JP4202657B2 - Piezoelectric ceramic composition and piezoelectric device - Google Patents

Piezoelectric ceramic composition and piezoelectric device Download PDF

Info

Publication number
JP4202657B2
JP4202657B2 JP2002043079A JP2002043079A JP4202657B2 JP 4202657 B2 JP4202657 B2 JP 4202657B2 JP 2002043079 A JP2002043079 A JP 2002043079A JP 2002043079 A JP2002043079 A JP 2002043079A JP 4202657 B2 JP4202657 B2 JP 4202657B2
Authority
JP
Japan
Prior art keywords
piezoelectric
ceramic composition
piezoelectric ceramic
sample
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002043079A
Other languages
Japanese (ja)
Other versions
JP2003238248A (en
Inventor
敏志 中神
康之 猪又
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2002043079A priority Critical patent/JP4202657B2/en
Publication of JP2003238248A publication Critical patent/JP2003238248A/en
Application granted granted Critical
Publication of JP4202657B2 publication Critical patent/JP4202657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は音響素子、圧電アクチュエータ等の圧電デバイスの材料として好適な圧電磁器組成物とこの圧電磁器組成物を使用した圧電デバイスに関するものである。
【0002】
【従来の技術】
音響素子、圧電アクチュエータ等の圧電デバイスの電気機械変換材料として圧電磁器組成物が使用されている。圧電デバイスに使用される圧電磁器組成物の特性としては高Kr、高ε、低ヤング率、高抗破壊強度、ある程度の電気抵抗、高キュリー温度等が必要になる。そして、このような特性を満足する圧電磁器組成物として種々のものが提案されている。
【0003】
例えば、圧電磁器組成物の一つの組成系として、Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}Oで表わされるものが知られている。この種の組成系の圧電磁器組成物としては、例えば特公昭48−8434号公報、特公昭60−22516号公報、特公昭64−7032号公報等に記載されているものが提案されている。
【0004】
特公昭48−8434号公報に記載された圧電磁器組成物は、上記組成式において、aが1.00、bが0.01≦b≦0.7、cが0.1≦c≦0.6、dが0.01≦d≦0.55、eが0.01≦e≦0.7であり、Pbの3〜15原子%がCa,Sr,Baの少なくとも1種によって置換されたものからなる。
【0005】
また、特公昭60−22516号公報に記載された圧電磁器組成物は、上記組成式において、aが1.00、bが0.01≦b≦0.7、cが0.1≦c≦0.6、dが0.01≦d≦0.55、eが0.01≦e≦0.7であり、Pbの3〜15原子%がSrによって置換され、0.25〜1.50重量%のLiCOを更に含むものからなる。
【0006】
特公昭64−7032号公報に記載された圧電磁器組成物は、上記組成式において、aが0.96≦a≦0.985、bが0.075≦b≦0.375、cが0.20≦c≦0.40、dが0≦d≦0.50、eが0≦e≦0.70になっているものや、これのPbの5原子%までをCa,Sr,Baの少なくとも1種によって置換されているものや、LiO等の金属酸化物を更に含んでいるもの等からなる。
【0007】
圧電材料を用いた圧電素子は従来、単層構造であった。即ち、セラミックスを焼成したあとに、Ag等の電極を焼きつけるなどして、デバイスを作成していた。従って、セラミックスの焼成温度はデバイスを作成する上では大きな障害はなかった。
【0008】
近年、圧電デバイスの性能の向上、低電圧駆動化などから、積層構造化が進められてきた。これらの代表的なデバイスには、積層型圧電アクチュエータがある。積層型素子の場合、主に積層コンデンサーなどと同様、セラミックス材料をシート化し、そのグリーンシートに電極ペーストを印刷塗布後、熱圧着で数から数十層積層したものを焼成で焼き固めて作られる。即ち、セラミックス材料の焼成温度で使用できる電極材料が決まってくることになる。
【0009】
上記のような圧電磁器組成物を用いて積層型圧電デバイスを製造する場合、内部電極の材料としてはPt、あるいはAg−Pd合金が一般的に使用されている。
【0010】
【発明が解決しようとする課題】
しかし、上記従来の圧電磁器組成物はいずれも焼結温度が1130〜1300℃と高いので、同時焼成する内部電極の材料としてPtやPd含有率の多いAg−Pd合金を使用しなければならない。即ち、圧電デバイスがコスト高になるという問題があった。
【0011】
また、上記従来の圧電磁器組成物はいずれも焼結温度が1130〜1300℃と高いので、焼結のための熱エネルギーが大量に必要であり、熱エネルギーのためにコストがかかるのみならず、環境に与える負荷が大きいという問題があった。
【0012】
また、上記従来の圧電磁器組成物はいずれも焼結温度が1130〜1300℃と高いので、焼成の際のPbOの蒸発量が多く、工場内における作業環境が悪化するおそれがあるという問題があった。
【0013】
この発明は、900℃以下の低い温度で焼結させることができ、しかもセラミック粒子の粒径が小さく、機械的強度の高い(抗折強度が900kg/cm以上)圧電磁器組成物を提供することを目的とする。
【0014】
【課題を解決するための手段】
この発明は圧電磁器組成物とこの圧電磁器組成物を使用した圧電デバイスに関するものであり、該圧電磁器組成物は、式Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}Oで表わされるペロブスカイト組成物と該ペロブスカイト組成物中に含まれるAgOとからなり、該式Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}O中のa,b,c,d,eがb+c+d+e=1としたときに1.000≦a≦1.020、0.26≦b≦0.3、0.34≦c≦0.40、0.10≦d≦0.35、0.07≦e≦0.14の範囲にあり、AgOが0.005〜0.03wt%の割合で含まれていることを特徴とするものである。
【0015】
ここで、AgOをペロブスカイト組成物に対し0.005〜0.03wt%添加したのは、0.005wt%以下のAgO添加では焼結体の粒径が大きくなり過ぎ、試料抗折力が小さくなってしまい、0.03wt%以上のAgO添加では焼結体中に2次相が析出して圧電特性が低下してしまうが、0.005〜0.03wt%の範囲でAgOを添加した場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られるからである。
【0016】
また、aを1.000≦a≦1.020としたのは、a<1.000では優れた圧電特性は得られるものの、Agを添加しても低温焼結が不可能であり、1100℃程度の高い焼結温度を要し、1.020<aではPb2次相が大量に析出して圧電特性が低下し、実用に耐えられなくなるが、1.000≦a≦1.020の範囲の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られるからである。
【0017】
また、bを0.26≦b≦0.31としたのは、b<0.26では優れた圧電特性が得られず、また、本請求項のa値範囲のうち高いa値範囲のみでしか低温焼結が不可能となり、0.31<bでは結晶構造が変化し、優れた圧電特性が得られず、また、高いa値範囲のみででしか低温焼結ができないが、0.26≦b≦0.31の範囲の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られるからである。
【0018】
また、cを0.34≦c≦0.40としたのは、c<0.34では優れた圧電特性が得られず、また、本請求項のa値範囲のうち高いa値範囲のみでしか低温焼結ができず、0.40<cでは優れた圧電特性が得られず、また、高いa値範囲のみでしか低温焼結ができないが、0.34≦c≦0.40の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られるからである。
【0019】
また、dを0.10≦d≦0.35としたのは、d<0.10ではキュリー温度が高く、優れた圧電特性が得られないし、本請求項のa値範囲のうち高いa値範囲のみでしか低温焼結ができず、0.35<dではキュリー温度が下がりすぎ、実用に耐えることができなくなり、また、本請求項のa値範囲のうち高いa値範囲のみでしか低温焼結が不可能となるが、0.10≦d≦0.35の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られるからである。
【0020】
また、eを0.07≦e≦0.14としたのは、e<0.07では優れた圧電特性は得られるが、本請求項のa値範囲のうち高いa値範囲のみでしか低温焼結ができなくなり、また、焼成による粒成長が抑えられなくなり、試料抗折力が小さくなってしまい、0.14<eでは優れた圧電特性は得られるが、本請求項のa値範囲のうち高いa値範囲のみでしか低温焼結ができなくなるが、0.07≦e≦0.14の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られるからである。
【0021】
【発明の実施の形態】
まず、PbO,ZrO,TiO,NiO,ZnO,Nb,AgOからなる原料粉末を各々準備し、これらを表1に示す割合で秤量し、ポットミル内にジルコニアビーズ、イオン交換水と共に入れ、15時間湿式混合し、得られた懸濁液をバットに移し、乾燥器内に入れ、150℃で乾燥させた。
【0022】
次に、この乾燥によって得られた混合物を、大気雰囲気下において電気炉を用いて850℃で2時間焼成した。混合物内の各金属酸化物はこの焼成によって相互に固相反応し、ペロブスカイト化合物が形成された。
【0023】
次に、このペロブスカイト化合物をポットミル内にジルコニアビーズ、イオン交換水と共に入れ、15時間湿式解砕し、得られた懸濁液をバットに移し、乾燥器内に入れ、150℃で乾燥させ、完成粉体を得た。
【0024】
次に、この完成粉体に有機バインダーを少量混合し、加圧プレス機を用い、圧力1.5MPaで圧縮成型し、直径8mm、厚さ0.5mmの円板形の試料を得た。
【0025】
次に、この試料を電気炉内に入れ、大気雰囲気下において900℃〜1050℃で2時間焼成し、その後この試料を電気炉から取り出し、試料の両面にフリットレスAgペーストを印刷し、大気雰囲気下において700℃で焼き付け、これを外部電極とした。
【0026】
次に、この外部電極付きの試料に、100℃の下で、1.5kV/mmの電圧を3分間印加し、試料を分極させた。
【0027】
次に、この分極させた試料の圧電特性Krを測定したところ、表1に示す通りであった。圧電特性Kr測定は、日本電子材料工業会標準規格(EMAS規格)にのっとり、インピーダンス測定を行い、算出した。
【0028】
また、試料を形成しているセラミック粒子の粒径を測定したところ、表1に示す通りであった。粒径測定は、電子顕微鏡を用い、試料の表面を5000倍に拡大した写真をもとに、写真の一定方向に各粒子の最長の長さを測定してその粒子の粒径とみなし、各試料につき200粒を測定、その平均を試料粒径とした。
【0029】
また、焼結体試料の抗折力は3点曲げ測定破壊荷重値から計算により求めた。3点曲げ測定法と破壊強度計算式はJIS規格R−1601にのっとり行った。3点曲げ測定用試料形状は上記Kr測定用形状とは異なる。圧力1.5MPaで圧縮成型し、長さ30mm、幅3.5mm、厚み2.7mmの直方形とした。焼成後、JIS規格R−1601に沿うよう研磨し試料サイズをあわせた。
【0030】
【表1】

Figure 0004202657
【0031】
表1に示す結果から、試料No.1に示すようにAgOの添加がない場合は焼結体の粒径が大きくなって抗折力が小さくなり、試料No.5に示すように0.04wt%のAgO添加では焼結体中に二次相が析出して圧電特性が低下してしまうが、試料No.2〜4に示すように0.005〜0.03wt%の範囲でAgOを添加した場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られることがわかる。
【0032】
また、試料No.6に示すようにaが0.995では焼結温度が1050℃と高くなり、試料No.10に示すようにaが1.025では圧電特性が51%と悪くなるが、試料No.7〜9に示すように1.000≦a≦1.020の範囲の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られることがわかる。
【0033】
また、試料No.11に示すようにbが0.24では圧電特性が52%と悪くなり、また、焼結温度が950℃と高くなり、試料No.15に示すようにbが0.33では圧電特性が50%と悪くなり、また、焼結温度が950℃と高くなるが、試料No.12〜14に示すように0.26≦b≦0.31の範囲の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られることがわかる。
【0034】
また、試料No.16に示すようにcが0.32では圧電特性が53%と悪くなり、焼結温度が950℃と高くなり、試料No.20に示すようにcが0.42では圧電特性が52%と悪くなり、また、焼結温度が950℃と高くなるが、試料No.17〜19に示すように0.34≦c≦0.40の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られることがわかる。
【0035】
また、試料No.21に示すようにdが0.05では圧電特性が49%と悪くなり、焼結温度が950℃と高くなり、試料No.25に示すようにdが0.40では焼結温度が950℃と高くなるが、試料No.22〜24に示すように0.10≦d≦0.35の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られることがわかる。
【0036】
また、試料No.26に示すようにeが0.02では焼結温度が950℃と高くなり、焼成による粒成長が抑えられなくなり、粒径が大きくなって抗折力が小さくなり、試料No.30に示すようにeが0.20では焼結温度が1000℃と高くなるが、試料No.27〜29に示すように0.07≦e≦0.14の場合は900℃の焼成で圧電特性の良い、セラミック粒子の粒径の小さな圧電磁器組成物が得られることがわかる。
【0037】
なお、本実施例では出発原料をPbO、ZrO2、TiO2、NiO、ZnO、Nb25及びAg2Oとし、これらを全て一緒に混合、仮焼して圧電材料粉を作成したが、PbZrO3、PbTiO3、Pb(Ni1/3Nb2/3)O、Pb(Zn1/3Nb2/3)O3などを一部又は全部に用いても、最終組成比率が同じものになるように調整されていればよい。又、Ag2Oは酢酸Ag、炭酸Agあるいは金属Agパウダーを使用することもできる。
【0038】
【発明の効果】
この発明によれば、焼結温度を900℃以下にすることができるので、内部電極の貴金属比率を減らして製品のコストダウンを図ることができるという効果がある。
【0039】
また、この発明によれば、焼結温度を900℃以下にすることができるので、焼成時の熱量低減により熱エネルギーコストを減らすとともに、環境負荷を減らすことができるという効果がある。
【0040】
また、この発明によれば、焼結温度を900℃以下にすることができるので、焼成の際のPbOの蒸発を少なくすることができ、工場内における作業環境を良好ならしめることができるという効果がある。
【0041】
また、この発明によれば、圧電特性krを55%以上と実用可能なエネルギー変換効率を有する圧電磁器組成物を得ることができるという効果がある。
【0042】
また、この発明によれば、焼成による粒成長を抑え、粒径が1.6μm以下と小さくて緻密な、強度の高い、薄層の積層素子の材料として好適な圧電磁器組成物を得ることができるという効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric ceramic composition suitable as a material for piezoelectric devices such as acoustic elements and piezoelectric actuators, and a piezoelectric device using the piezoelectric ceramic composition.
[0002]
[Prior art]
Piezoelectric ceramic compositions are used as electromechanical conversion materials for piezoelectric devices such as acoustic elements and piezoelectric actuators. As characteristics of the piezoelectric ceramic composition used for the piezoelectric device, high Kr, high ε, low Young's modulus, high anti-destructive strength, some electric resistance, high Curie temperature, and the like are required. Various piezoelectric ceramic compositions that satisfy such characteristics have been proposed.
[0003]
For example, one composition system of a piezoelectric ceramic composition is represented by Pb a {Zr b · Ti c · (Ni 1/3 Nb 2/3 ) d · (Zn 1/3 Nb 2/3 ) e } O 3 . Is known. As this type of piezoelectric ceramic composition, those described in, for example, Japanese Patent Publication No. 48-8434, Japanese Patent Publication No. 60-22516, Japanese Patent Publication No. 64-7032, and the like have been proposed.
[0004]
In the piezoelectric ceramic composition described in Japanese Patent Publication No. 48-8434, in the above composition formula, a is 1.00, b is 0.01 ≦ b ≦ 0.7, and c is 0.1 ≦ c ≦ 0. 6, d is 0.01 ≦ d ≦ 0.55, e is 0.01 ≦ e ≦ 0.7, and 3 to 15 atomic% of Pb is substituted by at least one of Ca, Sr, and Ba Consists of.
[0005]
In addition, the piezoelectric ceramic composition described in Japanese Patent Publication No. 60-22516 has the above composition formula in which a is 1.00, b is 0.01 ≦ b ≦ 0.7, and c is 0.1 ≦ c ≦. 0.6, d is 0.01 ≦ d ≦ 0.55, e is 0.01 ≦ e ≦ 0.7, 3 to 15 atomic% of Pb is substituted by Sr, and 0.25 to 1.50. It further comprises wt% Li 2 CO 3 .
[0006]
The piezoelectric ceramic composition described in Japanese Examined Patent Publication No. 64-7032 has the above composition formula, in which a is 0.96 ≦ a ≦ 0.985, b is 0.075 ≦ b ≦ 0.375, and c is 0.00. 20 ≦ c ≦ 0.40, d is 0 ≦ d ≦ 0.50, e is 0 ≦ e ≦ 0.70, or up to 5 atomic% of Pb, at least of Ca, Sr, Ba It is composed of one that is substituted by one type or one that further contains a metal oxide such as Li 2 O.
[0007]
Conventionally, a piezoelectric element using a piezoelectric material has a single layer structure. That is, after firing ceramics, an electrode such as Ag is baked to produce a device. Therefore, the firing temperature of the ceramics was not a major obstacle to making a device.
[0008]
In recent years, a laminated structure has been promoted from the viewpoint of improving the performance of a piezoelectric device and lowering the voltage. A typical example of these devices is a laminated piezoelectric actuator. In the case of multi-layered elements, it is mainly made like a multi-layer capacitor by making a ceramic material into a sheet, printing and applying electrode paste on the green sheet, and then laminating several to several tens of layers by thermocompression bonding. . That is, the electrode material that can be used at the firing temperature of the ceramic material is determined.
[0009]
When a laminated piezoelectric device is manufactured using the piezoelectric ceramic composition as described above, Pt or an Ag—Pd alloy is generally used as a material for the internal electrode.
[0010]
[Problems to be solved by the invention]
However, since all of the above conventional piezoelectric ceramic compositions have a sintering temperature as high as 1130 to 1300 ° C., an Ag—Pd alloy having a high Pt or Pd content must be used as a material for the internal electrodes to be simultaneously fired. That is, there is a problem that the cost of the piezoelectric device is increased.
[0011]
In addition, since the conventional piezoelectric ceramic composition has a sintering temperature as high as 1130 to 1300 ° C., a large amount of thermal energy is required for sintering, and not only costs for thermal energy are required, There was a problem that the load on the environment was large.
[0012]
In addition, since all of the above conventional piezoelectric ceramic compositions have a sintering temperature as high as 1130 to 1300 ° C., there is a problem that the amount of PbO evaporation during firing is large and the working environment in the factory may be deteriorated. It was.
[0013]
The present invention provides a piezoelectric ceramic composition that can be sintered at a low temperature of 900 ° C. or less, has a small ceramic particle size, and has a high mechanical strength (a bending strength of 900 kg / cm 2 or more). For the purpose.
[0014]
[Means for Solving the Problems]
The present invention relates to a piezoelectric ceramic composition and a piezoelectric device using the piezoelectric ceramic composition, and the piezoelectric ceramic composition has the formula Pb a {Zr b · Ti c · (Ni 1/3 Nb 2/3 ) d · (Zn 1/3 Nb 2/3 ) e } O 3 and a perovskite composition and Ag 2 O contained in the perovskite composition, and the formula Pb a {Zr b · Ti c · ( Ni 1/3 Nb 2/3 ) d · (Zn 1/3 Nb 2/3 ) e } When a, b, c, d, e in O 3 are b + c + d + e = 1, 1.000 ≦ a ≦ 1.020, 0.26 ≦ b ≦ 0.3, 0.34 ≦ c ≦ 0.40, 0.10 ≦ d ≦ 0.35, 0.07 ≦ e ≦ 0.14, and Ag 2 O is contained at a ratio of 0.005 to 0.03 wt%.
[0015]
Here, the added 0.005~0.03Wt% relative perovskite composition Ag 2 O is too large particle size of the sintered body is 0.005 wt% or less of Ag 2 O is added, the sample bending The force becomes small, and addition of 0.03 wt% or more of Ag 2 O causes a secondary phase to precipitate in the sintered body and lowers the piezoelectric characteristics, but in the range of 0.005 to 0.03 wt%. This is because when Ag 2 O is added, a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle size can be obtained by firing at 900 ° C.
[0016]
Further, a is set to 1.000 ≦ a ≦ 1.020. Although excellent piezoelectric characteristics can be obtained when a <1.000, low temperature sintering is impossible even when Ag is added. A high sintering temperature is required, and when 1.020 <a, a large amount of Pb secondary phase is precipitated and the piezoelectric properties are deteriorated, so that it cannot be put into practical use. However, the range is 1.000 ≦ a ≦ 1.020. This is because a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle diameter can be obtained by firing at 900 ° C.
[0017]
Further, b is set to 0.26 ≦ b ≦ 0.31 because excellent piezoelectric characteristics cannot be obtained when b <0.26, and only in the high a value range in the a value range of the present claims. However, low-temperature sintering becomes impossible, and when 0.31 <b, the crystal structure changes, and excellent piezoelectric characteristics cannot be obtained. Further, low-temperature sintering can be performed only in a high a value range. This is because, in the range of ≦ b ≦ 0.31, a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle size can be obtained by firing at 900 ° C.
[0018]
Also, the reason why c is set to 0.34 ≦ c ≦ 0.40 is that excellent piezoelectric characteristics cannot be obtained when c <0.34, and only in the high a value range in the a value range of the present claims. However, low-temperature sintering is not possible, and excellent piezoelectric properties cannot be obtained when 0.40 <c, and low-temperature sintering is possible only in a high a value range, but 0.34 ≦ c ≦ 0.40 This is because a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle diameter can be obtained by firing at 900 ° C.
[0019]
The reason why d is set to 0.10 ≦ d ≦ 0.35 is that when d <0.10, the Curie temperature is high, and excellent piezoelectric characteristics cannot be obtained. Low temperature sintering is possible only at 0.35 <d, and the Curie temperature is too low to withstand practical use, and low temperature sintering is possible only in the high a value range of the a value range of the claims. However, in the case of 0.10 ≦ d ≦ 0.35, a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle size can be obtained by firing at 900 ° C.
[0020]
In addition, e is set to 0.07 ≦ e ≦ 0.14. Although excellent piezoelectric characteristics can be obtained when e <0.07, the temperature is low only in a high a value range in the a value range of the present claims. Sintering becomes impossible, grain growth due to firing cannot be suppressed, and the sample bending strength becomes small, and excellent piezoelectric characteristics can be obtained when 0.14 <e. Of these, low-temperature sintering can be performed only in a high a value range, but in the case of 0.07 ≦ e ≦ 0.14, a piezoelectric ceramic composition having good piezoelectric properties and small ceramic particle size by firing at 900 ° C. It is because it is obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
First, raw material powders made of PbO, ZrO 2 , TiO 2 , NiO, ZnO, Nb 2 O 5 , Ag 2 O were prepared and weighed at the ratios shown in Table 1, and zirconia beads and ion exchange were placed in a pot mill. It was put together with water and wet mixed for 15 hours, and the resulting suspension was transferred to a vat, placed in a drier and dried at 150 ° C.
[0022]
Next, the mixture obtained by this drying was fired at 850 ° C. for 2 hours in an air atmosphere using an electric furnace. Each metal oxide in the mixture reacted with each other by solid phase reaction to form a perovskite compound.
[0023]
Next, this perovskite compound is put in a pot mill together with zirconia beads and ion-exchanged water, wet disintegrated for 15 hours, and the resulting suspension is transferred to a vat and dried in a dryer at 150 ° C. to complete. A powder was obtained.
[0024]
Next, a small amount of an organic binder was mixed with the finished powder, and compression molding was performed at a pressure of 1.5 MPa using a pressure press machine to obtain a disk-shaped sample having a diameter of 8 mm and a thickness of 0.5 mm.
[0025]
Next, this sample is put in an electric furnace and baked at 900 ° C. to 1050 ° C. for 2 hours in an air atmosphere. Thereafter, the sample is taken out from the electric furnace, and a fritless Ag paste is printed on both surfaces of the sample. Under baking was performed at 700 ° C., and this was used as an external electrode.
[0026]
Next, a voltage of 1.5 kV / mm was applied to the sample with external electrodes at 100 ° C. for 3 minutes to polarize the sample.
[0027]
Next, when the piezoelectric characteristics Kr of the polarized sample were measured, they were as shown in Table 1. The piezoelectric property Kr measurement was calculated by measuring impedance according to the Japan Electronic Materials Industry Standard (EMAS standard).
[0028]
Further, when the particle diameter of the ceramic particles forming the sample was measured, it was as shown in Table 1. For the particle size measurement, an electron microscope was used to measure the longest length of each particle in a certain direction of the photo based on a photograph in which the surface of the sample was magnified 5000 times. 200 particles were measured for each sample, and the average was taken as the sample particle size.
[0029]
Moreover, the bending strength of the sintered compact sample was calculated | required by calculation from the three-point bending measurement fracture load value. The three-point bending measurement method and the fracture strength calculation formula were performed according to JIS standard R-1601. The three-point bending measurement sample shape is different from the Kr measurement shape. Compression molding was performed at a pressure of 1.5 MPa to form a rectangular shape having a length of 30 mm, a width of 3.5 mm, and a thickness of 2.7 mm. After firing, the sample size was adjusted by polishing in accordance with JIS standard R-1601.
[0030]
[Table 1]
Figure 0004202657
[0031]
From the results shown in Table 1, Sample No. As shown in FIG. 1, when Ag 2 O is not added, the particle size of the sintered body is increased and the bending strength is decreased. As shown in FIG. 5, when 0.04 wt% of Ag 2 O is added, a secondary phase is precipitated in the sintered body and the piezoelectric characteristics are deteriorated. When Ag 2 O is added in the range of 0.005 to 0.03 wt% as shown in 2 to 4, a piezoelectric ceramic composition with good piezoelectric characteristics and small ceramic particle size can be obtained by firing at 900 ° C. I understand that.
[0032]
Sample No. As shown in FIG. 6, when a is 0.995, the sintering temperature is as high as 1050 ° C. As shown in FIG. 10, when a is 1.025, the piezoelectric characteristics are as bad as 51%. 7 to 9, it can be seen that a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle diameter can be obtained by firing at 900 ° C. in the range of 1.000 ≦ a ≦ 1.020.
[0033]
Sample No. As shown in FIG. 11, when b is 0.24, the piezoelectric characteristics are deteriorated to 52%, and the sintering temperature is increased to 950 ° C. As shown in FIG. 15, when b is 0.33, the piezoelectric characteristics are degraded to 50% and the sintering temperature is increased to 950 ° C. As shown in 12-14, in the range of 0.26 ≦ b ≦ 0.31, it can be seen that a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle diameter can be obtained by firing at 900 ° C.
[0034]
Sample No. As shown in FIG. 16, when c is 0.32, the piezoelectric characteristics are degraded to 53%, the sintering temperature is increased to 950 ° C. As shown in FIG. 20, when c is 0.42, the piezoelectric characteristics are deteriorated to 52% and the sintering temperature is increased to 950 ° C. 17 to 19, it can be seen that a piezoelectric ceramic composition with good piezoelectric characteristics and small ceramic particle diameter can be obtained by firing at 900 ° C. when 0.34 ≦ c ≦ 0.40.
[0035]
Sample No. As shown in FIG. 21, when d is 0.05, the piezoelectric characteristics are deteriorated to 49%, the sintering temperature is increased to 950 ° C. 25, when d is 0.40, the sintering temperature is as high as 950 ° C. 22 to 24, when 0.10 ≦ d ≦ 0.35, it can be seen that a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle diameter can be obtained by firing at 900 ° C.
[0036]
Sample No. 26, when e is 0.02, the sintering temperature is as high as 950 ° C., grain growth due to firing cannot be suppressed, the grain size is increased and the bending strength is decreased. As shown in FIG. 30, when e is 0.20, the sintering temperature is as high as 1000 ° C. As shown in 27-29, it can be seen that in the case of 0.07 ≦ e ≦ 0.14, a piezoelectric ceramic composition having good piezoelectric characteristics and small ceramic particle size can be obtained by firing at 900 ° C.
[0037]
In this example, the starting materials were PbO, ZrO 2 , TiO 2 , NiO, ZnO, Nb 2 O 5 and Ag 2 O, all of which were mixed together and calcined to create a piezoelectric material powder. Even if some or all of PbZrO 3 , PbTiO 3 , Pb (Ni 1/3 Nb 2/3 ) O 3 , Pb (Zn 1/3 Nb 2/3 ) O 3 are used, the final composition ratio is the same. It may be adjusted so as to become. As Ag 2 O, acetic acid Ag, carbonic acid Ag, or metal Ag powder can be used.
[0038]
【The invention's effect】
According to this invention, since the sintering temperature can be made 900 ° C. or less, there is an effect that the cost of the product can be reduced by reducing the precious metal ratio of the internal electrodes.
[0039]
Moreover, according to this invention, since sintering temperature can be made 900 degrees C or less, it is effective in reducing an environmental burden while reducing a thermal energy cost by heat amount reduction at the time of baking.
[0040]
Moreover, according to this invention, since sintering temperature can be made 900 degrees C or less, the evaporation of PbO at the time of baking can be decreased, and the effect that the working environment in a factory can be made favorable. There is.
[0041]
Further, according to the present invention, there is an effect that a piezoelectric ceramic composition having a piezoelectric characteristic kr of 55% or more and a practical energy conversion efficiency can be obtained.
[0042]
In addition, according to the present invention, it is possible to obtain a piezoelectric ceramic composition suitable as a material for a thin layered element having a small particle size of 1.6 μm or less, a dense and high strength, and suppressing grain growth due to firing. There is an effect that can be done.

Claims (2)

式Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}Oで表わされるペロブスカイト組成物と該ペロブスカイト組成物中に含まれるAgOとからなり、該式Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}O中のa,b,c,d,eがb+c+d+e=1としたときに下記の範囲にあり、AgOが0.005〜0.03wt%の割合で含まれていることを特徴とする圧電磁器組成物。
1.000≦a≦1.020
0.26≦b≦0.31
0.34≦c≦0.40
0.10≦d≦0.35
0.07≦e≦0.14
Perovskite composition represented by the formula Pb a {Zr b · Ti c · (Ni 1/3 Nb 2/3 ) d · (Zn 1/3 Nb 2/3 ) e } O 3 and contained in the perovskite composition It consists of a Ag 2 O being, formula Pb a {Zr b · Ti c · (Ni 1/3 Nb 2/3) d · (Zn 1/3 Nb 2/3) e} O 3 in a, b , C, d, e are in the following range when b + c + d + e = 1, and Ag 2 O is contained in a proportion of 0.005 to 0.03 wt%.
1.000 ≦ a ≦ 1.020
0.26 ≦ b ≦ 0.31
0.34 ≦ c ≦ 0.40
0.10 ≦ d ≦ 0.35
0.07 ≦ e ≦ 0.14
圧電磁器組成物からなる1又は2以上の圧電磁器と、該圧電磁器を挟持する2以上の電極とを備え、該圧電磁器組成物は、式Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}Oで表わされるペロブスカイト組成物と該ペロブスカイト組成物中に含まれるAgOとからなり、該式Pb{Zr・Ti・(Ni1/3Nb2/3・(Zn1/3Nb2/3}O中のa,b,c,d,eがb+c+d+e=1としたときに下記の範囲にあり、AgOが0.005〜0.03wt%の割合で含まれていることを特徴とする圧電デバイス。
1.000≦a≦1.020
0.26≦b≦0.31
0.34≦c≦0.40
0.10≦d≦0.35
0.07≦e≦0.14
One or more piezoelectric ceramics made of a piezoelectric ceramic composition and two or more electrodes sandwiching the piezoelectric ceramic, the piezoelectric ceramic composition having the formula Pb a {Zr b · Ti c · (Ni 1 / 3 Nb 2/3 ) d · (Zn 1/3 Nb 2/3 ) e } O 3 and a perovskite composition, and Ag 2 O contained in the perovskite composition, the formula Pb a {Zr b · Ti c · (Ni 1/3 Nb 2/3 ) d · (Zn 1/3 Nb 2/3 ) e } When a, b, c, d, e in O 3 are b + c + d + e = 1 in the range below, the piezoelectric device Ag 2 O is characterized in that it contains a proportion of 0.005~0.03wt%.
1.000 ≦ a ≦ 1.020
0.26 ≦ b ≦ 0.31
0.34 ≦ c ≦ 0.40
0.10 ≦ d ≦ 0.35
0.07 ≦ e ≦ 0.14
JP2002043079A 2002-02-20 2002-02-20 Piezoelectric ceramic composition and piezoelectric device Expired - Fee Related JP4202657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002043079A JP4202657B2 (en) 2002-02-20 2002-02-20 Piezoelectric ceramic composition and piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043079A JP4202657B2 (en) 2002-02-20 2002-02-20 Piezoelectric ceramic composition and piezoelectric device

Publications (2)

Publication Number Publication Date
JP2003238248A JP2003238248A (en) 2003-08-27
JP4202657B2 true JP4202657B2 (en) 2008-12-24

Family

ID=27782985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043079A Expired - Fee Related JP4202657B2 (en) 2002-02-20 2002-02-20 Piezoelectric ceramic composition and piezoelectric device

Country Status (1)

Country Link
JP (1) JP4202657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406866B2 (en) 2011-12-20 2016-08-02 Taiyo Yuden Co., Ltd. Piezoelectric device with piezoelectric ceramic layer having AG segregated in voids in sintered body of perovskite composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230839A (en) * 2006-03-02 2007-09-13 Tdk Corp Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
JP4755919B2 (en) * 2006-02-23 2011-08-24 富士フイルム株式会社 Lead zirconate titanate composition, method for producing the same, piezoelectric body, and piezoelectric element
JP2007258301A (en) 2006-03-22 2007-10-04 Tdk Corp Laminated piezoelectric element, and its manufacturing method
JP4238271B2 (en) 2006-03-22 2009-03-18 Tdk株式会社 Piezoelectric ceramic composition and multilayer piezoelectric element
JP4711083B2 (en) * 2006-12-27 2011-06-29 Tdk株式会社 Multilayer piezoelectric element
JP5931127B2 (en) 2013-11-08 2016-06-08 太陽誘電株式会社 Piezoelectric ceramics, method for manufacturing the same, and piezoelectric ceramic speaker having the same
JP6445372B2 (en) 2015-03-31 2018-12-26 日本碍子株式会社 Piezoelectric / electrostrictive material, piezoelectric / electrostrictive body, and resonance driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406866B2 (en) 2011-12-20 2016-08-02 Taiyo Yuden Co., Ltd. Piezoelectric device with piezoelectric ceramic layer having AG segregated in voids in sintered body of perovskite composition
US9614142B2 (en) 2011-12-20 2017-04-04 Taiyo Yuden Co., Ltd. Piezoelectric ceramic composition constituted by Ag-segregated sintered body of zirconate-titanate type perovskite composition
US9755137B2 (en) 2011-12-20 2017-09-05 Taiyo Yuden Co., Ltd. Piezoelectric device with piezoelectric ceramic layer constituted by alkali-containing niobate type perovskite composition

Also Published As

Publication number Publication date
JP2003238248A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
KR100905886B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
JP3945536B2 (en) Piezoelectric ceramic composition, method for manufacturing the piezoelectric ceramic composition, and piezoelectric ceramic electronic component
JP2004002069A (en) Processes for manufacturing piezoelectric ceramic and piezoelectric element
US7965020B2 (en) Piezoelectric ceramic and piezoelectric element
WO2010001542A1 (en) Piezoelectric ceramic composition and piezoelectric element made by using the same
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP4177615B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP4202657B2 (en) Piezoelectric ceramic composition and piezoelectric device
WO2003104163A1 (en) Piezoelectric porcelain composition, laminated piezoelectric device therefrom and process for producing the same
JP6175528B2 (en) Piezoelectric device
JP5462090B2 (en) Piezoelectric / electrostrictive ceramics sintered body
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
JP3108724B2 (en) High durability piezoelectric composite ceramics and its manufacturing method
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JP2006036578A (en) Method of manufacturing piezoelectric material and piezoelectric material using the same
JP3781317B2 (en) Piezoelectric ceramic material
JPS6358777B2 (en)
JP3802611B2 (en) Piezoelectric material
JP5651453B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP2003277142A (en) Piezoelectric ceramics and piezoelectric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Ref document number: 4202657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees