JP4988451B2 - Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics - Google Patents

Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics Download PDF

Info

Publication number
JP4988451B2
JP4988451B2 JP2007167230A JP2007167230A JP4988451B2 JP 4988451 B2 JP4988451 B2 JP 4988451B2 JP 2007167230 A JP2007167230 A JP 2007167230A JP 2007167230 A JP2007167230 A JP 2007167230A JP 4988451 B2 JP4988451 B2 JP 4988451B2
Authority
JP
Japan
Prior art keywords
lead
piezoelectric ceramics
sintering aid
piezoelectric
free piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007167230A
Other languages
Japanese (ja)
Other versions
JP2009007181A (en
Inventor
了一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007167230A priority Critical patent/JP4988451B2/en
Publication of JP2009007181A publication Critical patent/JP2009007181A/en
Application granted granted Critical
Publication of JP4988451B2 publication Critical patent/JP4988451B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、低温焼結を可能にする非鉛系圧電セラミックス用焼結助剤、非鉛系圧電セラミックスおよび非鉛系圧電セラミックスの製造方法に関する。   The present invention relates to a sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics and a method for producing lead-free piezoelectric ceramics that enable low-temperature sintering.

近年、圧電セラミック素子材料として鉛化合物を含まない圧電磁器組成物が注目され、研究開発が進められている(たとえば、特許文献1)。このような圧電磁器組成物は鉛化合物を含まないため、自然環境に対して負荷を小さくすることができる。   In recent years, piezoelectric ceramic compositions containing no lead compound have attracted attention as piezoelectric ceramic element materials, and research and development have been promoted (for example, Patent Document 1). Since such a piezoelectric ceramic composition does not contain a lead compound, the load on the natural environment can be reduced.

上記の特許文献1に記載されている圧電磁器組成物は、組成式をx(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(x+y+z=1)とした時、これらの成分を頂点とする三角座標中、組成が所定の点で囲まれる範囲内に存在する。これにより、キュリー温度が高く、実用が可能な非鉛の圧電磁器組成物を提供している。 The piezoelectric ceramic composition described in Patent Document 1 has a composition formula of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (x + y + z = 1). Then, the composition exists in a range surrounded by a predetermined point in triangular coordinates having these components as vertices. This provides a lead-free piezoelectric ceramic composition that has a high Curie temperature and is practical.

一方、デバイスの機能を高めるために、圧電セラミックスと電極とを積層させた積層型の圧電デバイスの需要が高まっている。その積層型の圧電デバイスの内部には、Ag−Pd等の材料を用いた内部電極が設けられており、内部電極に用いられるAg−Pd等の材料は、1100℃を超える温度に達すると溶融する。
特開2003−201172号公報
On the other hand, in order to enhance the function of the device, there is an increasing demand for a laminated piezoelectric device in which piezoelectric ceramics and electrodes are laminated. An internal electrode using a material such as Ag—Pd is provided inside the multilayer piezoelectric device, and the material such as Ag—Pd used for the internal electrode melts when the temperature exceeds 1100 ° C. To do.
JP 2003-201172 A

しかしながら、上記の特許文献1の圧電セラミックスは、1200℃の高温で焼成される場合には焼結体の緻密化が達成されるが、非鉛系材料で積層型の圧電デバイスを製造しようとすると、圧電体層の緻密化の温度が内部電極の融解温度を超えてしまう。   However, when the piezoelectric ceramic disclosed in Patent Document 1 is fired at a high temperature of 1200 ° C., densification of the sintered body is achieved. However, when a multilayer piezoelectric device is to be manufactured using a lead-free material. The temperature of densification of the piezoelectric layer exceeds the melting temperature of the internal electrode.

一方、焼成温度1100℃以下では、焼成の工程で内部電極が融解することはないが、圧電セラミックスの緻密化が達成されず、十分な圧電特性を得ることができない。本発明は、このような事情に鑑みてなされたものであり、低温で焼結可能な非鉛系圧電セラミックスを提供することを目的とする。   On the other hand, at a firing temperature of 1100 ° C. or lower, the internal electrodes are not melted in the firing step, but densification of the piezoelectric ceramic is not achieved and sufficient piezoelectric properties cannot be obtained. The present invention has been made in view of such circumstances, and an object thereof is to provide a lead-free piezoelectric ceramic that can be sintered at a low temperature.

(1)上記の目的を達成するため、本発明に係る非鉛系圧電セラミックス用焼結助剤は、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスの製造に用いられる焼結助剤であって、少なくとも酸化ビスマスと酸化亜鉛とを有し、残部が酸化ホウ素からなることを特徴としている。 (1) To achieve the above object, lead-free piezoelectric ceramics for sintering aid according to the present invention, x (Bi 0.5 Na 0.5 TiO 3) -y (BaTiO 3) -z (SrTiO 3 ) A sintering aid used in the production of lead-free piezoelectric ceramics whose main component is a compound represented by the composition of x + y + z = 1, and having at least bismuth oxide and zinc oxide, The balance is made of boron oxide.

上記の成分を有する焼結助剤を用いれば、1100℃以下の焼成で、BNT−BT−ST系圧電セラミックスを緻密化させることができる。その結果、非鉛系圧電セラミックスを用いて積層型圧電デバイスを作製することができる。そして、自然環境へのダメージを防止することができる。   If a sintering aid having the above components is used, the BNT-BT-ST piezoelectric ceramics can be densified by firing at 1100 ° C. or lower. As a result, a multi-layer piezoelectric device can be manufactured using lead-free piezoelectric ceramics. And damage to the natural environment can be prevented.

(2)また、本発明に係る非鉛系圧電セラミックス用焼結助剤は、前記酸化ビスマス、酸化亜鉛および酸化ホウ素の金属組成比は、モル%で、10≦Bi≦40、20≦Zn≦90、および0≦B≦40(合計100モル%)であることを特徴としている。   (2) Further, in the sintering aid for lead-free piezoelectric ceramics according to the present invention, the metal composition ratio of the bismuth oxide, zinc oxide and boron oxide is mol%, 10 ≦ Bi ≦ 40, 20 ≦ Zn ≦. 90 and 0 ≦ B ≦ 40 (total 100 mol%).

このように、本発明の圧電セラミックス用焼結助剤は、Bi:Zn:Bの組成比が緻密化に最も効果のある組成である。製造工程において、この焼結助剤をBNT−BT−ST系圧電セラミックスに添加することで、1100℃以下の焼成でBNT−BT−ST系圧電セラミックスを緻密化し十分な圧電特性もたせることができる。   Thus, the sintering aid for piezoelectric ceramics of the present invention has a composition ratio of Bi: Zn: B that is most effective for densification. In the manufacturing process, by adding this sintering aid to the BNT-BT-ST piezoelectric ceramics, the BNT-BT-ST piezoelectric ceramics can be densified by firing at 1100 ° C. or less to have sufficient piezoelectric characteristics.

(3)また、本発明に係る非鉛系圧電セラミックスは、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスであって、前記非鉛系圧電セラミックス材料に対して、上記の非鉛系圧電セラミックス用焼結助剤を0.5重量%以上5重量%以下添加し、1100℃以下で焼成して得られ、密度が5.2×10kg/m以上であることを特徴としている。 (3) Moreover, the lead-free piezoelectric ceramic according to the present invention has a composition of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (where x + y + z = 1). And a lead-free piezoelectric ceramic material containing 0.5% by weight or more of the sintering aid for the lead-free piezoelectric ceramic to the lead-free piezoelectric ceramic material. It is characterized by being added by weight% or less and calcined at 1100 ° C. or less, and having a density of 5.2 × 10 3 kg / m 3 or more.

このように、上記の焼結助剤を0.5重量%以上5重量%以下添加し、1100℃以下で焼成することで、密度が5.2×10kg/m以上のBNT−BT−ST系圧電セラミックスを得ることができる。そして、1100℃以下でも十分に緻密化するため、この非鉛の材料を圧電デバイスに応用することができる。 Thus, by adding 0.5 wt% or more and 5 wt% or less of the above-mentioned sintering aid and firing at 1100 ° C. or less, a BNT-BT having a density of 5.2 × 10 3 kg / m 3 or more is obtained. An ST-based piezoelectric ceramic can be obtained. And since it densifies sufficiently even at 1100 ° C. or lower, this lead-free material can be applied to a piezoelectric device.

(4)また、本発明に係る非鉛系圧電セラミックスは、前記x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成において、x=0.83、0.10≦y≦0.17、0≦z≦0.07を満たすことを特徴としている。このような組成の非鉛系圧電セラミックスを作製することで、非鉛系圧電セラミックスの機械結合係数krを高くして、その圧電特性を向上させることができる。 (4) Further, the lead-free piezoelectric ceramic according to the present invention has the above x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (where x + y + z = 1). The composition is characterized by satisfying x = 0.83, 0.10 ≦ y ≦ 0.17, and 0 ≦ z ≦ 0.07. By producing a lead-free piezoelectric ceramic having such a composition, it is possible to increase the mechanical coupling coefficient kr of the lead-free piezoelectric ceramic and improve its piezoelectric characteristics.

(5)また、本発明に係る積層型圧電デバイスは、上記の非鉛系圧電セラミックスからなる圧電体層とAg−Pdからなる内部電極層とを交互に積層して一体焼成により形成されることを特徴としている。このような一体焼成されている非鉛の積層型の圧電デバイスを小型で高機能な圧電デバイスとして応用することができる。   (5) Moreover, the multilayer piezoelectric device according to the present invention is formed by alternately laminating the piezoelectric layers made of the above lead-free piezoelectric ceramics and the internal electrode layers made of Ag—Pd. It is characterized by. Such an integrally fired lead-free multilayer piezoelectric device can be applied as a small and highly functional piezoelectric device.

(6)また、本発明に係る非鉛系圧電セラミックスの製造方法は、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスの仮焼粉末に対して、上記の非鉛系圧電セラミックス用焼結助剤を0.5重量%以上5重量%以下添加する添加工程と、前記添加工程により得られた材料の成形体を1100℃以下で焼成する焼成工程と、を含むことを特徴としている。 (6) A method of manufacturing a lead-free piezoelectric ceramics according to the present invention, x (Bi 0.5 Na 0.5 TiO 3) -y (BaTiO 3) -z (SrTiO 3) ( provided that, x + y + z = 1 The above-mentioned sintering aid for lead-free piezoelectric ceramics is added in an amount of 0.5 to 5% by weight to the calcined powder of lead-free piezoelectric ceramics whose main component is a compound represented by And a firing step of firing the molded body of the material obtained by the addition step at 1100 ° C. or lower.

このように、上記の焼結助剤を3.0重量%以上添加し、1100℃以下で焼成することで、緻密化したBNT−BT−ST系圧電セラミックスを得ることができる。これにより、Ag−Pd等からなる内部電極を有する積層型の圧電デバイスを一体焼成で製造することができる。   Thus, by adding 3.0% by weight or more of the above sintering aid and firing at 1100 ° C. or lower, a densified BNT-BT-ST piezoelectric ceramic can be obtained. Thereby, a laminated piezoelectric device having an internal electrode made of Ag—Pd or the like can be manufactured by integral firing.

本発明によれば、1100℃以下の焼成で、BNT−BT−ST系圧電セラミックスを緻密化させることができる。その結果、非鉛系圧電セラミックスを用いて積層型圧電デバイスを作製することができる。そして自然環境へのダメージを防止することができる。   According to the present invention, the BNT-BT-ST piezoelectric ceramics can be densified by firing at 1100 ° C. or lower. As a result, a multi-layer piezoelectric device can be manufactured using lead-free piezoelectric ceramics. And damage to the natural environment can be prevented.

本発明者は、鉛を含まない非鉛の積層型圧電デバイスを作製するためBNT−BT−ST系圧電セラミックスを圧電体層とした積層型圧電デバイスの開発を試みた。その過程において、本発明者は、内部電極が融解しない温度で積層型圧電デバイスを焼成する必要があることに着目し、特定の焼結助剤を添加することでBNT−BT−ST系圧電セラミックスを低温で緻密化できることを見出した。以下に、本発明の実施形態を説明する。   The present inventor has attempted to develop a multilayer piezoelectric device using a BNT-BT-ST piezoelectric ceramic as a piezoelectric layer in order to produce a lead-free multilayer piezoelectric device that does not contain lead. In this process, the present inventor pays attention to the need to fire the laminated piezoelectric device at a temperature at which the internal electrodes do not melt, and by adding a specific sintering aid, BNT-BT-ST piezoelectric ceramics Has been found to be densified at low temperatures. Hereinafter, embodiments of the present invention will be described.

(焼結助剤の組成)
BNT−BT−ST系圧電セラミックス等の母材の圧電特性を悪化させずに、セラミック部材の焼結温度を低下させるには、反応性の高く融点の低いZnOやBiを添加し、粒界相に液相を作り低温焼結を促進するのが効果的である。たとえば、4価のTiに対し、3価のBiなどの価数の異なるイオンを添加するとTiサイトで置換され、酸素イオンの空孔が生成され、この酸素空孔は焼結中のイオンの拡散を増加させる。この結果として焼結温度が効果的に低下する。
(Composition of sintering aid)
In order to lower the sintering temperature of the ceramic member without deteriorating the piezoelectric properties of the base material such as BNT-BT-ST piezoelectric ceramics, ZnO or Bi 2 O 3 having a low reactivity and a low melting point is added, It is effective to create a liquid phase in the grain boundary phase and promote low temperature sintering. For example, when ions with different valences such as trivalent Bi are added to tetravalent Ti, they are replaced with Ti sites, and oxygen ion vacancies are generated. These oxygen vacancies diffuse ions during sintering. Increase. As a result, the sintering temperature is effectively reduced.

本発明に係る非鉛系圧電セラミックス用焼結助剤(以下、「BBZ焼結助剤」という)は、少なくとも酸化ビスマスと酸化亜鉛とを有し、残部が酸化ホウ素からなり、BNT−BT−ST系圧電セラミックスを緻密化させるのに適している。BNT−BT−ST系圧電セラミックスとは、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスである。なお、本発明では、ストロンチウムを含まないBNT−BT系圧電セラミックス(z=0)もBNT−BT−ST系圧電セラミックスに含む。上記のBBZ焼結助剤をBNT−BT−ST系圧電セラミックスの製造工程において圧電セラミックスに添加することで、BNT−BT−ST系圧電セラミックスは1100℃以下の焼成温度で緻密化される。 The sintering aid for lead-free piezoelectric ceramics according to the present invention (hereinafter referred to as “BBZ sintering aid”) has at least bismuth oxide and zinc oxide, with the balance being boron oxide, and BNT-BT—. Suitable for densifying ST-based piezoelectric ceramics. The BNT-BT-ST-based piezoelectric ceramics, x (Bi 0.5 Na 0.5 TiO 3) -y (BaTiO 3) -z (SrTiO 3) ( provided that, x + y + z = 1 ) of the compound represented by the composition Is a lead-free piezoelectric ceramic. In the present invention, BNT-BT piezoelectric ceramics (z = 0) not containing strontium are also included in the BNT-BT-ST piezoelectric ceramics. By adding the above BBZ sintering aid to the piezoelectric ceramic in the manufacturing process of the BNT-BT-ST piezoelectric ceramic, the BNT-BT-ST piezoelectric ceramic is densified at a firing temperature of 1100 ° C. or less.

BBZ焼結助剤を用いてBNT−BT−ST系圧電セラミックスを低温焼成で作製する作製方法は以下の通りである。まず、Bi、NaCO、BaTiO、SrCo、TiOの粉末を秤量し、溶媒とともにミルで混合する。そして、混合粉末を乾燥させ、メッシュパスにより造粒する。次いで、粉末を800℃で仮焼し、粉砕する。そして、バインダとともに所定量のBi、B、ZnOを加え、乾燥、造粒する。このようにして得られた粉末を所望の形状に成形して1100℃で焼成すれば、低温焼成によるBNT−BT−ST系圧電セラミックスの焼結体が得られる。 A production method for producing a BNT-BT-ST piezoelectric ceramic by low temperature firing using a BBZ sintering aid is as follows. First, Bi 2 O 3 , Na 2 CO 3 , BaTiO 3 , SrCo 3 , and TiO 2 powders are weighed and mixed together with a solvent in a mill. Then, the mixed powder is dried and granulated by a mesh pass. Subsequently, the powder is calcined at 800 ° C. and pulverized. Then, a predetermined amount of Bi 2 O 3 , B 2 O 3 , and ZnO are added together with the binder, followed by drying and granulation. If the powder thus obtained is molded into a desired shape and fired at 1100 ° C., a sintered body of BNT-BT-ST piezoelectric ceramics by low-temperature firing can be obtained.

BBZ焼結助剤を構成する酸化ビスマス、酸化亜鉛および酸化ホウ素の金属組成比は、モル%で、10≦Bi≦40、20≦Zn≦90、および0≦B≦40(合計100モル%)とするのが好ましい。Bi:Zn:Bの組成比を緻密化に最も効果のある組成にすることで、BNT−BT−ST系圧電セラミックスについて1100℃以下での緻密化を達成し、かつ十分な圧電特性が得られる。   The metal composition ratio of bismuth oxide, zinc oxide and boron oxide constituting the BBZ sintering aid is mol%, 10 ≦ Bi ≦ 40, 20 ≦ Zn ≦ 90, and 0 ≦ B ≦ 40 (100 mol% in total). Is preferable. By making the composition ratio of Bi: Zn: B most effective for densification, densification of BNT-BT-ST piezoelectric ceramics at 1100 ° C. or lower can be achieved and sufficient piezoelectric characteristics can be obtained. .

このような組成を有するBBZ焼結助剤がBNT−BT−ST系圧電セラミックスの焼結助剤として好ましいのは、PZT系圧電セラミックスの焼結助剤として同様の組成を有する焼結助剤が十分に機能することから推測できる。PZT系圧電セラミックスに対するPBZ焼結助剤であっても、BNT−BT−ST系圧電セラミックスに対するBBZ焼結助剤であっても、粒界相に液相を作り低温焼結を促進するメカニズムは同様である。したがって、BBZ焼結助剤を構成する酸化ビスマス、酸化亜鉛および酸化ホウ素の金属組成比は、モル%で、10≦Bi≦40、20≦Zn≦90、および0≦B≦40(合計100モル%)の領域が好ましいと推定できる。   The BBZ sintering aid having such a composition is preferable as the sintering aid for the BNT-BT-ST piezoelectric ceramics. The sintering aid having the same composition as the sintering aid for the PZT piezoelectric ceramics is preferable. It can be inferred from functioning sufficiently. Whether it is a PBZ sintering aid for PZT-based piezoelectric ceramics or a BBZ sintering aid for BNT-BT-ST-based piezoelectric ceramics, the mechanism that promotes low-temperature sintering by creating a liquid phase in the grain boundary phase It is the same. Therefore, the metal composition ratio of bismuth oxide, zinc oxide, and boron oxide constituting the BBZ sintering aid is 10 mol%, 10 ≦ Bi ≦ 40, 20 ≦ Zn ≦ 90, and 0 ≦ B ≦ 40 (100 mol in total). %) Region can be estimated to be preferable.

(母材の組成)
十分な圧電特性を有するBNT−BT−ST系圧電セラミックスを得るためには、BBZ焼結助剤を添加する母材の組成も目的に適したものである必要がある。母材の最適な組成は、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)と表したとき、x=0.83、0.10≦y≦0.17、0≦z≦0.07を満たす組成である。以下にこれを実証するために行った組成トレース実験を説明する。
(Composition of base material)
In order to obtain a BNT-BT-ST piezoelectric ceramic having sufficient piezoelectric properties, the composition of the base material to which the BBZ sintering aid is added needs to be suitable for the purpose. Optimum composition of the base metal, x (Bi 0.5 Na 0.5 TiO 3) -y (BaTiO 3) -z (SrTiO 3) ( provided that, x + y + z = 1 ) when expressed as, x = 0.83 0.10 ≦ y ≦ 0.17 and 0 ≦ z ≦ 0.07. The composition trace experiment conducted to demonstrate this will be described below.

組成トレース実験では、焼結助剤を添加せずに、組成の異なるBNT−BT−ST系圧電セラミックスを作製した。組成は、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)と表したとき、0.79≦x≦0.87、0.10≦y≦0.19、0≦z≦0.07を満たす範囲で適宜選択した。そして、それぞれの組成の焼結体について、密度、機械結合係数、比誘電率、誘電損失を測定した。 In the composition trace experiment, BNT-BT-ST piezoelectric ceramics having different compositions were prepared without adding a sintering aid. When the composition is expressed as x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (where x + y + z = 1), 0.79 ≦ x ≦ 0.87, It selected suitably in the range which satisfy | fills 0.10 <= y <= 0.19 and 0 <= z <= 0.07. And about the sintered compact of each composition, the density, the mechanical coupling coefficient, the dielectric constant, and the dielectric loss were measured.

図1は、各組成のBNT−BT−ST系圧電セラミックスについて、密度、機械結合係数、比誘電率、誘電損失を測定した結果を示す表である。図1に示すように、組成を変えてBNT−BT−ST系圧電セラミックスを作製したところ、ほとんどの組成において機械結合係数kr=0.17という結果が得られ、非鉛圧電材料の機械結合係数krとしては比較的大きな値が得られた。   FIG. 1 is a table showing the results of measurement of density, mechanical coupling coefficient, relative dielectric constant, and dielectric loss for BNT-BT-ST piezoelectric ceramics of each composition. As shown in FIG. 1, BNT-BT-ST piezoelectric ceramics were produced with different compositions. As a result, a mechanical coupling coefficient kr = 0.17 was obtained for most compositions, and the mechanical coupling coefficient of the lead-free piezoelectric material was obtained. A relatively large value was obtained as kr.

図1に示すBNT−BT−ST系圧電セラミックスの組成のうち、比誘電率εrの高さに着目すると、試料番号1および13の組成がBBZ焼結助剤添加用に適していると判断できる。このように、組成トレース実験の結果、比誘電率εrが高いことから試料番号1の組成の0.83BNT−0.10BT−0.07STを母材に選択した。また、誘電損失tanδが低く、原料粉末が少なく、比誘電率εrが高いという点から試料番号13の組成の0.83BNT−0.17BT−0.00STを母材に選択した。   In the composition of the BNT-BT-ST piezoelectric ceramics shown in FIG. 1, focusing on the high relative dielectric constant εr, it can be determined that the compositions of the sample numbers 1 and 13 are suitable for adding the BBZ sintering aid. . Thus, as a result of the composition trace experiment, 0.83BNT-0.10BT-0.07ST having the composition of Sample No. 1 was selected as the base material because of the high relative dielectric constant εr. Further, 0.83BNT-0.17BT-0.00ST having the composition of Sample No. 13 was selected as a base material in terms of low dielectric loss tan δ, low raw material powder, and high relative dielectric constant εr.

(BBZ焼結助剤の実験)
上記の試料番号1および13の組成のBNT−BT−ST系圧電セラミックスを母材として、各BBZ焼結助剤の添加量、各焼成温度で焼成を行った。粉末の秤量時にx(Bi0.5Na0.5TiO)+y(BaTiO)+z(SrTiO)(ただし、x+y+z=1)で表したときに、x=0.83、y=0.10、z=0.07となるように秤量して、試料番号1の母材組成とした。また、同様に、x=0.83、y=0.17、z=0となるように秤量して、試料番号13の母材組成とした。
(Experiment of BBZ sintering aid)
Using the BNT-BT-ST piezoelectric ceramics having the compositions of Sample Nos. 1 and 13 as a base material, firing was performed at the added amount of each BBZ sintering aid and at each firing temperature. When expressed as x (Bi 0.5 Na 0.5 TiO 3 ) + y (BaTiO 3 ) + z (SrTiO 3 ) (x + y + z = 1) when the powder was weighed, x = 0.83, y = 0. 10. Weighed so that z = 0.07, and the base material composition of sample number 1 was obtained. Similarly, the base material composition of Sample No. 13 was obtained by weighing so that x = 0.83, y = 0.17, and z = 0.

Bi、B、ZnOの各粉末を混合して助剤混合物を作製した。そして、その助剤混合物を上記のような組成の母材仮焼粉末と混合した。焼結助剤の添加は仮焼後の粉砕時に行った。焼結助剤に用いる原料粉末はBi、B、ZnOとした。添加量はBi:B:Zn=30:30:40のモル比とし、仮焼粉末に対し外割り重量比で添加した。助剤添加割合は、母材の重量(E)に対する焼結助剤の重量(H)の割合(H/E)である。このようにしてBBZを2重量%、3重量%、5重量%添加した。 Bi 2 O 3 , B 2 O 3 , and ZnO powders were mixed to prepare an auxiliary mixture. And the auxiliary agent mixture was mixed with the base material calcined powder having the above composition. The sintering aid was added during pulverization after calcination. The raw material powder used for the sintering aid was Bi 2 O 3 , B 2 O 3 and ZnO. The added amount was Bi: B: Zn = 30: 30: 40, and added at an external weight ratio with respect to the calcined powder. The auxiliary agent addition ratio is a ratio (H / E) of the weight (H) of the sintering auxiliary agent to the weight (E) of the base material. In this way, 2% by weight, 3% by weight, and 5% by weight of BBZ were added.

BBZ焼結助剤の添加量2重量%、3重量%、5重量%のそれぞれの成形体を900℃、950℃、1000℃、1050℃、1100℃、1150℃で焼成した。また、助剤添加していない成形体を1200℃で焼成した。そして、焼結体の密度をアルキメデス法により測定したところ、試料番号1の組成を母材とし、焼成温度1100℃以上、BBZ焼結助剤添加量2重量%以上の条件で得られたBNT−BT−ST系圧電セラミックスの密度が5.2×10kg/mを超えていた。また、焼成温度1150℃以上、BBZ焼結助剤の添加量2重量%以上の条件で得られたBNT−BT−ST系圧電セラミックスの密度は5.7×10kg/m程度であり、BBZ焼結助剤を添加せず1200℃で焼成した試料の密度と同程度であった。BBZ焼結助剤を添加せず1200℃で焼成した試料の密度は、5.72×10kg/mであった。 The compacts with the added amounts of BBZ sintering aids of 2 wt%, 3 wt% and 5 wt% were fired at 900 ° C, 950 ° C, 1000 ° C, 1050 ° C, 1100 ° C and 1150 ° C, respectively. Moreover, the molded object which did not add an auxiliary agent was baked at 1200 degreeC. And when the density of the sintered compact was measured by the Archimedes method, the composition of Sample No. 1 was used as a base material, BNT- obtained under the conditions of a firing temperature of 1100 ° C. or higher and a BBZ sintering aid addition amount of 2 wt% or higher The density of the BT-ST piezoelectric ceramic exceeded 5.2 × 10 3 kg / m 3 . The density of the BNT-BT-ST piezoelectric ceramic obtained under the conditions of a firing temperature of 1150 ° C. or higher and a BBZ sintering aid addition amount of 2 wt% or higher is about 5.7 × 10 3 kg / m 3 . The density of the sample fired at 1200 ° C. without adding the BBZ sintering aid was comparable. The density of the sample fired at 1200 ° C. without adding the BBZ sintering aid was 5.72 × 10 3 kg / m 3 .

