JP2006036578A - Method of manufacturing piezoelectric material and piezoelectric material using the same - Google Patents

Method of manufacturing piezoelectric material and piezoelectric material using the same Download PDF

Info

Publication number
JP2006036578A
JP2006036578A JP2004218166A JP2004218166A JP2006036578A JP 2006036578 A JP2006036578 A JP 2006036578A JP 2004218166 A JP2004218166 A JP 2004218166A JP 2004218166 A JP2004218166 A JP 2004218166A JP 2006036578 A JP2006036578 A JP 2006036578A
Authority
JP
Japan
Prior art keywords
phase
piezoelectric material
piezoelectric
rhombohedral
tetragonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004218166A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okuda
和弘 奥田
Hironori Moriwake
博紀 森分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004218166A priority Critical patent/JP2006036578A/en
Publication of JP2006036578A publication Critical patent/JP2006036578A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric material adaptable to a piezoelectric product such as a laminated piezoelectric actuator or a laminated piezoelectric transformer and having a composition in the vicinity of a morphotropic phase boundary between a tetragonal phase and a rhombohedral phase of a lead titanate zirconate-based piezoelectric material and a method of manufacturing the same. <P>SOLUTION: In the method of manufacturing the piezoelectric material having the composition in the vicinity of the morphotropic phase boundary, the piezoelectric material having excellent piezoelectric characteristics is obtained by analyzing a piezoelectric material using an X-ray diffraction-Rietveld analysis to identify a ceramic crystal phase after sintering as a mixed crystal of the tetragonal phase with the rhombohedral phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電アクチュエータや圧電トランス等の圧電製品に適応できるチタン酸ジルコン酸鉛(PZT)系圧電材料のモルフォトロピック相境界(MPB)近傍組成の圧電材料およびその製造方法に関するものである。   The present invention relates to a piezoelectric material having a composition close to the morphotropic phase boundary (MPB) of a lead zirconate titanate (PZT) piezoelectric material that can be applied to piezoelectric products such as piezoelectric actuators and piezoelectric transformers, and a method for manufacturing the same.

近年の小型化や薄型化あるいは高性能化の要望にともない圧電アクチュエータ、圧電トランス等の圧電デバイスの開発も盛んになってきており、MPB相境界近傍組成の圧電材料の開発が盛んに行われ、MPB相境界近傍組成のPZT系圧電磁器組成物に関して、繰り返し駆動における変位特性の少ない耐久性の高い圧電体を提供するため圧電磁器組成物が開示されている。   With the recent demand for miniaturization, thinning, and high performance, development of piezoelectric devices such as piezoelectric actuators and piezoelectric transformers has become active, and development of piezoelectric materials having compositions near the MPB phase boundary has been actively conducted. With respect to a PZT piezoelectric ceramic composition having a composition near the MPB phase boundary, a piezoelectric ceramic composition has been disclosed in order to provide a highly durable piezoelectric body with little displacement characteristics in repeated driving.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平9−71463号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP-A-9-71463

チタン酸ジルコン酸鉛系圧電材料で高い圧電特性を得るためにMPB近傍組成がよく用いられているが、MPB相境界近傍組成において圧電特性が良い理由が解明されていないために、制御することが困難であるという課題を有していた。   In order to obtain high piezoelectric characteristics in lead zirconate titanate-based piezoelectric materials, the composition near MPB is often used, but the reason why the piezoelectric characteristics are good in the composition near the MPB phase boundary has not been elucidated. It had the problem of being difficult.

本発明は、モルフォトロピック相境界近傍組成のチタン酸ジルコン酸鉛系圧電材料の製造方法において、X線回折−リートベルト解析法を用いて解析を行うことにより正方晶(Tetragonal)と菱面体晶(Rhombohedral)との混晶であることを同定し、その相比率を制御することにより優れた圧電特性を有する圧電材料を提供するものである。   The present invention relates to a method for producing a lead zirconate titanate piezoelectric material having a composition near the morphotropic phase boundary, by performing analysis using an X-ray diffraction-Riet belt analysis method, thereby producing tetragonal crystals and rhombohedral crystals ( The present invention provides a piezoelectric material having excellent piezoelectric characteristics by identifying a mixed crystal with Rhombohedral) and controlling the phase ratio.

