JPH0782022A - Ceramic with orientation and its production - Google Patents
Ceramic with orientation and its productionInfo
- Publication number
- JPH0782022A JPH0782022A JP5223021A JP22302193A JPH0782022A JP H0782022 A JPH0782022 A JP H0782022A JP 5223021 A JP5223021 A JP 5223021A JP 22302193 A JP22302193 A JP 22302193A JP H0782022 A JPH0782022 A JP H0782022A
- Authority
- JP
- Japan
- Prior art keywords
- oriented
- porcelain
- particles
- ceramic
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000919 ceramic Substances 0.000 title abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 24
- 230000010287 polarization Effects 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 238000007716 flux method Methods 0.000 claims abstract description 4
- 229910052573 porcelain Inorganic materials 0.000 claims description 21
- 238000010304 firing Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 8
- 238000006073 displacement reaction Methods 0.000 abstract description 4
- 230000001133 acceleration Effects 0.000 abstract description 2
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 13
- 230000004907 flux Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000007606 doctor blade method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明の圧電性を有する配向性磁
器は、アクチュエータ、超音波振動子、加速度センサ、
フィルタ、焦電センサなどに適用される。BACKGROUND OF THE INVENTION Field of the Invention The oriented porcelain having piezoelectricity of the present invention is an actuator, an ultrasonic transducer, an acceleration sensor,
It is applied to filters and pyroelectric sensors.
【0002】[0002]
【従来技術およびその問題点】従来の固相法で製造した
圧電体磁器は、焼成したままの状態では等方的であり、
そのため電気的な分極処理を行って仮に100%分極で
きたとしても、理論的に単結晶の分極の割合の8割程度
であり、またアクチュエータ等として使用する場合に脱
分極が生じ易く、素材そのものが有している特性を十分
に引き出していない。さらに90度分域の存在は、経時
変化、変位量の大きさ、ヒステリシスの大きさにも大き
な影響を与えていると考えられる。2. Description of the Related Art Piezoelectric ceramics manufactured by the conventional solid-phase method are isotropic in the as-fired state,
Therefore, even if it is possible to perform 100% polarization by performing electrical polarization treatment, theoretically it is about 80% of the polarization rate of a single crystal, and depolarization easily occurs when used as an actuator, etc., and the material itself Has not fully exploited the characteristics of. Further, it is considered that the existence of the 90 degree domain has a great influence on the change over time, the magnitude of the displacement amount, and the magnitude of the hysteresis.
【0003】従来、圧電体磁器の特性を向上させるため
に、焼結時に加圧して粒子配向型圧電セラミックスを製
造する方法が知られているが(特公昭61−1916号
公報)、特殊な装置を必要とし、また量産性に乏しいと
いう問題点がある。また、特開昭61−106454号
公報にはタングステンブロンズ型の結晶構造を有する強
誘電体について開示され、その中に結晶粒子がその長軸
方向を一軸方向に揃えて配向しているセラミックス材料
が示されている。しかしながら、この材料は圧電特性が
劣っている。Conventionally, in order to improve the characteristics of the piezoelectric ceramics, a method of manufacturing a grain-oriented piezoelectric ceramic by applying pressure during sintering has been known (Japanese Patent Publication No. 61-1916), but a special device is used. Are required, and there is a problem that mass productivity is poor. Further, Japanese Patent Application Laid-Open No. 61-106454 discloses a ferroelectric material having a tungsten bronze type crystal structure, in which a ceramic material in which crystal grains are oriented with their major axis directions aligned in a uniaxial direction. It is shown. However, this material has poor piezoelectric properties.
【0004】[0004]
【発明の目的】本発明の目的は、圧電特性に大きな影響
を与える90度分域を制御することによって、すなわち
分極処理を行うことなく焼成後にすでに分極軸方向が揃
った状態にすることによって圧電特性の良好な磁器を得
ることを目的とする。本発明の圧電性を有する配向性磁
器を使用することにより、変位量が大きく、ヒステリシ
スの少ないアクチュエータ、発熱量の少ない超音波振動
子、感度の良好な圧力センサ、焦電センサ等を得ること
を目的とする。An object of the present invention is to control the piezoelectric composition by controlling the 90 degree domain, which has a great influence on the piezoelectric characteristics, that is, by making the polarization axis directions already aligned after firing without polarization treatment. The purpose is to obtain porcelain with good characteristics. By using the oriented porcelain having piezoelectricity of the present invention, it is possible to obtain an actuator having a large displacement amount and a small hysteresis, an ultrasonic transducer having a small heat generation amount, a pressure sensor having a good sensitivity, a pyroelectric sensor, and the like. To aim.
【0005】[0005]
【問題点を解決するための手段】本発明は、ペロブスカ
イト型構造を有する配向性磁器からなり、該配向性磁器
において少なくとも一つ以上の結晶軸の方向が揃い異方
性を有し、焼成後に分極軸方向が揃っていることを特徴
とする圧電性を有する配向性磁器に関する。The present invention comprises an oriented porcelain having a perovskite type structure, in which at least one crystal axis direction in the oriented porcelain has a uniform anisotropy, and after firing The present invention relates to an oriented porcelain having piezoelectricity, which is characterized in that the polarization axis directions are aligned.
【0006】また本発明は、焼成時に酸化物となり、か
つペロブスカイト型構造を有する配向性磁器となるP
b、La、ZrまたはTiから選択される少なくとも2
種の化合物を、フラックス法によりアスペクト比3以上
の異方形状粒子とし、該異方形状粒子を成形、焼成する
ことを特徴とする圧電性を有する配向性磁器の製造方法
に関する。The present invention also provides an oriented porcelain P that becomes an oxide upon firing and has a perovskite structure.
at least 2 selected from b, La, Zr or Ti
The present invention relates to a method for producing an oriented porcelain having a piezoelectric property, which comprises forming anisotropically shaped particles having an aspect ratio of 3 or more by a flux method and molding and firing the anisotropically shaped particles.
【0007】本発明の配向性磁器を製造するために用い
られる異方形状粒子としては単結晶粒子が好ましい。異
方形状粒子はフラックス法により製造することができ
る。成形方法としては、ドクターブレード法、押し出し
法などを採用することができ、これらの方法により異方
形状粒子を配向させることができる。なお、アスペクト
比が3以上の異方形状粒子を使用する場合には、焼成時
に特に加圧する必要はなく、常圧下に異方性を有する配
向性磁器を製造することができる。Single crystal grains are preferred as the anisotropically shaped grains used for producing the oriented porcelain of the present invention. The anisotropically shaped particles can be produced by the flux method. As a molding method, a doctor blade method, an extrusion method, or the like can be adopted, and anisotropic particles can be oriented by these methods. When anisotropically shaped particles having an aspect ratio of 3 or more are used, it is not necessary to pressurize during firing, and an oriented porcelain having anisotropy under normal pressure can be manufactured.
【0008】配向性磁器の基本組成物として、例えばP
bTiO3 、Pb(ZrTi)O3、(PbLa)(Z
rTi)O3 を挙げることができる。さらに、これらの
組成物において各元素を他の元素で置換したり、他の化
合物を添加したりすることにより電気的特性を向上させ
ることができる。例えば、Zr、Tiサイトの一部をM
g、Nb等で、また、Pbサイトの一部をBi等で置換
することができる。さらに、酸化ケイ素、酸化マンガン
等を添加することができる。As a basic composition of oriented porcelain, for example, P
bTiO 3 , Pb (ZrTi) O 3 , (PbLa) (Z
rTi) O 3 can be mentioned. Further, in these compositions, the electrical characteristics can be improved by substituting each element with another element or adding another compound. For example, part of Zr and Ti sites is M
g, Nb, etc., or a part of the Pb site can be replaced with Bi, etc. Furthermore, silicon oxide, manganese oxide, etc. can be added.
