JP3108724B2 - High durability piezoelectric composite ceramics and its manufacturing method - Google Patents

High durability piezoelectric composite ceramics and its manufacturing method

Info

Publication number
JP3108724B2
JP3108724B2 JP1500999A JP1500999A JP3108724B2 JP 3108724 B2 JP3108724 B2 JP 3108724B2 JP 1500999 A JP1500999 A JP 1500999A JP 1500999 A JP1500999 A JP 1500999A JP 3108724 B2 JP3108724 B2 JP 3108724B2
Authority
JP
Japan
Prior art keywords
piezoelectric composite
piezoelectric
highly durable
particle size
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1500999A
Other languages
Japanese (ja)
Other versions
JP2000211968A (en
Inventor
健一 田島
晧一 新原
海鎭 黄
睦夫 山東
Original Assignee
ファインセラミックス技術研究組合
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファインセラミックス技術研究組合, 工業技術院長 filed Critical ファインセラミックス技術研究組合
Priority to JP1500999A priority Critical patent/JP3108724B2/en
Publication of JP2000211968A publication Critical patent/JP2000211968A/en
Application granted granted Critical
Publication of JP3108724B2 publication Critical patent/JP3108724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた圧電特性と
高い耐久性を有する圧電セラミックスに関するものであ
り、更に詳しくは、繰り返し疲労特性に特に優れてい
る、圧電アクチュエーターに適する高耐久性圧電セラミ
ックス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic having excellent piezoelectric characteristics and high durability, and more particularly to a highly durable piezoelectric ceramic which is particularly excellent in repeated fatigue characteristics and is suitable for a piezoelectric actuator. And its manufacturing method.

【0002】[0002]

【従来の技術】従来から、圧電アクチュエーターに用い
られる材料としては、PbZrO3 −PbTiO3 を主
成分とした磁器組成物が利用されており、これにNb2
5 やMnO2 等の金属酸化物、Pb(Nb2/3 Mg
1/3 )O3 やPb(Nb2/3 Co1/3 )O3 等の複合ペ
ロブスカイト酸化物を添加したり置換することにより圧
電特性の向上が図られている。例えば、特公昭54−3
6756号公報には、Pb(Nb2/3 Sn1/3 )O3
PbZrO3 −PbTiO3 系の圧電磁器組成物が開示
されている。これらの圧電セラミックスには、圧電特
性、変位特性といった電気的な特性が求められることは
もちろんのこと、特にアクチュエーター用途では使用環
境が、繰り返しの電圧により歪みを発生させることか
ら、電圧誘起による繰り返し疲労特性に特に優れる高耐
久性圧電アクチュエーターが強く求められている。この
ような要求に対して、耐疲労特性を高める手法として、
焼結体の粒径を小さくし、機械的強度を向上するという
見地から、原料として微粉末を用いる手法や、ZrO2
繊維やSiC粒子等の添加物を加える方法、等が提案さ
れている(例えば、Jpn. J. Appl. Phys. Vol. 34 (199
5), p.p. 5276-5278) 。
Heretofore, as a material used for the piezoelectric actuator, ceramic composition mainly composed of PbZrO 3 -PbTiO 3 are utilized, this Nb 2
Metal oxides such as O 5 and MnO 2 , Pb (Nb 2/3 Mg
By adding or replacing a composite perovskite oxide such as 1/3 ) O 3 or Pb (Nb 2/3 Co 1/3 ) O 3, the piezoelectric characteristics are improved. For example, Japanese Patent Publication No. 54-3
No. 6756 discloses that Pb (Nb 2/3 Sn 1/3 ) O 3
PbZrO 3 -PbTiO 3 based piezoelectric ceramic composition is disclosed. These piezoelectric ceramics are required not only to have electrical characteristics such as piezoelectric characteristics and displacement characteristics, but also to be used in actuator applications. There is a strong demand for a highly durable piezoelectric actuator having particularly excellent characteristics. In response to such demands, as a method of improving fatigue resistance characteristics,
From the viewpoint of reducing the particle size of the sintered body and improving the mechanical strength, a method using fine powder as a raw material, ZrO 2
Methods of adding additives such as fibers and SiC particles have been proposed (eg, Jpn. J. Appl. Phys. Vol. 34 (199)
5), pp 5276-5278).

【0003】しかしながら、単に焼結体の粒径を小さく
する手法では、誘電率や電気機械結合係数といった圧電
セラミックスに要求される基本的な特性が劣化する問題
があった。そして、上記手法では、何より、繰り返し疲
労特性の改善が小さかった。また、ZrO2 繊維やSi
C粒子等の複合化による強化方法では、機械的強度は向
上するものの、焼結性が低下するために、焼結方法がホ
ットプレスに限定されたり、従来の焼成では、高温で長
時間の焼成が必要となり、PbOの分解等による圧電特
性の劣化が問題となる。また、同時に電気機械結合係数
が大幅に劣化する。更に、上述した粒子の複合化につい
ては、電界誘起による繰り返し変形に伴い、セラミック
ス中に微少なクラック等が生じ、圧電特性が低下すると
ともに、場合によっては、磁器が破壊する等機械的な信
頼性が損なわれるという問題があった。そのため、これ
まで、誘電率、電気機械結合係数の圧電特性と耐久性の
両立は非常に困難であった。
However, the technique of simply reducing the particle size of the sintered body has a problem in that the basic characteristics required for the piezoelectric ceramic such as the dielectric constant and the electromechanical coupling coefficient are deteriorated. And above all, the improvement of the repetitive fatigue characteristics was small. In addition, ZrO 2 fiber or Si
In the strengthening method by compounding C particles and the like, the mechanical strength is improved, but the sinterability is reduced. Therefore, the sintering method is limited to hot pressing. Is required, and degradation of piezoelectric characteristics due to decomposition of PbO becomes a problem. At the same time, the electromechanical coupling coefficient is significantly deteriorated. Furthermore, with regard to the above-mentioned compounding of the particles, small cracks and the like are generated in the ceramics due to the repetitive deformation induced by the electric field, and the piezoelectric characteristics are reduced, and in some cases, the mechanical reliability such as the porcelain is destroyed. There was a problem that was damaged. For this reason, it has been extremely difficult to achieve both the piezoelectric properties of the dielectric constant and the electromechanical coupling coefficient and the durability.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者等は、これらの結果を鑑み、疲労破壊が粒
界を起点に発生することに着目し、鋭意検討を重ねた結
果、電界誘起による繰り返し疲労特性を向上させるため
には、圧電セラミックスの粒界を強化することが特に有
効であり、圧電性を示すペロブスカイト型結晶構造から
なる主相とは異なる特定の成分からなる第2相を適量存
在させることにより、容易に粒界が強化され、特に疲労
に対する耐久性が向上することを突き止め、更に研究を
重ねて、本発明を完成するに至った。即ち、本発明は、
高い圧電特性を維持しつつ、優れた高耐久性を有する圧
電複合セラミックス及びその製造方法を提供することを
目的とする。
Under these circumstances, the present inventors, in view of these results, focused on the fact that fatigue fracture occurs from the grain boundary, and as a result of intensive studies. In order to improve the repetitive fatigue characteristics induced by electric field, it is particularly effective to strengthen the grain boundaries of the piezoelectric ceramics, and the second phase is composed of a specific component different from the main phase composed of a perovskite-type crystal structure exhibiting piezoelectricity. The present inventors have found that the presence of the two phases in an appropriate amount easily strengthens the grain boundaries, and particularly improves the durability against fatigue, and has further studied to complete the present invention. That is, the present invention
An object of the present invention is to provide a piezoelectric composite ceramic having excellent high durability while maintaining high piezoelectric characteristics, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)平均粒径1〜8μmの圧電性を示すペロブスカイ
ト型結晶構造からなる酸化物セラミックスを主相とし
均粒径0.5μm以下のPtの微粒子を0.1〜5.
0vol%の割合で含有する高耐久性圧電複合セラミッ
クスであって、2kV/mmでlkHzの高電圧正弦波
の分極方向への繰り返し印加により、破断又は破壊に至
るまでの時間が100時間以上であることを特徴とする
高耐久性圧電複合セラミックス。 (2)前記破断又は破壊による破断面において、5%以
上が粒内破壊面からなることを特徴とする前記(1)の
高耐久性圧電複合セラミックス。 (3)前記(1)記載の高耐久性圧電複合セラミックス
を製造する方法であって、0.1〜5.0vol%の平
均粒径が0.5μm以下のPtの粉末が添加された平均
粒径1μm以下の鉛系ペロブスカイト構造型圧電セラミ
ックス混合粉末を、造粒、成形し、酸化雰囲気中で80
0〜1300℃の温度に昇温し、0.5〜4時間保持
し、焼結させることを特徴とする高耐久性圧電複合セラ
ミックスの製造方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) an oxide ceramic having a perovskite type crystal structure exhibiting piezoelectricity with an average particle size of 1 to 8 μm as a main phase ;
0.1 to 5 fine particles of flat Hitoshitsubu径0.5μm or less of P t.
A highly durable piezoelectric composite ceramic containing 0 vol%, wherein the time until breakage or destruction is 100 hours or more due to repeated application of a high voltage sine wave of 1 kHz at 2 kV / mm in the polarization direction. Highly durable piezoelectric composite ceramics. (2) The highly durable piezoelectric composite ceramic according to (1), wherein 5% or more of the fracture surface due to the fracture or fracture is composed of an intragranular fracture surface. (3) (1) A method for producing a highly durable piezoelectric composite ceramic according flat <br/> Hitoshitsubu diameter 0.1~5.0Vol% is less P t 0.5 [mu] m powder Is mixed with a lead-based perovskite structure type piezoelectric ceramics mixed powder having an average particle diameter of 1 μm or less, granulated and molded in an oxidizing atmosphere.
A method for producing a highly durable piezoelectric composite ceramic, which comprises raising the temperature to 0 to 1300 ° C., holding for 0.5 to 4 hours, and sintering.

【0006】[0006]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明の圧電セラミックスは、平均粒径0.
5μm以下のPtの微粒子からなる結晶0.1〜5.0
vol%とPbZrO3 −PbTiO3 (PZT)に代
表される圧電粒子である平均粒径1〜8μmのペロブス
カイト型酸化物結晶からなる。このとき、破断面に粒内
破壊が面積比率で5%以上見られることが重要であり、
完全な粒界破壊、あるいは粒内破壊を示す面積比率が5
%より小さい状態では、高耐久性が得られない。ここで
の破断面は、JISR−1601等に示される曲げ試
験、あるいは円板を用いた2軸曲げ試験の即時破壊され
た試料の破断面のことを指す。
Next, the present invention will be described in more detail. The piezoelectric ceramic of the present invention has an average particle size of 0.1.
Crystal consisting of Pt fine particles of 5 μm or less 0.1 to 5.0
It is composed of a perovskite oxide crystal having an average particle size of 1 to 8 μm, which is a piezoelectric particle represented by vol.% and PbZrO 3 —PbTiO 3 (PZT). At this time, it is important that intragranular fracture is seen in the fracture surface in an area ratio of 5% or more.
Area ratio indicating complete intergranular fracture or intragranular fracture is 5
%, High durability cannot be obtained. The fracture surface here refers to a fracture surface of a sample immediately destroyed by a bending test shown in JISR-1601 or a biaxial bending test using a disk.

【0007】本発明の圧電セラミックスを構成する圧電
結晶としては、金属元素としてPb、Zr、Ti、N
b、Sb、及びCrを含有するペロブスカイト型結晶か
らなることが望ましい。これは、このように、金属元素
としてPb、Zr、Ti、Nb、Sb、及びCrを含有
する圧電セラミックスは、電気機械結合係数が高く、優
れた圧電特性を有しているからである。これらのペロブ
スカイト型酸化物結晶としては、具体的には、例えば、
Pb(Zr0.5 Ti0.5 )O3 、Pb0.9 La0. 1 (Z
0.5 Ti0.5 )O3 、Pb0.94Sr0.06(Zr0.53
0.47)O3 、Pb(Mg1/3 Nb2/30.375 Ti
0.375 Zr0.253 が例示される。また、主相の平均粒
径が1〜8μmであることも重要である。主相の平均粒
径が1μmより小さいと圧電特性が低く、また、8μm
よりも大きいと機械的強度が低いため、アクチュエータ
ー用圧電セラミックスとしての特性が悪い。主相の平均
粒径は、望ましくは2〜5μmである。
The piezoelectric crystals constituting the piezoelectric ceramic of the present invention include Pb, Zr, Ti, and N as metal elements.
It is desirable to be made of a perovskite crystal containing b, Sb, and Cr. This is because the piezoelectric ceramics containing Pb, Zr, Ti, Nb, Sb, and Cr as metal elements have a high electromechanical coupling coefficient and have excellent piezoelectric characteristics. As these perovskite-type oxide crystals, specifically, for example,
Pb (Zr 0.5 Ti 0.5) O 3, Pb 0.9 La 0. 1 (Z
r 0.5 Ti 0.5 ) O 3 , Pb 0.94 Sr 0.06 (Zr 0.53 T
i 0.47 ) O 3 , Pb (Mg 1/3 Nb 2/3 ) 0.375 Ti
0.375 Zr 0.25 O 3 is exemplified. It is also important that the average particle size of the main phase is 1 to 8 μm. When the average particle size of the main phase is smaller than 1 μm, the piezoelectric characteristics are low, and
If it is larger than this, the mechanical strength is low, so that the characteristics as a piezoelectric ceramic for an actuator are poor. The average particle size of the main phase is desirably 2 to 5 μm.

【0008】次に、第2相粒子としては、Ptの微粒子
により構成される。更に、セラミックス中には主相及び
第2相以外に、主相と第2相が固溶した相が存在しても
よい。第2相の平均粒径は、0.5μm以下、望ましく
は0.3μm以下、より望ましくは0.1μm以下のナ
ノサイズの粒子であることが重要である。これは、第2
相の粒径が0.5μmよりも大きいと圧電特性を劣化さ
せ、更に、耐久性の向上の効果が小さいためである。こ
の場合の平均粒径とは、SEM、TEM等で観察される
粒子の直径の平均値を指す。 第2相の含有量は0.1
vol%以上5vol%以下である。これは、0.1v
ol%より低いと粒内破壊を生じさせうる粒界強化が起
こらず、5vol%より大きいと圧電物性の劣化が大き
いためである。望ましくは、0.1−1.0vol%、
より好ましくは0.1−0.5vol%が最適である。
第2相はペロブスカイト構造以外の結晶構造、例えば、
コランダム構造、スピネル構造等からなる。
[0008] Next, as the second phase particles, Ru is constituted by fine particles <br/> of Pt. Further, in the ceramics, in addition to the main phase and the second phase, a phase in which the main phase and the second phase are dissolved may exist. It is important that the average particle size of the second phase is nano-sized particles of 0.5 μm or less, preferably 0.3 μm or less, and more preferably 0.1 μm or less. This is the second
If the particle size of the phase is larger than 0.5 μm, the piezoelectric characteristics are deteriorated, and the effect of improving the durability is small. The average particle size in this case refers to the average value of the diameter of the particles observed by SEM, TEM, or the like. The content of the second phase is 0.1
It is not less than vol% and not more than 5 vol%. This is 0.1v
If the content is lower than 5% by volume, the grain boundary strengthening that may cause intragranular fracture does not occur. Desirably, 0.1-1.0 vol%,
More preferably, 0.1-0.5 vol% is optimal.
The second phase has a crystal structure other than the perovskite structure, for example,
It has a corundum structure, a spinel structure and the like.

【0009】本発明の圧電セラミックスの製造方法は、
例えば、以下のような方法で作製される。まず、例え
ば、原料としてPbO、ZrO2 、TiO2 、Nb2
5 、Sb25 、Cr23 の各原料粉末を所定量秤量
し、ボールミル等で10〜24時間湿式混合し、混合粉
末を作製する。混合粉末を乾燥した後、800〜130
0℃で1〜3時間仮焼し、ボールミル等で粉砕する。こ
のとき、粉砕後の仮焼粉末の平均粒径が小さいことが焼
結性の上で望ましい。次に、得られた圧電粉末に、平均
粒径0.5μm以下のPtの添加粒子を所定量混合し、
再度ボールミル等で湿式混合、乾燥し、混合粉末を得
る。この場合、平均粒径1μm以下の混合粉末にするこ
とが好ましい。それは1μmより大きい原料を用いた場
合、焼結性が極めて悪くなり、期待する強度が得られな
いためである。このとき添加する方法として、粉末で添
加しても、あるいはPtC14 、AgNO4 等の溶液を
用いて還元させる方法でも良い。添加する粒子の平均粒
径は0.5μm以下であれば良いが、より好ましくは、
0.1μm以下が焼結性、特性の観点から良い。この
際、所望により、同時に有機バインダーを添加し、スプ
レードライヤー等を用いて造粒粉を作製する。造粒粉
は、公知の技術であるプレス成形、CIP成形、射出成
形等を用いて所望の形状の成形体を作製する。もちろ
ん、スプレードライヤー無しに、ドクターブレード法等
によりテープ成形を行っても良い。これらの成形体を大
気中、あるいは酸素雰囲気中で、800℃〜1300℃
に加熱し、0.5〜4時間保持し、焼結させて焼結体を
得る。この場合、これらの条件外では圧電特性に優れた
セラミックスは得られない。このとき、保持温度、保持
時間については、圧電特性を高めるためにできるだけ低
温で短時間焼結させた方が好ましい。また、Pbを含む
圧電粉末を使用した場合は、PbZrO3 等、PbOの
蒸気圧がより高い化合物の配置により、PbOの分解を
抑えた方が良い。
The method for producing a piezoelectric ceramic according to the present invention comprises:
For example, it is produced by the following method. First, for example, PbO, ZrO 2 , TiO 2 , Nb 2 O
5, Sb 2 O 5, each raw material powder of Cr 2 O 3 were weighed prescribed amount, 10 to 24 hours using a ball mill and a wet mixed to prepare a mixed powder. After drying the mixed powder, 800-130
The mixture is calcined at 0 ° C for 1 to 3 hours and pulverized by a ball mill or the like. At this time, it is desirable from the viewpoint of sinterability that the average particle size of the calcined powder after grinding is small. Next, a predetermined amount of Pt-added particles having an average particle size of 0.5 μm or less were mixed with the obtained piezoelectric powder,
The mixture is wet-mixed again with a ball mill and dried to obtain a mixed powder. In this case, it is preferable to use a mixed powder having an average particle size of 1 μm or less. This is because, when a raw material larger than 1 μm is used, the sinterability becomes extremely poor, and the expected strength cannot be obtained. As a method for adding this time, even if added in powder or PtCl 4, it may be AgNO 4 or a method in which the solution is reduced with the. The average particle size of the particles to be added may be 0.5 μm or less, more preferably,
0.1 μm or less is good from the viewpoint of sinterability and characteristics. At this time, if desired, an organic binder is added at the same time, and a granulated powder is prepared using a spray drier or the like. The granulated powder is formed into a desired shape using a known technique such as press molding, CIP molding, or injection molding. Of course, tape forming may be performed by a doctor blade method or the like without using a spray dryer. These compacts are placed at 800 ° C. to 1300 ° C. in the air or in an oxygen atmosphere.
And hold for 0.5 to 4 hours to obtain a sintered body by sintering. In this case, a ceramic having excellent piezoelectric properties cannot be obtained under these conditions. At this time, with respect to the holding temperature and the holding time, it is preferable to perform sintering at a temperature as low as possible for a short time in order to enhance the piezoelectric characteristics. When a Pb-containing piezoelectric powder is used, it is better to suppress the decomposition of PbO by arranging a compound having a higher vapor pressure of PbO, such as PbZrO 3 .

【0010】[0010]

【実施例】以下に実施例を記載するが、 本発明は以下
に示す実施例に限定されない。 実施例 1)試料の作製 原料粉末としてPbO、ZrO2 、TiO2 をPb(Z
0.52Ti0.48)O3 の組成になるように秤量し、Zr
2 ボールを用いたボールミルで湿式混合し、乾燥した
後、1000℃で3時間仮焼し、当該仮焼物を再びボー
ルミルで24時間粉砕し、平均粒径(レーザー分散回折
法にて測定)1μmの粒子径をもつ圧電用原料粉末を得
た。この後、この粉砕物に表1〜3に示す添加物を表1
〜3に示す添加率で添加し、再びボールミルで12時間
粉砕した。造粒粉を予備成形し0.5ton/cm2
圧力で直径23mm、厚さ2.5mmの寸法からなる円
板にプレス成形し、更に2ton/cm2 の圧力でCI
P成形を行った。
The present invention is described below with reference to Examples.
However, the present invention is not limited to the embodiment shown in FIG. Example 1) Preparation of sample PbO, ZrO as raw material powderTwo, TiOTwoTo Pb (Z
r0.52Ti0.48) OThree And weighed so that the composition of
OTwo Wet mixed with a ball mill using a ball and dried
Then, it is calcined at 1000 ° C. for 3 hours, and the calcined material is again boasted.
Pulverized for 24 hours using a laser mill.
The raw material powder for piezoelectrics having a particle diameter of 1 μm is obtained.
Was. Then, the additives shown in Tables 1 to 3 were added to the pulverized material in Table 1.
And added again at the addition rate shown in Table 3, and again 12 hours in a ball mill
Crushed. Preformed granulated powder and 0.5ton / cmTwo of
A circle consisting of 23 mm diameter and 2.5 mm thick under pressure
Press-formed into a plate and 2 ton / cmTwoCI at pressure
P molding was performed.

【0011】これらの成形体を高純度アルミナるつぼ
中、Ptシート上に配置し、PbO雰囲気用にPbZr
3 を適量配置した。焼成条件は、大気中で表1〜3に
示す温度で焼成した。保持時間は2時間、昇温速度は5
℃/分と一定にした。
These compacts are placed on a Pt sheet in a high-purity alumina crucible, and PbZr
An appropriate amount of O 3 was placed. The firing conditions were firing in the air at the temperatures shown in Tables 1 to 3. The holding time is 2 hours and the heating rate is 5
° C / min.

【0012】2)試験方法 得られた試料は、アルキメデス法によるかさ密度測定を
行い、理論密度比から相対密度を算出した。更に、試料
は研磨して厚み1.0mmの円板を形成した。この円板
の両主面にAgペーストを焼き付けることにより電極を
形成し、120℃のシリコンオイル中で2kv/mmの
直流電圧を30分間印加して分極処理した後、圧電特性
及び耐久性を評価した。耐久性は、分極済み試料をシリ
コンオイル中にて25℃に維持しながら、2kV/mi
n、lkHzの交流電圧を印加することにより行った。
各試料ごと、1分、10分、1時間、10時間、50時
間、100時間交流電圧印加を実施し、試験前後におい
て2軸曲げ試験による強度測定を行い、試験前に比べた
強度変化率(電圧印加試験後強度/電圧印加試験前強
度)が20%以下の場合、破断と判定した。
2) Test Method The bulk density of the obtained sample was measured by the Archimedes method, and the relative density was calculated from the theoretical density ratio. Further, the sample was polished to form a disc having a thickness of 1.0 mm. Electrodes are formed by baking Ag paste on both principal surfaces of the disc, and a polarization process is performed by applying a DC voltage of 2 kv / mm in silicon oil at 120 ° C. for 30 minutes, and then evaluating the piezoelectric properties and durability. did. The durability was measured at 2 kV / mi while maintaining the polarized sample at 25 ° C. in silicone oil.
The test was performed by applying an AC voltage of n, 1 kHz.
An AC voltage was applied to each sample for 1 minute, 10 minutes, 1 hour, 10 hours, 50 hours, and 100 hours, and a strength measurement was performed by a biaxial bending test before and after the test. When (strength after voltage application test / strength before voltage application test) was 20% or less, it was determined to be broken.

【0013】圧電特性として、電気結合係数Kpを測定
した。Kpは、インピーダンスアナライザーにて測定し
た共振周波数Fr、反共振周波数Faの値から次の計算
式により求めた。 Kp=(2.53×(Fa−Fr)/Fr)1/2 粒内破壊率は、電圧印加前強度試験の破面をSEM観察
し、2次元の画像から粒内破壊している面積を画像解析
装置にて求めた。また、結晶相をX線回折にて、同定
し、JCPDSカードで33−0784で示される正方
晶ペロプスカイト構造以外の結晶相が見られるかを確認
した。焼結体の平均粒径はSEM写真から、主相は、粒
子数300−400個を用いてその平均をインターセプ
ト法にて算出した。第2相粒子は、10個の粒子の短径
の平均値を算出した。
As a piezoelectric characteristic, an electric coupling coefficient Kp was measured. Kp was determined from the values of the resonance frequency Fr and the antiresonance frequency Fa measured by an impedance analyzer according to the following formula. Kp = (2.53 × (Fa−Fr) / Fr) 1/2 Intra-granular fracture rate is obtained by observing the fracture surface of the strength test before voltage application by SEM, It was determined by an image analyzer. In addition, the crystal phase was identified by X-ray diffraction, and it was confirmed whether a crystal phase other than the tetragonal perovskite structure represented by 33-0784 was observed on a JCPDS card. The average particle size of the sintered body was calculated from the SEM photograph, and the average of the main phase was calculated by an intercept method using 300 to 400 particles. For the second phase particles, the average value of the minor axes of 10 particles was calculated.

【0014】3)結果 これらの結果を表1〜3に併せて示す。尚、表中、Pt
以外及び*は本発明品外を示す。また、結晶相のtは、
正方晶PZT、UKは、正方晶PZT以外の不明結晶相
を示す。
3) Results These results are shown in Tables 1 to 3. In the table, Pt
Other than * and * indicate outside the product of the present invention. The t of the crystal phase is
Tetragonal PZT and UK indicate unknown crystal phases other than tetragonal PZT.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表1〜3によれば、Al23 、MgO、
ZrO2 等の添加物の無いNo.1〜2においては、電
気機械結合係数は高いが、耐久試験後わずか1分で破断
した。一方、Al23 、MgO、ZrO2 、AgO、
Ptを0.1〜5.0vol%添加し作製された焼結体
は、電気機械結合係数が50%以上のアクチュエーター
用として優れた特性を有し、100時間の耐久試験後に
おいても強度残存率は高かった。これらの焼結体は5%
より大きい粒内破壊率を示し、また、結晶相に正方晶P
ZT以外の第2相が確認された。また、耐久試験後にお
いても圧電特性の大きな劣化は見られなかった。また、
Nb2 5 、MnO2 を添加したNo.12〜13にお
いては、耐久試験後の強度が大きく低下し、また、粒内
破壊率が5%よりも小さく、耐久性が不十分であった。
更に、主相の平均粒径が8μmを越えたNo.14では
機械的強度が低く、第2相の平均粒径が0.5μm以上
あったNo.15及びNo.17〜19では、Kpが低
く、高耐久性化は見られるものの、それぞれアクチュエ
ーター用途としての特性が得られなかった。尚、上記N
o.7は実施例、No.1〜58〜19は比較例
を示す。
According to Tables 1 to 3, Al 2 O 3 , MgO,
No. 3 without additives such as ZrO 2 In Nos. 1 and 2, although the electromechanical coupling coefficient was high, it broke in only 1 minute after the endurance test. On the other hand, Al 2 O 3 , MgO, ZrO 2 , AgO,
A sintered body produced by adding 0.1 to 5.0 vol% of Pt has excellent characteristics for an actuator having an electromechanical coupling coefficient of 50% or more, and has a strength retention ratio even after a 100-hour durability test. Was expensive. These sintered bodies are 5%
It shows a larger intragranular fracture rate and also has a tetragonal P
A second phase other than ZT was identified. Further, even after the durability test, no significant deterioration of the piezoelectric characteristics was observed. Also,
No. 2 to which Nb 2 O 5 and MnO 2 were added. In Nos. 12 to 13, the strength after the durability test was significantly reduced, and the intragranular fracture rate was less than 5%, resulting in insufficient durability.
Further, in the case of No. 3 in which the average particle size of the main phase exceeded 8 μm. In No. 14, the mechanical strength was low and the average particle size of the second phase was 0.5 μm or more. 15 and No. In Nos. 17 to 19, although Kp was low and high durability was observed, characteristics for actuator use could not be obtained. Note that the above N
o. Nos. 6 to 7 are examples and Nos. 1 to 5 and 8 to 19 show comparative examples.

【0019】[0019]

【発明の効果】本発明により、1)高い圧電特性を維持
しつつ、高い耐久性を有する圧電セラミックスを提供す
ることができる、2)圧電セラミックスの粒界を容易に
強化することができる、3)疲労特性を大幅に改良する
ことができる、4)電気的特性の劣化の少ないセラミッ
クスを得ることができる、5)圧電アクチュエーターに
適する高耐久性圧電セラミックスを提供することができ
る、等の格別の作用効果が奏される。
According to the present invention, 1) a piezoelectric ceramic having high durability can be provided while maintaining high piezoelectric characteristics. 2) Grain boundaries of the piezoelectric ceramic can be easily strengthened. ) Fatigue characteristics can be greatly improved, 4) Ceramics with little deterioration of electrical characteristics can be obtained, and 5) Highly durable piezoelectric ceramics suitable for piezoelectric actuators can be provided. The effect is achieved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黄 海鎭 愛知県名古屋市北区名城3丁目1番地 名城住宅3棟108号 (72)発明者 山東 睦夫 愛知県名古屋市緑区鳴子町5丁目41番地 審査官 深草 祐一 (56)参考文献 特開 平10−279350(JP,A) Hae Jin Hwang,et al.「Effect of Seco ndary dispersion o n Mechanical and P iezoelectric Prope rties of PZT−Based Nanocomposites」, 1996 IEEE INTERNATIO NAL SYMPOSIUM ON A PPLICATION OF FERR OELFCTRICS,(1996),第1 巻,第373−375頁 (58)調査した分野(Int.Cl.7,DB名) C04B 35/49 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Huang Haijin 3-1-1, Meijo, Kita-ku, Nagoya-shi, Aichi Prefecture Meiji-jo Housing No.3 Building 108 (72) Inventor Mutsuo Shanto 5-41, Narukocho, Midori-ku, Nagoya-shi, Aichi Prefecture Address Examiner Yuichi Fukakusa (56) References JP-A-10-279350 (JP, A) Hae Jin Hwang, et al. "Effect of Secondary display on Mechanical and Piezoelectric Properties of the PZT-Based Nanocomposites, 1996. Field (Int. Cl. 7 , DB name) C04B 35/49 CA (STN) REGISTRY (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径1〜8μmの圧電性を示すペロ
ブスカイト型結晶構造からなる酸化物セラミックスを主
相とし、平均粒径0.5μm以下のPtの微粒子を0.
1〜5.0vol%の割合で含有する高耐久性圧電複合
セラミックスであって、2kV/mmでlkHzの高電
圧正弦波の分極方向への繰り返し印加により、破断又は
破壊に至るまでの時間が100時間以上であることを特
徴とする高耐久性圧電複合セラミックス。
1. A oxide ceramics containing the perovskite-type crystal structure exhibiting piezoelectricity of the average particle size 1~8μm the main phase, 0 microparticles flat Hitoshitsubu径0.5μm following P t.
A highly durable piezoelectric composite ceramic containing 1 to 5.0 vol% in which the time until breakage or breakage is 100 by repeatedly applying a high voltage sine wave of 1 kHz at 2 kV / mm in the polarization direction. Highly durable piezoelectric composite ceramics for at least a time.
【請求項2】 前記破断又は破壊による破断面におい
て、5%以上が粒内破壊面からなることを特徴とする請
求項1記載の高耐久性圧電複合セラミックス。
2. The highly durable piezoelectric composite ceramic according to claim 1, wherein 5% or more of the fractured surface due to the fracture or fracture is composed of an intragranular fracture surface.
【請求項3】 請求項1記載の高耐久性圧電複合セラミ
ックスを製造する方法であって、0.1〜5.0vol
の平均粒径が0.5μm以下のPtの粉末が添加され
た平均粒径1μm以下の鉛系ペロブスカイト構造型圧電
セラミックス混合粉末を、造粒、成形し、酸化雰囲気中
で800〜1300℃の温度に昇温し、0.5〜4時間
保持し、焼結させることを特徴とする高耐久性圧電複合
セラミックスの製造方法。
3. The method for producing a highly durable piezoelectric composite ceramic according to claim 1, wherein the method comprises 0.1 to 5.0 vol.
% Of an average particle size 1μm or less of the lead-based perovskite structure type piezoelectric ceramic powder mixture Rights Hitoshitsubu diameter powder late following Pt 0.5 [mu] m were added, granulating, molding, in an oxidizing atmosphere 800-1300 A method for producing a highly durable piezoelectric composite ceramic, wherein the temperature is raised to a temperature of 0 ° C., held for 0.5 to 4 hours, and sintered.
JP1500999A 1999-01-22 1999-01-22 High durability piezoelectric composite ceramics and its manufacturing method Expired - Lifetime JP3108724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1500999A JP3108724B2 (en) 1999-01-22 1999-01-22 High durability piezoelectric composite ceramics and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1500999A JP3108724B2 (en) 1999-01-22 1999-01-22 High durability piezoelectric composite ceramics and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000211968A JP2000211968A (en) 2000-08-02
JP3108724B2 true JP3108724B2 (en) 2000-11-13

Family

ID=11876896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1500999A Expired - Lifetime JP3108724B2 (en) 1999-01-22 1999-01-22 High durability piezoelectric composite ceramics and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3108724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843162B1 (en) * 2017-11-30 2018-03-27 위덕대학교 산학협력단 Taping system and Taping method for muscle pain relief

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067965B2 (en) 2002-09-18 2006-06-27 Tdk Corporation Piezoelectric porcelain composition, piezoelectric device, and methods of making thereof
JP4551061B2 (en) * 2003-03-31 2010-09-22 京セラ株式会社 Piezoelectric displacement element and piezoelectric actuator
JP4766827B2 (en) * 2003-06-26 2011-09-07 京セラ株式会社 Method for manufacturing piezoelectric laminate
JP4930753B2 (en) * 2006-01-10 2012-05-16 株式会社村田製作所 Piezoelectric ceramic and piezoelectric parts
JP2007230792A (en) * 2006-02-28 2007-09-13 Tdk Corp Piezoelectric ceramic composition
JP2008050205A (en) * 2006-08-24 2008-03-06 Seiko Epson Corp Method of manufacturing piezoelectric material and piezoelectric element
JP5052175B2 (en) 2007-03-27 2012-10-17 京セラ株式会社 Multilayer piezoelectric actuator and liquid discharge head
JP5178065B2 (en) * 2007-06-27 2013-04-10 京セラ株式会社 Piezoelectric ceramics, piezoelectric actuator and liquid discharge head
DE102009002835A1 (en) * 2009-05-06 2010-11-11 Robert Bosch Gmbh Piezoceramic for a piezo actuator or a piezo actuator module
JP6632450B2 (en) 2016-03-30 2020-01-22 日本碍子株式会社 Piezoelectric element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hae Jin Hwang,et al.「Effect of Secondary dispersion on Mechanical and Piezoelectric Properties of PZT−Based Nanocomposites」,1996 IEEE INTERNATIONAL SYMPOSIUM ON APPLICATION OF FERROELFCTRICS,(1996),第1巻,第373−375頁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843162B1 (en) * 2017-11-30 2018-03-27 위덕대학교 산학협력단 Taping system and Taping method for muscle pain relief

Also Published As

Publication number Publication date
JP2000211968A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
JP3945536B2 (en) Piezoelectric ceramic composition, method for manufacturing the piezoelectric ceramic composition, and piezoelectric ceramic electronic component
JP3874229B2 (en) Piezoelectric ceramics and piezoelectric device using the same
JP5714819B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JPH11228227A (en) Piezoelectric ceramic composition
WO2006117952A1 (en) Piezoelectric porcelain composition and piezoelectric ceramic electronic component
JP3341672B2 (en) Method for manufacturing piezoelectric ceramic element
JP2002173369A (en) Piezoelectric ceramic
JP3108724B2 (en) High durability piezoelectric composite ceramics and its manufacturing method
JP3654408B2 (en) Piezoelectric ceramic composition
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP2001181030A (en) Piezoelectric ceramic composition and piezoelectric ceramic element produced by using the composition
JP4140796B2 (en) Piezoelectric ceramics
JP2002308672A (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device
JP2007055867A (en) Piezoelectric ceramic composition
JP2007055864A (en) Piezoelectric ceramic composition
JP4247936B2 (en) Piezoelectric ceramic composition
JP2003201172A (en) Leadless piezoelectric porcelain composition and method of manufacturing the same
JP4202657B2 (en) Piezoelectric ceramic composition and piezoelectric device
JP3020493B1 (en) Piezoelectric ceramics
JP3032761B1 (en) Piezoelectric ceramics
JP2003095737A (en) Piezoelectric ceramic composition
JP3481832B2 (en) Piezoelectric ceramic
JP3761355B2 (en) Piezoelectric ceramic composition
JP3699599B2 (en) Piezoelectric ceramic
JP5319208B2 (en) Piezoelectric ceramic and piezoelectric element using the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term