上記目的を達成するために、本発明は、チタン酸ジルコン酸鉛系圧電材料のモルフォトロピック相境界近傍組成を用いた圧電材料において、原料を秤量して配合する第1の工程と、配合された原料を混合する第2の工程と、混合された原料を仮焼する第3の工程と、仮焼された粉体を粉砕する第4の工程と、粉砕された粉体から所望の形状に成形する第5の工程と、成形体を焼結しない程度の温度で脱脂する第6の工程と、脱脂された成形体を焼成する第7の工程と、焼結後のセラミックス結晶相の同定を行う第8の工程と、焼成された焼結体を加工する第9の工程と、入出力用の電極を形成する第10の工程と、圧電磁器に圧電特性を与える分極を行う第11の工程からなり、前記第8の工程において、X線回折−リートベルト解析法を用いて解析を行うことにより前記結晶相が正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶を同定する圧電材料の製造方法である。   To achieve the above object, the present invention includes a first step of weighing and blending raw materials in a piezoelectric material using a composition near the morphotropic phase boundary of a lead zirconate titanate piezoelectric material. A second step of mixing the raw materials, a third step of calcining the mixed raw materials, a fourth step of crushing the calcined powder, and forming the pulverized powder into a desired shape A fifth step of performing, a sixth step of degreasing the molded body at a temperature that does not sinter the molded body, a seventh step of firing the degreased molded body, and identification of the sintered ceramic crystal phase From the eighth step, the ninth step of processing the fired sintered body, the tenth step of forming electrodes for input / output, and the eleventh step of performing polarization that gives piezoelectric properties to the piezoelectric ceramic In the eighth step, the X-ray diffraction-Riet belt analysis method is used. The crystalline phase by performing analysis Te is the manufacturing method of the piezoelectric material to identify the mixed crystal of tetragonal (Tetragonal) phase and rhombohedral (rhombohedral) phase.

これにより、正方相と菱面体相との混晶を精度よく同定することができるため、圧電特性に優れた圧電材料を提供することが可能となる。   Thereby, since a mixed crystal of a tetragonal phase and a rhombohedral phase can be accurately identified, a piezoelectric material having excellent piezoelectric characteristics can be provided.

以上のように本発明は、焼結後のセラミックス結晶相を正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶とすることにより、優れた圧電特性を有する圧電材料を提供するものであり、結晶相比率を制御することにより、目的とする特性を有する圧電材料を選定することが可能となる。また、鉛を過剰に添加したPZT系組成においてもその効果を発揮するものであり、低温焼成と優れた圧電特性を両立でき、省エネルギーへの効果および低融点で安価な内部電極材料との積層部品への適応が可能となる。   As described above, the present invention provides a piezoelectric material having excellent piezoelectric characteristics by making the ceramic crystal phase after sintering a mixed crystal of a tetragonal phase and a rhombohedral phase. Therefore, by controlling the crystal phase ratio, it is possible to select a piezoelectric material having the desired characteristics. In addition, PZT-based compositions with excessive addition of lead exhibit its effects, and can achieve both low-temperature firing and excellent piezoelectric properties, and can achieve both energy saving and low melting point with low-melting internal electrode material. Adaptation to is possible.

(実施の形態1)
本発明の実施の形態を用いて、本発明の請求項1〜11に記載の発明について、図面を参照しながら説明する。
(Embodiment 1)
The invention described in claims 1 to 11 of the present invention will be described using the embodiments of the present invention with reference to the drawings.

図1は、本実施の形態におけるPZT系圧電材料の製造工程のフローチャートである。   FIG. 1 is a flowchart of a manufacturing process of a PZT piezoelectric material in the present embodiment.

まず、出発原料として、酸化鉛(PbO)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化亜鉛(ZnO)、酸化ニオブ(Nb25)の粉末を用いて、金属元素のモル比が下記の組成になるように各原料を秤量配合する(図1(a))。 First, using a powder of lead oxide (PbO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ) as a starting material, moles of metal elements Each raw material is weighed and blended so that the ratio becomes the following composition (FIG. 1 (a)).

Pb1.02(Zn1/3Nb2/30.10ZrxTi0.90-x3
その具体的な配合量を表1に示す。
Pb 1.02 (Zn 1/3 Nb 2/3 ) 0.10 Zr x Ti 0.90-x O 3
The specific blending amounts are shown in Table 1.

Figure 2006036578
Figure 2006036578

これらの配合された原料を、水およびメディアとして部分安定化ジルコニアボールとともにポットミルに投入し、ポットミルを20時間回転させ湿式混合する。この時、原料と水の重量比率が1:1となるようにし、メディアのジルコニアボールの径としては5mm以下のものを用いる(図1(b))。   These blended raw materials are put into a pot mill together with partially stabilized zirconia balls as water and media, and the pot mill is rotated for 20 hours to perform wet mixing. At this time, the weight ratio of the raw material to water is set to 1: 1, and the diameter of the media zirconia ball is 5 mm or less (FIG. 1B).

次に、前記の湿式混合したスラリーをステンレスバット等に移し、200℃の乾燥機中で一昼夜乾燥した。この乾燥粉を乳鉢等で粗粉砕した後、アルミナ材質の坩堝に移し、最高温度850℃で2時間(昇降温速度は200℃/時間)熱処理を行い、仮焼粉を得る(図1(c))。   Next, the wet-mixed slurry was transferred to a stainless steel vat or the like and dried overnight in a dryer at 200 ° C. The dried powder is coarsely pulverized in a mortar or the like and then transferred to an alumina crucible and subjected to heat treatment at a maximum temperature of 850 ° C. for 2 hours (temperature raising / lowering rate is 200 ° C./hour) to obtain calcined powder (FIG. )).

その後、得られた仮焼粉をロータミルやディスクミル等の粗砕機を用いて粗粉砕後、上記の混合時と同様にポットミルを用いて、この粗粉砕粉を10時間湿式粉砕した。その後、粉砕スラリーをステンレスバットなどに移し、200℃の乾燥機中で一昼夜乾燥し、圧電材料の粉砕粉を得る(図1(d))。   Thereafter, the obtained calcined powder was coarsely pulverized using a crusher such as a rotor mill or a disk mill, and then this coarsely pulverized powder was wet pulverized for 10 hours using a pot mill in the same manner as in the above mixing. Thereafter, the pulverized slurry is transferred to a stainless bat or the like and dried in a drier at 200 ° C. for a whole day and night to obtain a pulverized powder of piezoelectric material (FIG. 1 (d)).

ここで、得られた圧電材料粉体を有機結合材、可塑剤、有機溶媒と共に所定量配合してからスラリー混合を行い、シート成形用スラリーを作製し、その後ドクターブレード法によってシート成形を行い、圧電層となる所定厚みの圧電材料のグリーンシートを得る(図1(e))。   Here, a predetermined amount of the obtained piezoelectric material powder is blended together with an organic binder, a plasticizer, and an organic solvent, and then slurry mixing is performed to produce a sheet forming slurry, and then sheet forming is performed by a doctor blade method, A green sheet of a piezoelectric material having a predetermined thickness to be a piezoelectric layer is obtained (FIG. 1 (e)).

次に、図2に示すように、圧電材料のグリーンシート1上に、Ag内部電極ペーストで、乾燥後の厚みが10μm程度になるように、内部電極パターン2a、2bを印刷し、次いで、内部電極ペーストを印刷していない圧電材料のグリーンシート1を上に積層して仮加圧を施し、再度印刷する。積層、仮加圧、印刷を繰り返し行い、最後の圧電材料のグリーンシート1のみ内部電極ペーストを印刷せずに積層、仮加圧を施し、最後に本加圧として18MPaの圧力を加え、切断機を用いて所定の寸法になるよう切り出し、ほぼ平板状の積層体を得る(図1(f))。   Next, as shown in FIG. 2, the internal electrode patterns 2a and 2b are printed on the green sheet 1 of the piezoelectric material with an Ag internal electrode paste so that the thickness after drying becomes about 10 μm. A green sheet 1 of piezoelectric material on which no electrode paste is printed is laminated on top, pre-pressurized, and printed again. Lamination, temporary pressurization, and printing are repeated, and only the final green sheet 1 of piezoelectric material is laminated and prepressurized without printing the internal electrode paste, and finally a pressure of 18 MPa is applied as the main pressurization. Is cut out to a predetermined size to obtain a substantially flat laminate (FIG. 1 (f)).

その後、この積層体中の500℃で脱脂を施すことにより有機成分を除去する(図1(g))。   Thereafter, the organic component is removed by degreasing the laminated body at 500 ° C. (FIG. 1G).

