a molding step of forming a molded body from the powder raw material, and a tentatively uniaxially pressing the molded body. It comprises a temporary sintering step of sintering into a temporary sintered body, and a main sintering step of sintering the temporary sintered body while uniaxially pressing it in a direction perpendicular to the pressing direction of the temporary sintering step. A method for producing a bismuth layered compound, comprising:
JP04259957A 1992-09-29 1992-09-29 Method for producing bismuth layered compound Expired - Fee Related JP3080277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04259957A JP3080277B2 (en) 1992-09-29 1992-09-29 Method for producing bismuth layered compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04259957A JP3080277B2 (en) 1992-09-29 1992-09-29 Method for producing bismuth layered compound

Publications (2)

Publication Number Publication Date
JPH06116010A true JPH06116010A (en) 1994-04-26
JP3080277B2 JP3080277B2 (en) 2000-08-21

Family

ID=17341274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04259957A Expired - Fee Related JP3080277B2 (en) 1992-09-29 1992-09-29 Method for producing bismuth layered compound

Country Status (1)

Country Link
JP (1) JP3080277B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700303B2 (en) 1999-08-16 2004-03-02 Murata Manufacturing Co. Ltd Piezoelectric element
JP2005332660A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator
JP2006083016A (en) * 2004-09-16 2006-03-30 Science Univ Of Tokyo Method for producing ferroelectric material (synthesis of uniaxially-oriented ferroelectric ceramic by discharge plasma sintering)
JP2010251766A (en) * 2001-11-15 2010-11-04 Fujifilm Dimatix Inc Ink jet printing module with orientation-determined piezoelectric film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700303B2 (en) 1999-08-16 2004-03-02 Murata Manufacturing Co. Ltd Piezoelectric element
JP2010251766A (en) * 2001-11-15 2010-11-04 Fujifilm Dimatix Inc Ink jet printing module with orientation-determined piezoelectric film
JP2005332660A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator
JP2006083016A (en) * 2004-09-16 2006-03-30 Science Univ Of Tokyo Method for producing ferroelectric material (synthesis of uniaxially-oriented ferroelectric ceramic by discharge plasma sintering)

Also Published As

Publication number Publication date
JP3080277B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP2004115293A (en) Piezoelectric ceramic
US20110074516A1 (en) Piezoelectric ceramic composition, piezoelectric ceramic, piezoelectric element, and oscillator
JP2003026473A (en) Method of manufacturing ceramic
CN104844202B (en) A kind of niobium nickel lead titanate piezoelectric ceramics of manganese lead antimonate doping
EP2269965B1 (en) Piezoelectric ceramic and piezoelectric ceramic composition
JP2002308672A (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device
JP2006315909A (en) Piezoelectric ceramic
JP3080277B2 (en) Method for producing bismuth layered compound
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP3020493B1 (en) Piezoelectric ceramics
JP2003261379A (en) Polycrystalline piezoelectric material and method of producing the same
US3640866A (en) Piezoelectric ceramic compositions
JPH06116024A (en) Production of bismuth laminar compound
JP3061224B2 (en) Bismuth layered compound polarization method
US3546120A (en) Piezoelectric ceramic compositions
JP2000143340A (en) Piezoelectric ceramic
JP2871326B2 (en) Method for producing bismuth layered compound sintered body
JP3981221B2 (en) Piezoelectric ceramic
JPH0782022A (en) Ceramic with orientation and its production
JP2001048641A (en) Piezoelectric porcelain composition
JP2002121069A (en) Sintered compact of bismuth layered compound and method of producing the same
JPH0797260A (en) Manufacture of piezoelectric ceramics
JPH06107448A (en) Production of bismuth laminar compound
JP3075447B2 (en) Bismuth layered compound-piezoelectric polymer composite
JP3075448B2 (en) Method for producing bismuth layered compound-piezoelectric polymer composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees