JP2007055864A - Piezoelectric ceramic composition - Google Patents

Piezoelectric ceramic composition Download PDF

Info

Publication number
JP2007055864A
JP2007055864A JP2005245197A JP2005245197A JP2007055864A JP 2007055864 A JP2007055864 A JP 2007055864A JP 2005245197 A JP2005245197 A JP 2005245197A JP 2005245197 A JP2005245197 A JP 2005245197A JP 2007055864 A JP2007055864 A JP 2007055864A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric
composition
knbo
phase transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245197A
Other languages
Japanese (ja)
Inventor
Keiji Kusumoto
楠本  慶二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005245197A priority Critical patent/JP2007055864A/en
Publication of JP2007055864A publication Critical patent/JP2007055864A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic lowering its phase transition point from an orthorhombic to a tetragonal system below room temperature, which becomes problematic in commercialization of niobate-based piezoelectric ceramics. <P>SOLUTION: The piezoelectric ceramic mainly comprises a perovskite compound including Na, K, Li, Ca, Nb and Ti as main components and further, the values of (x) and (y) are 0.40≤x≤0.50 and 0.03≤y≤0.11, respectively when defining its composition formula by molar ratio as [(1-x-y)KNbO<SB>3</SB>+xNaNbO<SB>3</SB>+y(LiNbO<SB>3</SB>+CaTiO<SB>3</SB>)]. Thereby, new niobate-based piezoelectric ceramics, piezoelectric elements and piezoelectric members which are lead-free and low environmental load types can be produced and provided by using the above ceramic. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ニオブ酸系の圧電磁器に関するものであり、更に詳しくは、KNbO−NaNbOを主成分とする圧電磁器の相転移温度を室温以下まで降下させることを可能とする新規ニオブ酸系圧電磁器組成物に関するものである。本発明は、圧電磁器及び圧電素子、特に、圧電フィルタ及び圧電アクチュエータに好適に使用することが可能な新規ニオブ酸アルカリ系圧電磁器組成物及びその製品を提供するものである。 The present invention relates to a niobic acid-based piezoelectric ceramic, and more specifically, a novel niobic acid-based system that can lower the phase transition temperature of a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 to room temperature or lower. The present invention relates to a piezoelectric ceramic composition. The present invention provides a novel alkali niobate-based piezoelectric ceramic composition that can be suitably used for piezoelectric ceramics and piezoelectric elements, in particular, piezoelectric filters and piezoelectric actuators, and products thereof.

本発明の圧電磁器は、従来材の室温〜100℃付近に相転移点が存在し、圧電素子の使用温度範囲において圧電特性の著しい変化を生じることで実用化が困難であったニオブ酸系圧電磁器について、その相転移温度を室温以下に降下させて、該ニオブ酸系圧電磁器の実用化を可能にするための新技術・新製品を提供するものである。   The piezoelectric ceramic of the present invention has a phase transition point between room temperature and about 100 ° C. of a conventional material, and a niobic acid type piezoelectric material that has been difficult to put into practical use due to a significant change in piezoelectric characteristics in the operating temperature range of the piezoelectric element. With respect to porcelain, a new technology and a new product are provided for lowering the phase transition temperature to room temperature or lower to enable practical use of the niobic acid-based piezoelectric ceramic.

近年、自然環境に対して有害な酸化鉛を含有せず、比較的良好な圧電性を示すセラミック材料として、ニオブ酸アルカリ系の圧電磁器が注目されている。ニオブ酸アルカリ系の圧電磁器としては、例えば、ニオブ酸リチウムナトリウムを基本組成とする固溶体に副成分として、酸化アルミニウム、酸化鉄を添加した高密度で機械的強度が大きい圧電磁器が提案されている(特許文献1参照)。また、ニオブ酸カリウムとニオブ酸ナトリウムを主成分とした圧電磁器として、これに銅を添加して焼結性を改善した組成物、リチウム及びタンタルを添加することにより温度特性を高くした組成物が提案されている(特許文献2参照)。   In recent years, alkaline niobate-based piezoelectric ceramics have attracted attention as ceramic materials that do not contain lead oxide harmful to the natural environment and exhibit relatively good piezoelectricity. As an alkali niobate-based piezoelectric ceramic, for example, a piezoelectric ceramic having a high density and high mechanical strength is proposed in which aluminum oxide and iron oxide are added as subcomponents to a solid solution having lithium sodium niobate as a basic composition. (See Patent Document 1). In addition, as a piezoelectric ceramic mainly composed of potassium niobate and sodium niobate, a composition in which copper is added to improve the sintering property, and a composition having improved temperature characteristics by adding lithium and tantalum are provided. It has been proposed (see Patent Document 2).

ニオブ酸カリウム(KNbO)とニオブ酸ナトリウム(NaNbO)を主成分とした圧電磁器、例えば、先行文献に開示されているLi(K,Na)(Nb,Ta,Sb)O系セラミックスは、キュリー温度が高く、比較的高い電気機械結合係数を有することから圧電素子としての利用が考えられている(特許文献3参照)。更に、Li(K,Na)(Nb,Ta)O系セラミックスに、Mg、Ca、Sr等の2価の金属、Ti、Zr、Sn等の4価の金属を有する高周波領域での使用に適した圧電磁器が提案されている(特許文献4)。 Piezoelectric ceramics mainly composed of potassium niobate (KNbO 3 ) and sodium niobate (NaNbO 3 ), for example, Li (K, Na) (Nb, Ta, Sb) O 3 ceramics disclosed in the prior art Since the Curie temperature is high and the electromechanical coupling coefficient is relatively high, use as a piezoelectric element is considered (see Patent Document 3). In addition, Li (K, Na) (Nb, Ta) O 3 based ceramics, divalent metals such as Mg, Ca and Sr, and tetravalent metals such as Ti, Zr and Sn are used in a high frequency region. A suitable piezoelectric ceramic has been proposed (Patent Document 4).

従来のKNbO−NaNbOを主成分とする圧電磁器については、比較的高い電気機械結合係数及び高い圧電歪定数を示すものの、組成に応じて、室温〜100℃付近に斜方晶から正方晶に相転移する温度、いわゆる相転移点が存在する。しかし、この相転移点の存在は、KNbO−NaNbOを主成分とした圧電素子の使用温度範囲内において、圧電特性の著しい変化を生じさせることから、従来、このことが、KNbO−NaNbO系圧電磁器の製品化への障害となっていた。 The piezoelectric ceramic mainly composed of conventional KNbO 3 -NaNbO 3, although a relatively high electromechanical coupling factor and a high piezoelectric strain constant, depending on the composition, tetragonal from orthorhombic to about room temperature to 100 ° C. There is a so-called phase transition point. However, the presence of this phase transition point causes a significant change in the piezoelectric characteristics within the operating temperature range of the piezoelectric element mainly composed of KNbO 3 —NaNbO 3 , and thus this has conventionally been known as KNbO 3 —NaNbO. It was an obstacle to the commercialization of 3 series piezoelectric ceramics.

特公昭60−52098号公報Japanese Patent Publication No. 60-52098 特開2000−313664号公報JP 2000-313664 A 特開2004−244300号公報JP 2004-244300 A 特開平11−228225号公報Japanese Patent Laid-Open No. 11-228225

このような状況の中で、本発明者は、上記従来技術に鑑みて、KNbO−NaNbOを主成分とする圧電磁器の圧電特性及び相転移温度を改良して実用化可能な圧電磁器を作製することを目標として鋭意研究を重ねた結果、上記2成分系の圧電磁器の組成の一部をLiNbO及びCaTiOで同時置換して4成分系の組成物とすることにより上記圧電磁器の相転移温度を室温以下に降下させることができることを見出し、更に研究を重ねて、本発明を完成するに至った。 Under such circumstances, in view of the prior art, the present inventor has developed a piezoelectric ceramic that can be put into practical use by improving the piezoelectric characteristics and phase transition temperature of a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3. As a result of earnest research for the purpose of production, a part of the composition of the two-component piezoelectric ceramic is simultaneously replaced with LiNbO 3 and CaTiO 3 to form a four-component composition. The inventors have found that the phase transition temperature can be lowered to room temperature or lower, and have further researched to complete the present invention.

本発明は、新規ニオブ酸アルカリ系圧電磁器組成物を提供することを目的とするものである。また、本発明は、KNbO−NaNbOを主成分とする圧電磁器の相転移温度を室温以下に降下させることを実現した新規4成分系圧電磁器組成物を提供することを目的とするものである。また、本発明は、上記圧電磁器組成物を圧電素子として使用する圧電部材を提供することを目的とするものである。 An object of the present invention is to provide a novel alkali niobate piezoelectric ceramic composition. Another object of the present invention is to provide a novel four-component piezoelectric ceramic composition that realizes lowering the phase transition temperature of a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 to room temperature or lower. is there. Another object of the present invention is to provide a piezoelectric member that uses the piezoelectric ceramic composition as a piezoelectric element.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)KNbO−NaNbOを主要構成成分とする圧電磁器であって、(1)該圧電磁器の組成の一部がLiNbO及びCaTiOで置換されていること、(2)該圧電磁器の相転移温度が室温以下に降下されていること、を特徴とする圧電磁器。
(2)上記圧電磁器が、副成分としてMnCO及び/又はLaを含む、前記(1)に記載の圧電磁器。
(3)Na、K、Li、Ca、Nb、Tiを主成分とするペロブスカイト化合物を主体とした圧電磁器であって、モル比による組成式を、次の式;
(1−x−y)KNbO+xNaNbO+y(LiNbO+CaTiO
とした時、x及びyの値が、0.40≦x≦0.50、0.03≦y≦0.11を満たす、前記(1)に記載の圧電磁器。
(4)上記圧電磁器が、副成分としてMnをMnCO換算で1wt%以下及び/又はLaをLa換算で1wt%以下含む、前記(2)に記載の圧電磁器。
(5)前記(1)から(4)のいずれかに記載の圧電磁器を主要材料として含むことを特徴とする圧電素子。
(6)前記(5)に記載の圧電素子を構成要素として含むことを特徴とする圧電部材。
(7)KNbO−NaNbOを主要構成成分とする圧電磁器の組成の一部をLiNbO及びCaTiOで同時置換することにより圧電磁器の相転移温度を室温以下に降下させることを特徴とする圧電磁器の製造方法。
(8)上記圧電磁器に、副成分としてMnCO及び/又はLaを配合する、前記(7)に記載の方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 , wherein (1) a part of the composition of the piezoelectric ceramic is replaced with LiNbO 3 and CaTiO 3 , (2) the piezoelectric ceramic A piezoelectric ceramic characterized in that the phase transition temperature of is lowered to room temperature or lower.
(2) The piezoelectric ceramic according to (1), wherein the piezoelectric ceramic includes MnCO 3 and / or La 2 O 3 as subcomponents.
(3) A piezoelectric ceramic mainly composed of a perovskite compound mainly composed of Na, K, Li, Ca, Nb, and Ti, wherein the composition formula based on the molar ratio is expressed by the following formula:
(1-xy) KNbO 3 + xNaNbO 3 + y (LiNbO 3 + CaTiO 3 )
The piezoelectric ceramic according to (1), wherein the values of x and y satisfy 0.40 ≦ x ≦ 0.50 and 0.03 ≦ y ≦ 0.11.
(4) The piezoelectric ceramic according to (2), wherein the piezoelectric ceramic contains 1 wt% or less in terms of MnCO 3 and / or 1 wt% or less in terms of La 2 O 3 as an auxiliary component.
(5) A piezoelectric element comprising the piezoelectric ceramic according to any one of (1) to (4) as a main material.
(6) A piezoelectric member comprising the piezoelectric element according to (5) as a constituent element.
(7) A part of the composition of a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 is replaced with LiNbO 3 and CaTiO 3 simultaneously to lower the phase transition temperature of the piezoelectric ceramic below room temperature. A method of manufacturing a piezoelectric ceramic.
(8) The method according to (7), wherein MnCO 3 and / or La 2 O 3 is blended in the piezoelectric ceramic as a subcomponent.

次に、本発明について更に詳細に説明する。
本発明の圧電磁器は、Na、K、Li、Ca、Nb、Tiを主成分とするペロブスカイト化合物を主体とした圧電磁器であって、モル比による組成式を、次の式;
(1−x−y)KNbO+xNaNbO+y(LiNbO+CaTiO
とした時、x及びyの値が、0.40≦x≦0.50、0.03≦y≦0.11を満足する組成を有することを特徴とするものである。
Next, the present invention will be described in more detail.
The piezoelectric ceramic of the present invention is a piezoelectric ceramic mainly composed of a perovskite compound mainly composed of Na, K, Li, Ca, Nb, and Ti.
(1-xy) KNbO 3 + xNaNbO 3 + y (LiNbO 3 + CaTiO 3 )
In this case, the x and y values have a composition satisfying 0.40 ≦ x ≦ 0.50 and 0.03 ≦ y ≦ 0.11.

KNbO−NaNbOを主成分とする圧電磁器については、組成に応じて、室温〜100℃付近に相転移点が存在し、この相転移現象の存在が原因となって、実用化への障害となっていた。本発明では、これらの組成の一部をニオブ酸リチウム(LiNbO)及びチタン酸カルシウム(CaTiO)で同時に置換することによって、斜方晶から正方晶への相転移温度を室温以下まで降下させることが可能である。ここで、同時に置換とは、圧電磁器の組成として、ニオブ酸カリウム及びニオブ酸ナトリウムに加えてニオブ酸リチウム及びチタン酸カルシウムの両方が必ず含まれていることを意味する。本発明の圧電磁器を使用することによって、環境に優しい鉛を含まない実用化可能な特性を有するニオブ系圧電素子を製造することが可能になる。 For a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 , there is a phase transition point between room temperature and 100 ° C. depending on the composition, and this phase transition phenomenon causes the obstacle to practical use. It was. In the present invention, a part of these compositions is simultaneously substituted with lithium niobate (LiNbO 3 ) and calcium titanate (CaTiO 3 ), thereby lowering the phase transition temperature from orthorhombic to tetragonal to below room temperature. It is possible. Here, simultaneous substitution means that the composition of the piezoelectric ceramic always includes both lithium niobate and calcium titanate in addition to potassium niobate and sodium niobate. By using the piezoelectric ceramic according to the present invention, it is possible to manufacture a niobium-based piezoelectric element having characteristics that can be put into practical use and does not contain environmentally friendly lead.

本発明の圧電磁器は、Na、K、Li、Ca、Nb、Tiを主成分とするペロブスカイト化合物を主体とした圧電磁器の組成について、モル比による組成式を、次の式;
(1−x−y)KNbO+xNaNbO+y(LiNbO+CaTiO
とした時、x及びyの値が、0.40≦x≦0.50、0.03≦y≦0.11を満たす組成とすることが重要である。更に、本発明では、この圧電磁器に、副成分としてMnをMnCO換算で1wt%以下及び/又はLaをLa換算で1wt%以下を配合して、これらを含む組成を有する圧電磁器とすることができる。
The piezoelectric ceramic of the present invention is a composition of a piezoelectric ceramic mainly composed of a perovskite compound mainly composed of Na, K, Li, Ca, Nb, and Ti.
(1-xy) KNbO 3 + xNaNbO 3 + y (LiNbO 3 + CaTiO 3 )
In this case, it is important that the composition satisfies the values of x and y satisfying 0.40 ≦ x ≦ 0.50 and 0.03 ≦ y ≦ 0.11. Furthermore, in the present invention, a piezoelectric ceramic having a composition containing Mn as an auxiliary component and 1% by weight or less in terms of MnCO 3 and / or 1% by weight or less in terms of La 2 O 3 as a subsidiary component. It can be.

前記構成において、NaNbOによる置換量xを0.40〜0.50の範囲としたのは、KNbO及びNaNbOが同程度の割合で含まれる組成系において最も優れた圧電特性が得られるためである。一方、xが0.40よりも小さいと磁器の焼結性が極端に悪くなり、また、0.50よりも大きいと圧電特性が著しく低下してしまうことから、焼結性が良好であり、かつ、圧電特性の良好な圧電磁器を得るという観点から、xは0.40〜0.50の範囲とすることが望ましい。 In the above-described configuration, it was in the range of 0.40 to 0.50 of the substitution amount x by NaNbO 3, since the best piezoelectric properties in the composition system of KNbO 3 and NaNbO 3 is contained at a rate comparable to obtain It is. On the other hand, if x is less than 0.40, the sinterability of the porcelain is extremely deteriorated, and if it is more than 0.50, the piezoelectric properties are remarkably deteriorated. In addition, from the viewpoint of obtaining a piezoelectric ceramic with good piezoelectric characteristics, x is preferably in the range of 0.40 to 0.50.

前記構成において、CaTiOによる置換量yを0.03〜0.11の範囲としたのは、磁器の焼結性が良好であるからである。yが0.03よりも小さい場合は、磁器の焼結性が低下し、緻密な焼結体が得られない。また、yが0.11よりも大きい場合は、圧電磁器のキュリー温度が180℃以下となって、圧電磁器の耐熱性が低下するので実用に供さなくなる。 The reason why the substitution amount y with CaTiO 3 is set in the range of 0.03 to 0.11 in the above configuration is that the sinterability of the porcelain is good. When y is smaller than 0.03, the sinterability of the porcelain is lowered and a dense sintered body cannot be obtained. On the other hand, when y is larger than 0.11, the Curie temperature of the piezoelectric ceramic becomes 180 ° C. or lower, and the heat resistance of the piezoelectric ceramic is lowered, so that it is not practically used.

前記構成において、MnCOを1wt%以下の範囲としたのは、磁器の焼結性が向上するとともに、機械的品質係数Qmが増加するためである。また、MnCOが1wt%よりも多い場合は、磁器の焼結性が低下し、緻密な焼結体が得られない。 The reason why MnCO 3 is in the range of 1 wt% or less in the above configuration is that the sinterability of the porcelain is improved and the mechanical quality factor Qm is increased. Also, if MnCO 3 is greater than 1 wt%, the reduced sintering of the porcelain, not dense sintered body is obtained.

前記構成において、Laを1wt%以下の範囲としたのは、磁器の焼結性が向上するとともに、分極処理されやすくなるためである。また、Laが1wt%よりも多い場合は、磁器の焼結性が低下し、緻密な焼結体が得られない。 The reason why La 2 O 3 is in the range of 1 wt% or less in the above configuration is that the sinterability of the porcelain is improved and the polarization treatment is easily performed. Moreover, La case 2 O 3 is greater than 1 wt%, the reduced sintering of the porcelain, not dense sintered body is obtained.

本発明の圧電磁器は、例えば、次のようにして製造することができる。まず、原料粉末として、KCO,NaCO,LiCO,CaCO,Nb,TiO,及びMnCO,Laのうちのいずれかの原料を用いて、これらを予め所望の組成になるよう秤量し、例えば、これをZrOボールを用いた湿式方式で混合する。次に、この混合粉体を700〜900℃で仮焼成し、所望の組成の合成粉体を得る。 The piezoelectric ceramic of the present invention can be manufactured as follows, for example. First, as a raw material powder, any one of K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , CaCO 3 , Nb 2 O 5 , TiO 2 , and MnCO 3 , La 2 O 3 is used. These are weighed in advance so as to have a desired composition, and, for example, they are mixed by a wet method using ZrO 2 balls. Next, the mixed powder is temporarily fired at 700 to 900 ° C. to obtain a synthetic powder having a desired composition.

得られた合成粉体については、例えば、ZrOボールを用いて湿式粉砕し、乾燥させ、この混合粉末に有機バインダーを加え、金型プレス、静水圧プレス等により所望の形状に成形した後、大気中、1080〜1200℃で3〜5時間焼成して磁器を得ることができる。 About the obtained synthetic powder, for example, after wet-grinding using ZrO 2 balls and drying, an organic binder is added to this mixed powder, and after molding into a desired shape by a die press, an isostatic press, etc. Porcelain can be obtained by firing at 1080 to 1200 ° C. for 3 to 5 hours in the air.

使用する各原料粉末は、酸化物だけでなく、炭酸塩、酢酸塩又は有機金属などの化合物のいずれであっても、焼成などの熱処理プロセスによって酸化物になるものであれば何ら差し支えなく、適宜の原料を使用することができる。   Each raw material powder to be used is not limited to oxides, and any of compounds such as carbonates, acetates, or organic metals can be used as long as they become oxides by a heat treatment process such as firing. Ingredients can be used.

これらの原料粉末は、上記組成式の組成範囲になるように任意の手段で秤量し、これらを混合し、混合粉末とするが、その場合、材料の混合方式としては、例えば、乾式混合、湿式混合が例示され、粉砕方法としては、例えば、乾式粉砕法、湿式粉砕法が例示され、成型方法としては、例えば、乾式プレス法、冷間等方プレス法(CIP)等が例示され、また、加熱処理時の状態としては、大気中や、窒素、アルゴン、酸素フロー中などの雰囲気中での加熱処理が例示される。しかし、これらに制限されるものではない。   These raw material powders are weighed by any means so as to be within the composition range of the above composition formula, and mixed to obtain a mixed powder. In this case, as a mixing method of the materials, for example, dry mixing, wet processing, etc. Mixing is exemplified, and examples of the pulverization method include dry pulverization method and wet pulverization method. Examples of the molding method include dry press method and cold isotropic press method (CIP). Examples of the state during the heat treatment include heat treatment in the atmosphere or in an atmosphere such as nitrogen, argon, or oxygen flow. However, it is not limited to these.

本発明のニオブ酸アルカリ系圧電磁器組成物は、上記製造プロセスを採用することにより、優れた圧電特性を有する圧電磁器が得られる、焼結性が良好である、機械的品質係数が増加する、緻密な焼結体が得られる、分極処理されやすい等の利点を有する。   The alkali niobate-based piezoelectric ceramic composition of the present invention is obtained by adopting the above manufacturing process, and a piezoelectric ceramic having excellent piezoelectric characteristics is obtained, the sinterability is good, and the mechanical quality factor is increased. There are advantages such that a dense sintered body can be obtained and polarization treatment is easy.

従来のKNbO−NaNbOを主成分とするニオブ酸系アルカリ圧電磁器組成物では、室温〜100℃付近に相転移点が存在するため、圧電素子の使用範囲において圧電特性の著しい変化が生じ、そのことがニオブ酸系アルカリ圧電磁器の製品化の障害となっていた。これに対して、本発明では、上記KNbO−NaNbOを主成分とする圧電磁器の組成の一部をLiNbO及びCaTiOで同時置換することで圧電磁器の相転移点を室温以下に降下させることが可能であり、これにより、圧電素子の使用温度範囲において、圧電特性の著しい変化の生じない、実用化可能な特性を有する新規ニオブ酸アルカリ系圧電磁器組成物を提供することを実現するものである。 In the conventional niobic acid-based alkaline piezoelectric ceramic composition mainly composed of KNbO 3 —NaNbO 3 , a phase transition point exists in the vicinity of room temperature to 100 ° C., so that a significant change in piezoelectric characteristics occurs in the usage range of the piezoelectric element, This has been an obstacle to the commercialization of niobate-based alkaline piezoelectric ceramics. On the other hand, in the present invention, the phase transition point of the piezoelectric ceramic is lowered below room temperature by simultaneously replacing part of the composition of the piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 with LiNbO 3 and CaTiO 3. Accordingly, it is possible to provide a novel alkali niobate piezoelectric ceramic composition having a practically usable characteristic that does not cause a significant change in the piezoelectric characteristic in the operating temperature range of the piezoelectric element. Is.

本発明により、次のような効果が奏される。
(1)本発明の圧電磁器では、KNbO−NaNbOを主成分とする圧電磁器で実用化の問題となっていた室温〜100℃付近の相転移点を、圧電磁器の組成の一部をLiNbO及びCaTiOで同時に置換することによって、室温以下まで降下させることが実現可能である。
(2)本発明の圧電磁器を使用することによって、自然環境に優しい、鉛を含まない実用的なニオブ系圧電素子の製造が可能である。
(3)相転移温度を室温以下に低下させたニオブ酸アルカリ系の圧電磁器を提供することができる。
(4)高い電気機械結合係数及び高い圧電歪定数を示し、しかも、相転移点が室温以下である新規圧電磁器組成物を提供することができる。
(5)ニオブ系圧電磁器の、実用化可能な新規組成物からなる圧電材料を製造し、提供することができる。
The following effects are exhibited by the present invention.
(1) In the piezoelectric ceramic according to the present invention, a phase transition point from room temperature to around 100 ° C., which has been a practical problem in a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 , is obtained by using a part of the composition of the piezoelectric ceramic. By simultaneously substituting with LiNbO 3 and CaTiO 3 , it is possible to lower the temperature to below room temperature.
(2) By using the piezoelectric ceramic of the present invention, it is possible to manufacture a practical niobium-based piezoelectric element that is friendly to the natural environment and does not contain lead.
(3) An alkali niobate piezoelectric ceramic having a phase transition temperature lowered to room temperature or lower can be provided.
(4) A novel piezoelectric ceramic composition that exhibits a high electromechanical coupling coefficient and a high piezoelectric strain constant and that has a phase transition point of room temperature or lower can be provided.
(5) It is possible to manufacture and provide a piezoelectric material made of a novel composition that can be put into practical use for a niobium piezoelectric ceramic.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これに限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

本実施例では、KNbO−NaNbOを主成分とする圧電磁器の組成の一部をLiNbO及びCaTiOで同時置換した特定組成の4成分系KN−NN−LN−CT、また、これに副成分として1wt%MnCO又はLaを配合したKN−NN−LN−CT+1wt%MnCO、KN−NN−LN−CT+1wt%Laを作製し、得られた圧電磁器の特性を評価した。 In this example, a quaternary system KN-NN-LN-CT having a specific composition in which a part of the composition of a piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 is simultaneously substituted with LiNbO 3 and CaTiO 3 , KN-NN-LN-CT + 1 wt% MnCO 3 and KN-NN-LN-CT + 1 wt% La 2 O 3 containing 1 wt% MnCO 3 or La 2 O 3 as subcomponents were prepared, and the characteristics of the obtained piezoelectric ceramic were evaluated.

出発原料として、KCO,NaCO,LiCO,CaCO,Nb,TiO 及びMnCO,Laの原料粉末を使用した。これらの原料粉末を所定の組成割合に配合し、これらの原料粉末に、エタノールを加え、直径10mmのZrOボールを用いて24時間湿式混合した後、乾燥機で十分に乾燥させた。この混合粉体を900℃で3時間仮焼して仮焼粉体を作製した。 As starting materials, raw material powders of K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , CaCO 3 , Nb 2 O 5 , TiO 2 and MnCO 3 , La 2 O 3 were used. These raw material powders were blended at a predetermined composition ratio, ethanol was added to these raw material powders, wet-mixed for 24 hours using ZrO 2 balls having a diameter of 10 mm, and then sufficiently dried with a dryer. This mixed powder was calcined at 900 ° C. for 3 hours to prepare a calcined powder.

これらの仮焼粉体に、エタノールを加え、直径10mmのZrOボールを用いて2時間ボールミル粉砕を行った。 Ethanol was added to these calcined powders, and ball milling was performed for 2 hours using ZrO 2 balls having a diameter of 10 mm.

ボールミル粉砕した仮焼粉体については、乾燥機で十分に乾燥させた後、有機バインダーを混合して造粒し、得られた粉末を200MPaの圧力で直径17mm、厚さ1.5mmの円板に成形した後、この成形体を大気中において1080〜1200℃で3時間焼成して磁器を得た。その後、磁器をラップ盤を用いて厚さ1mmに研磨した。   The calcined powder that has been pulverized by ball mill is sufficiently dried with a dryer, and then mixed with an organic binder and granulated. The resulting powder is a disc having a diameter of 17 mm and a thickness of 1.5 mm at a pressure of 200 MPa. Then, this molded body was fired in the atmosphere at 1,080 to 1,200 ° C. for 3 hours to obtain a porcelain. Thereafter, the porcelain was polished to a thickness of 1 mm using a lapping machine.

研磨した試料については、上下面に銀ペーストを塗布し、700℃で30分間熱処理して銀電極を形成した。その後、試料を100℃のシリコンオイル中で5kV/mmの直流電界を10分間印加して分極処理を行った。   For the polished sample, a silver paste was applied to the upper and lower surfaces and heat treated at 700 ° C. for 30 minutes to form a silver electrode. Thereafter, the sample was subjected to polarization treatment by applying a DC electric field of 5 kV / mm for 10 minutes in 100 ° C. silicone oil.

分極処理した試料については、室温で一晩放置することによって圧電特性を安定化させた後、静電容量、共振・反共振周波数をインピーダンスアナライザを用いて測定し、比誘電率、電気機械結合係数を求めた。また、d33メーターを用いて試料の圧電歪d33定数を測定した。更に、静電容量の温度変化を測定することによって試料のキュリー温度及び第二相転移温度を求めた。図1に、室温以上で第二相転移温度を示す従来のニオブ酸系圧電磁器の誘電特性図を、また、図2に、本発明によって作製した圧電磁器の誘電特性図をそれぞれ示す。ここで、第二相転移温度とは斜方晶から正方晶に試料の結晶構造が変化する温度を意味する。作製した圧電磁器の組成、焼結温度、得られた圧電磁器の第二相転移温度、圧電歪d33定数(pm/v)、電気機械結合係数(kp)、及び分極後の位相の値を表1に示した。   For a polarized sample, the capacitance and resonance / anti-resonance frequency were measured using an impedance analyzer after standing overnight at room temperature to stabilize the piezoelectric characteristics, and the relative dielectric constant and electromechanical coupling coefficient were measured. Asked. Further, the piezoelectric strain d33 constant of the sample was measured using a d33 meter. Furthermore, the Curie temperature and the second phase transition temperature of the sample were determined by measuring the temperature change of the capacitance. FIG. 1 shows a dielectric characteristic diagram of a conventional niobic acid type piezoelectric ceramic showing a second phase transition temperature at room temperature or higher, and FIG. 2 shows a dielectric characteristic diagram of a piezoelectric ceramic produced by the present invention. Here, the second phase transition temperature means a temperature at which the crystal structure of the sample changes from orthorhombic to tetragonal. The composition of the produced piezoelectric ceramic, the sintering temperature, the second phase transition temperature of the obtained piezoelectric ceramic, the piezoelectric strain d33 constant (pm / v), the electromechanical coupling coefficient (kp), and the phase value after polarization are shown. It was shown in 1.

Figure 2007055864
Figure 2007055864

その結果、1080〜1200℃の焼結で焼結不可の試料、20℃ないし40℃に相転移点がある試料については、評価を中止した。そして、KNbO−NaNbOを主成分とする圧電磁器の組成において、その一部をLiNbO及びCaTiOで同時置換し、また、副成分としてMnCO又はLaを含む特定の組成範囲の組成物では、圧電磁器の相転移温度が温室以下に低下することが分かった。 As a result, the evaluation was stopped for samples that could not be sintered by sintering at 1,080 to 1,200 ° C. and samples that had a phase transition point at 20 ° C. to 40 ° C. Then, in the composition of the piezoelectric ceramic mainly composed of KNbO 3 -NaNbO 3, simultaneously replacing a part in LiNbO 3 and CaTiO 3, also specific composition range including MnCO 3 or La 2 O 3 as an auxiliary component It was found that the phase transition temperature of the piezoelectric ceramic is lowered below the greenhouse in the composition of

そして、これらの実験及びその結果から、上記4成分系の圧電磁器組成物において、モル比による組成式を、次の式;
(1−x−y)KNbO+xNaNbO+y(LiNbO+CaTiO
とした時、x及びyの値が、0.40≦x≦0.50、0.03≦y≦0.11である場合に、相転移室温が温室以下で、優れた圧電性能を有する圧電磁器を作製できることが実証された。
Then, from these experiments and the results thereof, in the above four-component piezoelectric ceramic composition, the composition formula by molar ratio is expressed by the following formula:
(1-xy) KNbO 3 + xNaNbO 3 + y (LiNbO 3 + CaTiO 3 )
When the values of x and y are 0.40 ≦ x ≦ 0.50 and 0.03 ≦ y ≦ 0.11, the phase transition room temperature is below the greenhouse and the piezoelectric has excellent piezoelectric performance. It has been demonstrated that porcelain can be made.

以上詳述したように、本発明は、ニオブ酸アルカリ系圧電磁器組成物に係るものであり、本発明により、従来、KNbO−NaNbOを主成分とする圧電磁器で実用化の障害として問題となっていた室温〜100℃付近の相転移点を、室温以下まで降下させた新規ニオブ酸系圧電磁器組成物を作製し、提供することができる。本発明は、自然環境に優しい、鉛を含まない圧電磁器組成物を提供するものであり、それにより、鉛を含まない環境低負荷型の実用化可能なニオブ系圧電素子及び該圧電素子を利用した圧電部材を製造し、提供することを可能にするものである。本発明は、ニオブ酸系圧電磁器の実用化可能な新規組成物及びその製品に関する新技術・新製品を提供するものとして有用である。 As described above in detail, the present invention relates to an alkali niobate-based piezoelectric ceramic composition, and according to the present invention, a conventional piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 has a problem as an obstacle to practical use. Thus, a novel niobic acid piezoelectric ceramic composition in which the phase transition point from room temperature to around 100 ° C. is lowered to room temperature or lower can be prepared and provided. The present invention provides a piezoelectric ceramic composition that does not contain lead and is friendly to the natural environment, and thereby uses a niobium-type piezoelectric element that does not contain lead and that can be put to practical use, and that uses the piezoelectric element. It is possible to manufacture and provide a piezoelectric member. INDUSTRIAL APPLICABILITY The present invention is useful as a new composition for practical application of a niobic acid piezoelectric ceramic and a new technology / new product related to the product.

室温以上で第二相転移温度を示す従来のニオブ酸系圧電磁器(0.47KNbO−0.47NaNbO−0.06LiNbO組成)の誘電特性図である。A dielectric characteristic diagram of a conventional niobate-based piezoelectric ceramic of a second phase transition temperature above room temperature (0.47KNbO 3 -0.47NaNbO 3 -0.06LiNbO 3 composition). 本発明によって作製したニオブ酸系圧電磁器(0.44KNbO−0.44NaNbO−0.09LiNbO−0.03CaTiO組成)の誘電特性図である。A dielectric characteristic diagram of the manufactured niobate-based piezoelectric ceramics (0.44KNbO 3 -0.44NaNbO 3 -0.09LiNbO 3 -0.03CaTiO 3 compositions) according to the present invention.

Claims (8)

KNbO−NaNbOを主要構成成分とする圧電磁器であって、(1)該圧電磁器の組成の一部がLiNbO及びCaTiOで置換されていること、(2)該圧電磁器の相転移温度が室温以下に降下されていること、を特徴とする圧電磁器。 A piezoelectric ceramic having KNbO 3 —NaNbO 3 as a main component, wherein (1) a part of the composition of the piezoelectric ceramic is replaced with LiNbO 3 and CaTiO 3 , and (2) a phase transition of the piezoelectric ceramic. A piezoelectric ceramic characterized in that the temperature is lowered to room temperature or lower. 上記圧電磁器が、副成分としてMnCO及び/又はLaを含む、請求項1に記載の圧電磁器。 The piezoelectric ceramic according to claim 1, wherein the piezoelectric ceramic contains MnCO 3 and / or La 2 O 3 as subcomponents. Na、K、Li、Ca、Nb、Tiを主成分とするペロブスカイト化合物を主体とした圧電磁器であって、モル比による組成式を、次の式;
(1−x−y)KNbO+xNaNbO+y(LiNbO+CaTiO
とした時、x及びyの値が、0.40≦x≦0.50、0.03≦y≦0.11を満たす、請求項1に記載の圧電磁器。
A piezoelectric ceramic mainly composed of a perovskite compound mainly composed of Na, K, Li, Ca, Nb, and Ti.
(1-xy) KNbO 3 + xNaNbO 3 + y (LiNbO 3 + CaTiO 3 )
The piezoelectric ceramic according to claim 1, wherein the values of x and y satisfy 0.40 ≦ x ≦ 0.50 and 0.03 ≦ y ≦ 0.11.
上記圧電磁器が、副成分としてMnをMnCO換算で1wt%以下及び/又はLaをLa換算で1wt%以下含む、請求項2に記載の圧電磁器。 The piezoelectric ceramic according to claim 2, wherein the piezoelectric ceramic contains Mn as an accessory component of 1 wt% or less in terms of MnCO 3 and / or 1 wt% or less of La in terms of La 2 O 3 . 請求項1から4のいずれかに記載の圧電磁器を主要材料として含むことを特徴とする圧電素子。   A piezoelectric element comprising the piezoelectric ceramic according to any one of claims 1 to 4 as a main material. 請求項5に記載の圧電素子を構成要素として含むことを特徴とする圧電部材。   A piezoelectric member comprising the piezoelectric element according to claim 5 as a constituent element. KNbO−NaNbOを主要構成成分とする圧電磁器の組成の一部をLiNbO及びCaTiOで同時置換することにより圧電磁器の相転移温度を室温以下に降下させることを特徴とする圧電磁器の製造方法。 A piezoelectric ceramic characterized in that a phase transition temperature of a piezoelectric ceramic is lowered to a room temperature or lower by simultaneously substituting a part of the composition of the piezoelectric ceramic mainly composed of KNbO 3 —NaNbO 3 with LiNbO 3 and CaTiO 3 . Production method. 上記圧電磁器に、副成分としてMnCO及び/又はLaを配合する、請求項7に記載の方法。 In the piezoelectric ceramic, blending MnCO 3 and / or La 2 O 3 as an auxiliary component, The method of claim 7.
JP2005245197A 2005-08-26 2005-08-26 Piezoelectric ceramic composition Pending JP2007055864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245197A JP2007055864A (en) 2005-08-26 2005-08-26 Piezoelectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245197A JP2007055864A (en) 2005-08-26 2005-08-26 Piezoelectric ceramic composition

Publications (1)

Publication Number Publication Date
JP2007055864A true JP2007055864A (en) 2007-03-08

Family

ID=37919666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245197A Pending JP2007055864A (en) 2005-08-26 2005-08-26 Piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP2007055864A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055867A (en) * 2005-08-26 2007-03-08 National Institute Of Advanced Industrial & Technology Piezoelectric ceramic composition
WO2008108355A1 (en) 2007-03-06 2008-09-12 Swcc Showa Cable Systems Co., Ltd. Resin composition for insulation, and wire/cable using the same
JP2010195624A (en) * 2009-02-25 2010-09-09 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2011518757A (en) * 2008-04-30 2011-06-30 エプコス アクチエンゲゼルシャフト Ceramic material, method for producing ceramic material, and component made of ceramic material
WO2012015016A1 (en) * 2010-07-30 2012-02-02 旭硝子株式会社 Sputtering target and process for production thereof
US20150137667A1 (en) * 2013-11-15 2015-05-21 AAC Technologies Pte. Ltd. Ceramic material, sinter, ceramic device, piezoelectricity ceramic bimorph and gluing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047193A (en) * 1973-08-15 1975-04-26
JPH11228227A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047193A (en) * 1973-08-15 1975-04-26
JPH11228227A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055867A (en) * 2005-08-26 2007-03-08 National Institute Of Advanced Industrial & Technology Piezoelectric ceramic composition
WO2008108355A1 (en) 2007-03-06 2008-09-12 Swcc Showa Cable Systems Co., Ltd. Resin composition for insulation, and wire/cable using the same
JP2011518757A (en) * 2008-04-30 2011-06-30 エプコス アクチエンゲゼルシャフト Ceramic material, method for producing ceramic material, and component made of ceramic material
US8786167B2 (en) 2008-04-30 2014-07-22 Epcos Ag Ceramic material, method for the production of the ceramic material and component comprising the ceramic material
JP2010195624A (en) * 2009-02-25 2010-09-09 Kyocera Corp Piezoelectric ceramic and piezoelectric element
WO2012015016A1 (en) * 2010-07-30 2012-02-02 旭硝子株式会社 Sputtering target and process for production thereof
US20150137667A1 (en) * 2013-11-15 2015-05-21 AAC Technologies Pte. Ltd. Ceramic material, sinter, ceramic device, piezoelectricity ceramic bimorph and gluing method thereof

Similar Documents

Publication Publication Date Title
JP4929522B2 (en) Piezoelectric ceramic composition
JP5217997B2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
JP3482394B2 (en) Piezoelectric ceramic composition
JP5407330B2 (en) Piezoelectric ceramic composition
JPWO2007094115A1 (en) Piezoelectric ceramic composition
JP2008239388A (en) Piezoelectric ceramic composition
TWI249258B (en) Piezoelectric porcelain and process for producing the same
JP2009227535A (en) Piezoelectric ceramic composition
JPH1129356A (en) Piezoelectric ceramic composition
JP4510140B2 (en) Piezoelectric ceramic composition, piezoelectric element and dielectric element
JP2006151796A (en) Piezoelectric ceramic composition
JP2014224038A (en) Piezoelectric ceramic and piezoelectric device using the same
JP2008156172A (en) Lead-free piezoelectric porcelain composition
JP2007055864A (en) Piezoelectric ceramic composition
JP2007055867A (en) Piezoelectric ceramic composition
JP2001316182A (en) Piezoelectric ceramic and piezoelectric resonator
JP2004155601A (en) Piezoelectric ceramic composition
JP4140796B2 (en) Piezoelectric ceramics
Hao et al. Structure and electrical properties of (Li, Sr, Sb)-modified K0. 5Na0. 5NbO3 lead-free piezoelectric ceramics
JP2007261864A (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP4493226B2 (en) Piezoelectric ceramic and piezoelectric element
JP5967532B2 (en) Piezoelectric ceramics
JP2009012997A (en) Unleaded piezoelectric porcelain composition
JP2011088786A (en) Piezoelectric ceramic
KR101091192B1 (en) Composition and fabrication method of lead-free piezoelectric ceramics for low temperature firing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101