ここで、以上の図1(e)、(f)、(g)の工程は、積層圧電体を形成する場合を示しており、単層のブロック状の圧電体を形成する場合は、図1(d)の工程で得られた粉砕粉にポリビニルアルコール系のバインダを加え混合した後、約1000kg/cm2の圧力でプレス成形して形成する。そしてこの得られた成形体をアルミナ材質のサヤに載置し、電気炉中にて500℃で2時間加熱によって脱脂する。 Here, the steps of FIGS. 1E, 1F, and 1G show the case of forming a laminated piezoelectric material, and FIG. 1 shows the case of forming a single-layer block-shaped piezoelectric material. After the polyvinyl alcohol binder is added to and mixed with the pulverized powder obtained in the step (d), it is formed by press molding at a pressure of about 1000 kg / cm 2 . The obtained molded body is placed on an alumina material sheath and degreased by heating at 500 ° C. for 2 hours in an electric furnace.

脱脂工程後、脱脂された圧電体を電気炉中に投入し、950℃以下の焼成温度で2時間保持し、本焼成後に積層状の圧電焼結体を得る(図1(h))。   After the degreasing step, the degreased piezoelectric body is put into an electric furnace and held at a firing temperature of 950 ° C. or lower for 2 hours, and a laminated piezoelectric sintered body is obtained after the main firing (FIG. 1 (h)).

次に、得られた圧電焼結体を余計な力を加えずにアルミナ製の乳鉢、乳棒で細かく粉砕し、粉末X線回折測定を行った後に、その結果をリートベルト解析してX線プロファイルのフィッティングを実施し、セラミックス結晶相中の正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との相比率を高精度に評価を行う(図1(i))。これにより、相比率を精度良く評価することができるので、圧電特性に優れた圧電材料を、少ない誤差で精度良く得ることが可能となる。   Next, the obtained piezoelectric sintered body was finely pulverized with an alumina mortar and pestle without applying extra force, and after performing powder X-ray diffraction measurement, the result was subjected to Rietveld analysis to obtain an X-ray profile. The phase ratio between the tetragonal phase and the rhombohedral phase in the ceramic crystal phase is evaluated with high accuracy (FIG. 1 (i)). Thereby, since the phase ratio can be evaluated with high accuracy, a piezoelectric material having excellent piezoelectric characteristics can be obtained with low error and high accuracy.

その後、ガラスフリットを含有した銀ペーストを所定の外部電極の位置に印刷し乾燥させる。その後、圧電焼結体を約700℃−10分の条件で外部電極の焼き付けを行い、銀(Ag)を内部電極とする圧電焼結体に、図3に示すように外部電極3a、3bを形成する(図1(j))。   Thereafter, a silver paste containing glass frit is printed at a position of a predetermined external electrode and dried. Thereafter, the external electrode is baked on the piezoelectric sintered body at about 700 ° C. for 10 minutes, and the external electrodes 3a and 3b are formed on the piezoelectric sintered body using silver (Ag) as the internal electrode as shown in FIG. It forms (FIG.1 (j)).

次に、100℃のシリコーンオイル中で内部電極2aと2bとの間に3kV/mmの電界を30分間印加し、分極処理をして図3に示すようなAgを内部電極とする積層圧電体4を得る。分極処理後の積層圧電体4は、室温で24時間以上放置する(図1(k))。   Next, an electric field of 3 kV / mm is applied for 30 minutes between the internal electrodes 2a and 2b in 100 ° C. silicone oil, and polarization treatment is performed, so that a laminated piezoelectric body having Ag as an internal electrode as shown in FIG. Get 4. The laminated piezoelectric body 4 after the polarization treatment is left at room temperature for 24 hours or longer (FIG. 1 (k)).

続いて、上記のようにして得られた積層圧電体4について、圧電特性である結合係数k31を、インピーダンスアナライザー等を用いて測定する(図1(l))。   Subsequently, with respect to the laminated piezoelectric body 4 obtained as described above, a coupling coefficient k31 which is a piezoelectric characteristic is measured using an impedance analyzer or the like (FIG. 1 (l)).

ここで、図1(l)にて測定した積層圧電体の結合係数k31の特性評価結果と、図1(i)にて評価した圧電焼結体結晶相中の正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との相比率との関係を図4に示す。   Here, the characteristic evaluation result of the coupling coefficient k31 of the laminated piezoelectric material measured in FIG. 1 (l) and the tetragonal (Tetragonal) phase and rhomboid in the crystal phase of the piezoelectric sintered body evaluated in FIG. 1 (i). FIG. 4 shows the relationship with the phase ratio with the rhombohedral phase.

図4の結果から、菱面体晶(Rhombohedral)相の相比率が結晶相全体の0.5〜25%の範囲において、圧電特性である結合係数k31が目標値である0.30以上を満たしており、積層圧電体はこの範囲において優れた圧電特性を有するという結果が得られた。また、単層のブロック状の圧電体の場合についても同様に、0.5〜25%の範囲において圧電特性に優れているという結果が得られた。   From the result of FIG. 4, when the phase ratio of the rhombohedral phase is in the range of 0.5 to 25% of the entire crystal phase, the coupling coefficient k31, which is a piezoelectric property, satisfies the target value of 0.30 or more. As a result, it was found that the laminated piezoelectric material had excellent piezoelectric characteristics in this range. Similarly, in the case of a single-layer block-shaped piezoelectric body, the result that the piezoelectric characteristics were excellent in the range of 0.5 to 25% was obtained.

なお、本実施の形態において、図1(c)の工程後に得られた仮焼粉を、X線回折−リートベルト解析法を用いて解析を行い、正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶を同定することにより、セラミックス結晶相中の正方晶と菱面体晶との相比率を高精度に制御することが可能となり、より高特性の圧電材料を得ることができる。   In the present embodiment, the calcined powder obtained after the step of FIG. 1C is analyzed using an X-ray diffraction-Riet belt analysis method, and a tetragonal (Tetragonal) phase and rhombohedral ( By identifying the mixed crystal with the Rhombohedral phase, the phase ratio of the tetragonal crystal and rhombohedral crystal in the ceramic crystal phase can be controlled with high accuracy, and a piezoelectric material with higher characteristics can be obtained. .

また、本実施の形態において、圧電材料の一例として、
Pb1.02(Zn1/3Nb2/30.10ZrxTi0.90-x3
を用いて説明したが、Pb(Zn1/3Nb2/3)O3の配合量を変えても同様の効果が得られ、またZrおよびTi以外に添加する複合酸化物として、Pb(Mg1/3Nb2/3)O3、Pb(Ni1/3Nb2/3)O3、Pb(Sn1/3Nb2/3)O3を用いても同様の効果が得られる。
In the present embodiment, as an example of the piezoelectric material,
Pb 1.02 (Zn 1/3 Nb 2/3 ) 0.10 Zr x Ti 0.90-x O 3
However, the same effect can be obtained by changing the blending amount of Pb (Zn 1/3 Nb 2/3 ) O 3 , and Pb (Mg The same effect can be obtained by using 1/3 Nb 2/3 ) O 3 , Pb (Ni 1/3 Nb 2/3 ) O 3 , Pb (Sn 1/3 Nb 2/3 ) O 3 .

また、圧電材料の組成をPbAB3で表した場合に、A/B>1.00、すなわち鉛を過剰添加した組成であれば、950℃以下の低温焼成が可能となるため、焼成時の消費熱エネルギーを抑制することができるとともに、低融点で安価な内部電極材料との積層部品への適用が可能となるという効果が得られる。 In addition, when the composition of the piezoelectric material is expressed by Pb A X B O 3 , A / B> 1.00, that is, if the composition is excessively added with lead, low temperature firing at 950 ° C. or less is possible, The effect is that heat energy consumption during firing can be suppressed, and that it can be applied to a laminated part with a low melting point and an inexpensive internal electrode material.

また、PbAB3において、XはTiとZrを含有したPZT系であれば、いかなる場合においても本実施の形態の効果が得られる。 In Pb A X B O 3 , the effect of this embodiment can be obtained in any case as long as X is a PZT system containing Ti and Zr.

また、本発明においては、Agを内部電極とする積層圧電体を一例として説明を行ったが、Agだけではなく他の金属材料を内部電極として用いて、低温焼成した場合も同様の効果が得られ、また、単層のブロック状の圧電磁器焼結体として用いる場合にも同様の効果が得られる。   In the present invention, the laminated piezoelectric material having Ag as an internal electrode has been described as an example. However, the same effect can be obtained when not only Ag but also another metal material is used as the internal electrode and fired at a low temperature. In addition, the same effect can be obtained when used as a single-layer block-shaped piezoelectric ceramic sintered body.

積層圧電アクチュエータや積層圧電トランス等の圧電製品に適応できるチタン酸ジルコン酸鉛系圧電材料の正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相とのMPB近傍組成の圧電材料の製造方法に関して非常に有用である。   A method for manufacturing piezoelectric materials with a composition near MPB of tetragonal and rhombohedral phases of lead zirconate titanate-based piezoelectric materials applicable to piezoelectric products such as multilayer piezoelectric actuators and multilayer piezoelectric transformers Useful for.

本発明の実施の形態における積層圧電体の製造フローチャートManufacturing flow chart of laminated piezoelectric material according to an embodiment of the present invention 本発明の実施の形態における積層圧電体の内部構造図FIG. 1 is an internal structural diagram of a laminated piezoelectric material according to an embodiment of the present invention. 本発明の実施の形態における積層圧電体の斜視図The perspective view of the laminated piezoelectric material in the embodiment of the present invention 本発明の実施の形態における菱面体晶(Rhombohedral)相の相比率と結合係数k31との相関図Correlation diagram between phase ratio of rhombohedral phase and coupling coefficient k31 in the embodiment of the present invention

符号の説明Explanation of symbols

1 圧電材料のグリーンシート
2a 第1の内部電極層
2b 第2の内部電極層
3a 第1の外部電極
3b 第2の外部電極
4 積層圧電体
DESCRIPTION OF SYMBOLS 1 Green sheet of piezoelectric material 2a 1st internal electrode layer 2b 2nd internal electrode layer 3a 1st external electrode 3b 2nd external electrode 4 Laminated piezoelectric material

Claims (11)

チタン酸ジルコン酸鉛系圧電材料のモルフォトロピック相境界近傍組成を用いた圧電材料において、原料を秤量して配合する第1の工程と、配合された原料を混合する第2の工程と、混合された原料を仮焼する第3の工程と、仮焼された粉体を粉砕する第4の工程と、粉砕された粉体から所望の形状に成形する第5の工程と、成形体を焼結しない程度の温度で脱脂する第6の工程と、脱脂された成形体を焼成する第7の工程と、焼結後のセラミックス結晶相の同定を行う第8の工程と、焼成された焼結体を加工する第9の工程と、入出力用の電極を形成する第10の工程と、圧電磁器に圧電特性を与える分極を行う第11の工程からなり、前記第8の工程において、X線回折−リートベルト解析法を用いて解析を行うことにより、前記結晶相が正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶を同定する圧電材料の製造方法。 In a piezoelectric material using a morphotropic phase boundary vicinity composition of a lead zirconate titanate piezoelectric material, a first step of weighing and blending raw materials and a second step of mixing the blended raw materials are mixed A third step of calcining the raw material, a fourth step of crushing the calcined powder, a fifth step of molding the pulverized powder into a desired shape, and sintering the compact A sixth step of degreasing at a temperature that does not, a seventh step of firing the degreased compact, an eighth step of identifying the ceramic crystal phase after sintering, and the fired sintered body A ninth step of forming an input / output electrode, and an eleventh step of performing polarization that gives piezoelectric characteristics to the piezoelectric ceramic. In the eighth step, X-ray diffraction is performed. -By performing analysis using Rietveld analysis method, Method of manufacturing a piezoelectric material to identify the mixed crystal of tetragonal (Tetragonal) phase and rhombohedral (rhombohedral) phase. 第8の工程においてX線回折−リートベルト解析法により同定された焼結後のセラミックス結晶相の菱面体晶相比率を、0.5%〜25.0%とする請求項1に記載の圧電材料の製造方法。 The piezoelectric according to claim 1, wherein the rhombohedral phase ratio of the sintered ceramic crystal phase identified by the X-ray diffraction-Riet belt analysis method in the eighth step is 0.5% to 25.0%. Material manufacturing method. 第3の工程において得られる仮焼粉の結晶相を、X線回折−リートベルト解析法を用いて解析を行うことにより、正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶を同定する請求項1に記載の圧電材料の製造方法。 By analyzing the crystal phase of the calcined powder obtained in the third step using an X-ray diffraction-Riet belt analysis method, a mixed crystal of a tetragonal phase and a rhombohedral phase is obtained. The method for producing a piezoelectric material according to claim 1, wherein: チタン酸ジルコン酸鉛系圧電材料の組成を、PbAB3と表した場合に、配合比A/B>1.00を満たすように形成する請求項1に記載の圧電材料の製造方法。 The composition of lead titanate zirconate piezoelectric material, Pb A X B when O 3 and represents, manufacturing method of a piezoelectric material according to claim 1, formed so as to satisfy the mixing ratio A / B> 1.00 . チタン酸ジルコン酸鉛系圧電材料のモルフォトロピック相境界近傍組成を用いた圧電材料において、原料を秤量して配合する第1の工程と、配合された原料を混合する第2の工程と、混合された原料を仮焼する第3の工程と、仮焼された粉体を粉砕する第4の工程と、粉砕された粉体からセラミックグリーンシートを成形する第5の工程と、セラミックグリーンシートと内部電極用ペーストを用いて積層体を形成する第6の工程と、積層体を焼結しない程度の温度で脱脂する第7の工程と、脱脂された積層体を焼成する第8の工程と、焼結後のセラミックス結晶相の同定を行う第9の工程と、焼成された焼結体を加工する第10の工程と、入出力用の電極を形成する第11の工程からなり、前記第9の工程において、X線回折−リートベルト解析法を用いて解析を行うことにより、前記結晶相が正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶を同定する圧電材料の製造方法。 In a piezoelectric material using a morphotropic phase boundary vicinity composition of a lead zirconate titanate piezoelectric material, a first step of weighing and blending raw materials and a second step of mixing the blended raw materials are mixed A third step of calcining the raw material, a fourth step of crushing the calcined powder, a fifth step of forming a ceramic green sheet from the pulverized powder, the ceramic green sheet and the interior A sixth step of forming a laminate using the electrode paste, a seventh step of degreasing the laminate at a temperature that does not sinter, an eighth step of firing the degreased laminate, The ninth step of identifying the ceramic crystal phase after the sintering, the tenth step of processing the sintered body, and the eleventh step of forming the input / output electrodes. In the process, X-ray diffraction-Rietveld By performing analysis using the precipitation method of the piezoelectric material in which the crystalline phase to identify mixed crystal of tetragonal (Tetragonal) phase and rhombohedral (rhombohedral) phase. 第9の工程においてX線回折−リートベルト解析により同定された焼結後のセラミックス結晶相の菱面体晶相比率を、0.5%〜25.0%とする請求項5に記載の圧電材料の製造方法。 The piezoelectric material according to claim 5, wherein a rhombohedral phase ratio of the sintered ceramic crystal phase identified by X-ray diffraction-Riet belt analysis in the ninth step is 0.5% to 25.0%. Manufacturing method. 第3の工程において得られる仮焼粉の結晶相を、X線回折−リートベルト解析法を用いて解析を行うことにより、正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶を同定する請求項5に記載の圧電材料の製造方法。 By analyzing the crystal phase of the calcined powder obtained in the third step using an X-ray diffraction-Riet belt analysis method, a mixed crystal of a tetragonal phase and a rhombohedral phase is obtained. The method for producing a piezoelectric material according to claim 5, wherein: チタン酸ジルコン酸鉛系圧電材料の組成を、PbAB3と表した場合に、配合比A/B>1.00を満たすように形成する請求項5に記載の圧電材料の製造方法。 The composition of lead titanate zirconate piezoelectric material, Pb A X B when O 3 and represents, manufacturing method of a piezoelectric material according to claim 5 formed so as to satisfy the mixing ratio A / B> 1.00 . モルフォトロピック相境界近傍組成を用いたチタン酸ジルコン酸鉛系圧電材料の組成を、PbAB3と表した場合に、配合組成比がA/B>1.00であり、焼結後のセラミックス結晶相が正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶である圧電材料。 When the composition of the lead zirconate titanate piezoelectric material using the composition near the morphotropic phase boundary is expressed as Pb A X B O 3 , the composition ratio is A / B> 1.00, and after sintering A piezoelectric material in which the ceramic crystal phase is a mixed crystal of a tetragonal phase and a rhombohedral phase. 焼結後のセラミックス混晶中の菱面体晶相比率が0.5%〜25.0%である請求項9に記載の圧電材料。 The piezoelectric material according to claim 9, wherein the rhombohedral phase ratio in the ceramic mixed crystal after sintering is 0.5% to 25.0%. 混合粉体の仮焼を行い、この仮焼された混合粉体の結晶相が、正方晶(Tetragonal)相と菱面体晶(Rhombohedral)相との混晶である請求項9に記載の圧電材料。 The piezoelectric material according to claim 9, wherein the mixed powder is calcined, and the crystal phase of the calcined mixed powder is a mixed crystal of a tetragonal phase and a rhombohedral phase. .
JP2004218166A 2004-07-27 2004-07-27 Method of manufacturing piezoelectric material and piezoelectric material using the same Pending JP2006036578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218166A JP2006036578A (en) 2004-07-27 2004-07-27 Method of manufacturing piezoelectric material and piezoelectric material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218166A JP2006036578A (en) 2004-07-27 2004-07-27 Method of manufacturing piezoelectric material and piezoelectric material using the same

Publications (1)

Publication Number Publication Date
JP2006036578A true JP2006036578A (en) 2006-02-09

Family

ID=35901966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218166A Pending JP2006036578A (en) 2004-07-27 2004-07-27 Method of manufacturing piezoelectric material and piezoelectric material using the same

Country Status (1)

Country Link
JP (1) JP2006036578A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094707A (en) * 2006-09-15 2008-04-24 Fujifilm Corp Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
JP2008120950A (en) * 2006-11-14 2008-05-29 Sumitomo Rubber Ind Ltd Rubber composition
JP2010132191A (en) * 2008-12-05 2010-06-17 Railway Technical Res Inst Train detector and mobile body detector
US7918542B2 (en) 2006-09-15 2011-04-05 Fujifilm Corporation Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
US8177995B2 (en) 2008-03-12 2012-05-15 Fujifilm Corporation Perovskite oxide, process for producing the perovskite oxide, and piezoelectric device
CN103245402A (en) * 2013-04-26 2013-08-14 宁波水表股份有限公司 Screening and detecting method for ultrasonic water flow detection transducers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094707A (en) * 2006-09-15 2008-04-24 Fujifilm Corp Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
US7918542B2 (en) 2006-09-15 2011-04-05 Fujifilm Corporation Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
US8434856B2 (en) 2006-09-15 2013-05-07 Fujifilm Corporation Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
JP2008120950A (en) * 2006-11-14 2008-05-29 Sumitomo Rubber Ind Ltd Rubber composition
US8177995B2 (en) 2008-03-12 2012-05-15 Fujifilm Corporation Perovskite oxide, process for producing the perovskite oxide, and piezoelectric device
JP2010132191A (en) * 2008-12-05 2010-06-17 Railway Technical Res Inst Train detector and mobile body detector
CN103245402A (en) * 2013-04-26 2013-08-14 宁波水表股份有限公司 Screening and detecting method for ultrasonic water flow detection transducers
CN103245402B (en) * 2013-04-26 2015-10-28 宁波水表股份有限公司 A kind of ultrasonic water flow detects the selective mechanisms method of transducer

Similar Documents

Publication Publication Date Title
JP4400754B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP5256804B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP4988451B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP2009242167A (en) Piezoelectric ceramic and piezoelectric element using it
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
WO2005061413A1 (en) Piezoelectric porcelain and method for production thereof
JP5345834B2 (en) Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method
JP2004075449A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic component
JP5192737B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP5462090B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
WO2016031995A1 (en) Piezoelectric ceramic, manufacturing method therefor, and electronic component
JP2006036578A (en) Method of manufacturing piezoelectric material and piezoelectric material using the same
JP4202657B2 (en) Piezoelectric ceramic composition and piezoelectric device
JP5462759B2 (en) Piezoelectric ceramics and piezoelectric element
JP2011037697A (en) Piezoelectric/electrostrictive ceramic composition
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JPWO2006093002A1 (en) Piezoelectric ceramic composition
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP2005320224A (en) Piezoelectric ceramic and piezoelectric element
JP6156434B2 (en) Piezoelectric ceramic and piezoelectric element
JP5651453B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP2010215423A (en) Piezoelectric or dielectric ceramic composition, piezoelectric device, and dielectric device