【0009】本発明の配向性磁器について(PbLa)
(ZrTi)O3 組成を例にとると、例えば、以下のよ
うな方法により製造することができる。まず、Zr
O2 、TiO2 および必要に応じて添加される微量の添
加物を所望の組成となるような割合で配合する。この配
合物に、さらにNaClなどのフラックスを加えて15
分から2時間混合する。この混合物をるつぼに入れ、1
150〜1300℃で1時間から15時間程度焼成す
る。冷却後、軽く粉砕し、沸騰水にて洗浄してフラック
スを除去し、ろ過後乾燥し、柱状のZrTiO4 化合物
を合成する。このようにして得られた柱状ZrTiO4
粒子とPbOおよびLa 2 O3 、さらにフラックスとし
てNa2 SO4 などを混合し、700℃〜1100℃で
1時間〜20時間焼成すると柱状形状の(PbLa)
(ZrTi)O4 粒子が得られる。この柱状粒子にバイ
ンダー、可塑剤、および溶剤などを加え、ドクターブレ
ード法などにより、成形体を得る。この場合、粒子が柱
状形状となっているので、成形の際、各粒子はランダム
な方向になるのではなく、長さ方向に配向する。このグ
リーンシートそのもの、あるいは、このグリーンシート
を複数枚重ねた後、焼成する。焼成後、結晶軸に対して
所望の面に電極を形成する。本発明で得られる配向性磁
器は、焼成後にすでに分極軸方向が揃っており、高電界
を印加して用いるアクチュエータの場合には特に分極処
理を行う必要はないが、超音波振動子やセンサー等に用
い、圧電特性を向上させたい場合には分極処理を施す。Regarding the oriented porcelain of the present invention (PbLa)
(ZrTi) O3Taking the composition as an example, for example,
It can be manufactured by such a method. First, Zr
O2, TiO2And a small amount of addition added as needed
The additives are blended in such a ratio that the desired composition is obtained. This arrangement
To the compound, add a flux such as NaCl to 15
Mix from minutes to 2 hours. Place this mixture in a crucible, 1
Baking at 150 to 1300 ° C for about 1 to 15 hours
It After cooling, crush lightly, wash with boiling water and flack
Removed, filtered and dried, columnar ZrTiO 3FourCompound
To synthesize. Columnar ZrTiO 3 thus obtainedFour
Particles and PbO and La 2O3, And as flux
Na2SOFourEtc. are mixed, and at 700 ° C to 1100 ° C
Column-shaped (PbLa) when fired for 1 to 20 hours
(ZrTi) OFourParticles are obtained. This columnar particle is
Binder, plasticizer, solvent, etc.
A molded body is obtained by a cord method or the like. In this case, the particles are pillars
Each particle is random at the time of molding because it has a shape
It is oriented in the longitudinal direction rather than in the normal direction. This
The lean sheet itself or this green sheet
After stacking a plurality of sheets, baking is performed. After firing, with respect to the crystal axis
An electrode is formed on a desired surface. Oriented magnet obtained by the present invention
After firing, the vessel has a uniform polarization axis direction,
In the case of an actuator used by applying
It does not need to be processed, but it is used for ultrasonic transducers and sensors
On the other hand, when it is desired to improve the piezoelectric characteristics, polarization treatment is performed.
【0010】[0010]
【実施例】以下に実施例および比較例を示し、本発明を
更に具体的に説明する。 実施例1 酸化ジルコニウム粉末(ZrO2 )16.22g、酸化
チタン粉末(TiO2)8.78g、およびフラックス
としてNaCl30gを用い、らいかい機で1時間混合
粉砕した。これをるつぼに入れ、1200℃で2時間焼
成した。冷却後に洗浄、ろ過しフラックスを分離した
後、80℃で一晩乾燥し、柱状のZrTiO4 粒子を得
た。このZrTiO4 粒子4.02gにPbO8.28
g、La2O3 0.19gおよびフラックスとしてNa
2 SO4 を20g配合し、らいかい機で1時間混合し
た。この混合物をるつぼに入れ、950℃で10時間焼
成した。冷却後に洗浄、ろ過しフラックスと分離し、乾
燥し、アスペクト比5の柱状の(Pb0.955 La0.03)
(Zr0.545 Ti0.455 )O3 粒子を得た。EXAMPLES The present invention will be described more specifically by showing Examples and Comparative Examples below. Example 1 16.22 g of zirconium oxide powder (ZrO 2 ), 8.78 g of titanium oxide powder (TiO 2 ) and 30 g of NaCl as a flux were mixed and pulverized for 1 hour with a raker machine. This was placed in a crucible and baked at 1200 ° C. for 2 hours. After cooling, washing and filtration were performed to separate the flux, followed by drying at 80 ° C. overnight to obtain columnar ZrTiO 4 particles. PbO8.28 was added to 4.02 g of these ZrTiO 4 particles.
g, La 2 O 3 0.19 g and Na as a flux
20 g of 2 SO 4 was blended and mixed for 1 hour with a raker machine. This mixture was placed in a crucible and baked at 950 ° C. for 10 hours. After cooling, it is washed, filtered, separated from the flux, and dried to form a columnar (Pb 0.955 La 0.03 ) with an aspect ratio of 5.
(Zr 0.545 Ti 0.455 ) O 3 particles were obtained.
【0011】次に、この粒子をグリーンシート成形し
た。成形に先だって、バインダとしてポリビニルブチラ
ール樹脂、可塑剤、溶剤および分散剤を添加して、ボー
ルミル混合しスラリー状物とした。このスラリー状物を
ドクターブレード法を用いて、柱状粒子の長軸が揃うよ
うに成形し、厚み200μmのグリーンシートを作製し
た。このグリンシートを7mm角に切断し、長軸が一定
方向に揃うように、このグリーンシートを30枚重ね、
80℃で熱圧着して積層した。この成形体を空気雰囲気
中で脱脂し、焼成し、圧電体磁器を作製した。この圧電
体磁器を加工後、粒子の長軸に垂直な面にAg電極を形
成した。この試料に電界0〜2kV/mmの三角波(周
波数0.05Hz)を三回印加し、三回目の電界誘起歪
み、ヒステリシスを測定したところ、電界誘起歪みが大
きく、ヒステリシスが小さくアクチュエータとして好適
であることがわかった。この結果を表1に示す。なお、
焼成後の試料のX線回折パターン強度は、I(001) /I
(1 00) =2であった。Next, the particles were molded into a green sheet. Prior to molding, a polyvinyl butyral resin as a binder, a plasticizer, a solvent and a dispersant were added and mixed by a ball mill to obtain a slurry. Using a doctor blade method, this slurry-like material was molded so that the major axes of the columnar particles were aligned, and a green sheet having a thickness of 200 μm was produced. Cut this green sheet into 7 mm squares, and stack 30 of these green sheets so that their major axes are aligned in a certain direction.
They were laminated by thermocompression bonding at 80 ° C. This molded body was degreased in an air atmosphere and fired to produce a piezoelectric ceramic. After processing this piezoelectric ceramic, an Ag electrode was formed on the surface perpendicular to the long axis of the particles. A triangular wave having an electric field of 0 to 2 kV / mm (frequency of 0.05 Hz) was applied to this sample three times, and the electric field induced strain and hysteresis were measured the third time. The electric field induced strain was large and the hysteresis was small, which is suitable as an actuator. I understood it. The results are shown in Table 1. In addition,
The intensity of the X-ray diffraction pattern of the sample after firing was I (001) / I
(100 ) = 2.
【0012】実施例2 フラックスとしてNaCl−Na2 SO4 混合フラック
スを用いた他は実施例1と同様に試料を作製した。この
試料の電界誘起歪み、ヒステリシスを実施例1と同様な
方法により測定した。この測定結果を表1に示す。Example 2 A sample was prepared in the same manner as in Example 1 except that a NaCl-Na 2 SO 4 mixed flux was used as the flux. The electric field-induced strain and hysteresis of this sample were measured by the same methods as in Example 1. The results of this measurement are shown in Table 1.
【0013】比較例1 PbO、La2 O3 、ZrO2 およびTiO2 を実施例
1の磁器組成物と同じ組成になるように配合し、ボール
ミル混合した。溶媒を除去後、900℃で2時間仮焼し
た。この仮焼粉をボールミル粉砕し、溶媒を除去後、バ
インダを加え乾式成形した。この成形体を、空気雰囲気
中で脱脂し、気密性の良好なこう鉢に入れ1270℃で
2時間焼成し、圧電体磁器を作製した。この圧電体磁器
を加工後Ag電極を形成した。この試料の電界誘起歪
み、ヒステリシスを実施例1と同様な方法により測定し
た。この測定結果を表1に示す。Comparative Example 1 PbO, La 2 O 3 , ZrO 2 and TiO 2 were blended so as to have the same composition as the porcelain composition of Example 1 and mixed by a ball mill. After removing the solvent, it was calcined at 900 ° C. for 2 hours. The calcined powder was ball-milled, the solvent was removed, and then a binder was added for dry molding. This molded body was degreased in an air atmosphere, placed in a well-sealed mortar and fired at 1270 ° C. for 2 hours to produce a piezoelectric ceramic. After processing this piezoelectric ceramic, an Ag electrode was formed. The electric field-induced strain and hysteresis of this sample were measured by the same methods as in Example 1. The results of this measurement are shown in Table 1.
【0014】実施例3 PbTiO3 粉末およびSrCO3 粉末をSrO/(P
bTiO3 +SrO)=0.25wt%となるように秤
量し、混合粉砕し、ふた付白金るつぼに入れ、1450
℃で1時間焼成した。得られた粉末を200メッシュ以
下に粉砕した。この出発原料とフラックスとしてPbO
を混合粉砕し、ふた付白金るつぼに入れ、1100℃2
時間加熱し、室温まで徐冷し、結晶を成長させた。フラ
ックスを希硝酸により溶解させ、育成結晶を分離した。
このようにしてアスペクト比4程度の板状の結晶を得
た。次に、この粒子をグリーンシート成形した。成形に
先だって、バインダとしてポリビニルブチラール樹脂、
可塑剤、溶剤、および分散剤またはガラス成分を添加し
て、ボールミル混合しスラリー状物とした。このスラリ
ー状物をドクターブレード法を用いて、板状粒子の単軸
が揃うように成形し、厚み100μmのグリーンシート
を作製した。このグリーンシートを7mm角に切断し、
グリーンシートを4枚重ね、80℃で熱圧着して積層し
た。この成形体を、空気雰囲気中で脱脂、焼成し、圧電
体磁器を作製した。この圧電体磁器を加工後、粒子の短
軸に垂直な方向にAg電極を形成し、170℃、8kV
/mmで分極処理を行った。この試料の焦電係数を測定
し、比誘電率との比から性能評価指数(焦電係数/比誘
電率)を求めた。アスペクト比の大きい粒子を用いて作
製した配向性磁器は従来の方法で作製した試料に比較し
性能評価指数で優れていることがわかる。測定結果を表
2に示す。Example 3 PbTiO 3 powder and SrCO 3 powder were mixed with SrO / (P
bTiO 3 + SrO) = 0.25 wt%, mixed and pulverized, put in a platinum crucible with a lid, and 1450
Calcination was performed for 1 hour. The obtained powder was pulverized to 200 mesh or less. PbO as the starting material and flux
Mixed and crushed, put into a platinum crucible with a lid, and 1100 ℃ 2
It was heated for an hour and gradually cooled to room temperature to grow crystals. The flux was dissolved with dilute nitric acid, and the grown crystal was separated.
Thus, a plate crystal having an aspect ratio of about 4 was obtained. Next, the particles were molded into a green sheet. Prior to molding, polyvinyl butyral resin as a binder,
A plasticizer, a solvent, and a dispersant or a glass component were added and mixed by a ball mill to obtain a slurry. Using a doctor blade method, this slurry-like material was molded so that the uniaxial axes of the plate-like particles were aligned to produce a green sheet having a thickness of 100 μm. Cut this green sheet into 7mm square,
Four green sheets were stacked and thermocompression-bonded at 80 ° C. to stack. This molded body was degreased and fired in an air atmosphere to produce a piezoelectric ceramic. After processing this piezoelectric porcelain, an Ag electrode was formed in the direction perpendicular to the short axis of the particles, 170 ° C., 8 kV
The polarization process was performed at a rate of / mm. The pyroelectric coefficient of this sample was measured, and the performance evaluation index (pyroelectric coefficient / relative permittivity) was determined from the ratio to the relative permittivity. It can be seen that the oriented porcelain produced by using particles with a large aspect ratio is superior in the performance evaluation index to the sample produced by the conventional method. The measurement results are shown in Table 2.
【0015】比較例2 組成を実施例3の磁器組成物と同じになるように配合
し、ボールミル混合した。溶媒を除去後、900℃で2
時間仮焼した。この仮焼粉に実施例3と同量のガラス成
分を加え、ボールミル粉砕し、溶媒を除去後、バインダ
を加え乾式成形した。この成形体を、空気雰囲気中で脱
脂、焼成し、圧電体磁器を作製した。この圧電体磁器を
加工後Ag電極を形成し、170℃、8kV/mmで分
極処理を行った。実施例3と同様にして性能評価指数を
求めた。測定結果を表2に示す。Comparative Example 2 The composition was blended so as to be the same as that of the porcelain composition of Example 3, and mixed by a ball mill. After removing the solvent, 2 at 900 ℃
I calcined for an hour. The same amount of glass component as in Example 3 was added to this calcined powder, the mixture was ball-milled, the solvent was removed, and then a binder was added to carry out dry molding. This molded body was degreased and fired in an air atmosphere to produce a piezoelectric ceramic. After processing this piezoelectric ceramic, an Ag electrode was formed and polarized at 170 ° C. and 8 kV / mm. The performance evaluation index was obtained in the same manner as in Example 3. The measurement results are shown in Table 2.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】[0018]
【発明の効果】本発明の圧電性を有する配向性磁器は、
分極軸方向を揃えることができ、そのため変位量が大き
く、ヒステリシスが小さくアクチュエータ、超音波振動
子に好適である。また、圧電特性の向上により他の圧電
デバイスにも適用できる。さらに、焦電特性においても
高性能化が図れる。The oriented porcelain having piezoelectricity of the present invention is
Since the polarization axis directions can be aligned, the displacement amount is large and the hysteresis is small, which is suitable for actuators and ultrasonic transducers. Further, it can be applied to other piezoelectric devices by improving the piezoelectric characteristics. Further, the pyroelectric characteristics can be improved.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/49 H01B 3/00 H 9059−5G H01L 41/187 9274−4M H01L 41/18 101 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 35/49 H01B 3/00 H 9059-5G H01L 41/187 9274-4M H01L 41/18 101 B
Claims (2)
磁器からなり、該配向性磁器において少なくとも一つ以
上の結晶軸の方向が揃い異方性を有し、焼成後に分極軸
方向が揃っていることを特徴とする圧電性を有する配向
性磁器。1. An oriented porcelain having a perovskite structure, wherein at least one or more crystal axes in the oriented porcelain have a uniform anisotropy and the polarization axis directions are uniform after firing. Oriented porcelain having a characteristic piezoelectricity.
カイト型構造を有する配向性磁器となるPb、La、Z
rまたはTiから選択される少なくとも2種の化合物
を、フラックス法によりアスペクト比3以上の異方形状
粒子とし、該異方形状粒子を成形、焼成することを特徴
とする圧電性を有する配向性磁器の製造方法。2. Pb, La, and Z that become an oxide upon firing and become an oriented porcelain having a perovskite structure.
At least two kinds of compounds selected from r or Ti are made into anisotropically shaped particles having an aspect ratio of 3 or more by a flux method, and the anisotropically shaped particles are molded and fired. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5223021A JPH0782022A (en) | 1993-09-08 | 1993-09-08 | Ceramic with orientation and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5223021A JPH0782022A (en) | 1993-09-08 | 1993-09-08 | Ceramic with orientation and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0782022A true JPH0782022A (en) | 1995-03-28 |
Family
ID=16791598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5223021A Pending JPH0782022A (en) | 1993-09-08 | 1993-09-08 | Ceramic with orientation and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0782022A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004097854A1 (en) * | 2003-04-30 | 2004-11-11 | Asahi Glass Company, Limited | Liquid composition for forming ferroelectric thin film and method for forming ferroelectric thin film |
KR100484612B1 (en) * | 2001-05-08 | 2005-04-22 | 가부시키가이샤 무라타 세이사쿠쇼 | Method of manufacturing ceramics |
US7034411B2 (en) * | 2003-06-12 | 2006-04-25 | Chiu-Yueh Tung | Application of low-temperature and solid-state pyroelectric energy converter |
JP2006225188A (en) * | 2005-02-16 | 2006-08-31 | Toyota Central Res & Dev Lab Inc | Anisotropic-shape powder and its manufacturing method and crystal-oriented ceramic and its manufacturing method |
CN100405627C (en) * | 2002-03-25 | 2008-07-23 | 株式会社村田制作所 | Piezoelectric component and its mfg. method |
-
1993
- 1993-09-08 JP JP5223021A patent/JPH0782022A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484612B1 (en) * | 2001-05-08 | 2005-04-22 | 가부시키가이샤 무라타 세이사쿠쇼 | Method of manufacturing ceramics |
CN100405627C (en) * | 2002-03-25 | 2008-07-23 | 株式会社村田制作所 | Piezoelectric component and its mfg. method |
WO2004097854A1 (en) * | 2003-04-30 | 2004-11-11 | Asahi Glass Company, Limited | Liquid composition for forming ferroelectric thin film and method for forming ferroelectric thin film |
JPWO2004097854A1 (en) * | 2003-04-30 | 2006-07-13 | 旭硝子株式会社 | Liquid composition for forming ferroelectric thin film and method for producing ferroelectric thin film |
US7208324B2 (en) | 2003-04-30 | 2007-04-24 | Asahi Glass Company, Limited | Liquid composition for forming ferroelectric thin film and process for producing ferroelectric thin film |
US7034411B2 (en) * | 2003-06-12 | 2006-04-25 | Chiu-Yueh Tung | Application of low-temperature and solid-state pyroelectric energy converter |
JP2006225188A (en) * | 2005-02-16 | 2006-08-31 | Toyota Central Res & Dev Lab Inc | Anisotropic-shape powder and its manufacturing method and crystal-oriented ceramic and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4529219B2 (en) | Piezoelectric ceramics and manufacturing method thereof | |
JP4450636B2 (en) | Method for manufacturing piezoelectric ceramics | |
CN104844202B (en) | Lead manganous antimonate doped niobium nickel-lead zirconate titanate piezoelectric ceramic | |
JP2004075449A (en) | Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic component | |
JP2008258183A (en) | Piezoelectric ceramic material including production process and application | |
CN103073289B (en) | Piezoceramic material, sintering body, piezoceramic device and preparation method of piezoceramic material | |
US8231803B2 (en) | Piezoelectric ceramic and piezoelectric ceramic composition | |
JP2002308672A (en) | Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device | |
US5788876A (en) | Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator | |
KR101635939B1 (en) | Bismuth-based lead-free piezoelectric ceramics and Actuator using the same | |
JP2004075448A (en) | Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part | |
JP3108724B2 (en) | High durability piezoelectric composite ceramics and its manufacturing method | |
JP2008537927A (en) | High power piezoelectric ceramic composition | |
JPH0782022A (en) | Ceramic with orientation and its production | |
KR101768585B1 (en) | manufacturing method of piezoelectric ceramics in lead-free, and piezoelectric ceramics using of it | |
US3640866A (en) | Piezoelectric ceramic compositions | |
JPH0516380B2 (en) | ||
JPH07267733A (en) | Piezoelectric porcelain composition | |
JP3080277B2 (en) | Method for producing bismuth layered compound | |
JPH11100265A (en) | Piezoelectric ceramic composition | |
JP2001097774A (en) | Piezoelectric porcelain composition | |
Tunkasiri | Properties of PZT ceramics prepared from aqueous solutions | |
JPS6358777B2 (en) | ||
JP2841344B2 (en) | Piezoelectric ceramic composition | |
JPH06116024A (en) | Production of bismuth laminar compound |