図2は、試料番号1の組成を母材とするBNT−BT−ST系圧電セラミックスについて、BBZ焼結助剤添加量に対する密度の関係を示すグラフである。密度は、アルキメデス法により求めた。   FIG. 2 is a graph showing the relationship of density with respect to the amount of BBZ sintering aid added for the BNT-BT-ST piezoelectric ceramics having the composition of sample number 1 as a base material. The density was determined by the Archimedes method.

図2に示すように、試料番号1の組成のBNT−BT−ST系圧電セラミックスについて、BBZ焼結助剤の添加量を2重量%以上とすることで焼成温度を1100℃としても緻密な焼結体が得られることが分かった。   As shown in FIG. 2, for the BNT-BT-ST piezoelectric ceramic having the composition of Sample No. 1, the amount of BBZ sintering aid added is 2% by weight or more so that the firing temperature is 1100 ° C. It was found that a knot was obtained.

一方、試料番号13の組成を母材とし、焼成温度1100℃以上、BBZ焼結助剤添加量2重量%以上として作製したBNT−BT−ST系圧電セラミックスの密度は、5.3×10kg/mを超えていた。また、焼成温度1150℃以上、BBZ焼結助剤添加量0重量%以上の試料の密度が5.7×10kg/m程度であり、BBZ焼結助剤を添加せず1200℃で焼成した試料の密度と同程度であった。 On the other hand, the density of the BNT-BT-ST piezoelectric ceramic produced using the composition of Sample No. 13 as a base material, with a firing temperature of 1100 ° C. or higher and a BBZ sintering aid addition amount of 2 wt% or higher is 5.3 × 10 3. kg / m 3 was exceeded. Further, the density of a sample having a firing temperature of 1150 ° C. or more and a BBZ sintering aid addition amount of 0% by weight or more is about 5.7 × 10 3 kg / m 3 , and no BBZ sintering aid is added at 1200 ° C. The density was similar to the density of the fired sample.

図3は、試料番号13の組成を母材とするBNT−BT−ST系圧電セラミックスについて、BBZ焼結助剤添加量に対する密度の関係を示すグラフである。図3に示すように、試料番号13の組成のBNT−BT−ST系圧電セラミックスについては、BBZ焼結助剤の添加量を2重量%以上とすることで焼成温度を1100℃としても緻密な焼結体が得られることが分かった。   FIG. 3 is a graph showing the relationship of density with respect to the amount of BBZ sintering aid added for the BNT-BT-ST piezoelectric ceramics having the composition of sample number 13 as a base material. As shown in FIG. 3, the BNT-BT-ST piezoelectric ceramic having the composition of sample number 13 is dense even when the firing temperature is set to 1100 ° C. by setting the addition amount of the BBZ sintering aid to 2% by weight or more. It was found that a sintered body was obtained.

なお、上記の実験により得られた結果を参照すると、実際はBBZ焼結助剤2重量%以上の添加量で緻密化しているが、グラフの傾向から0.5重量%以上の添加量でも焼結体は緻密化するものと考えられる。   In addition, referring to the results obtained by the above experiment, the BBZ sintering aid is actually densified with an addition amount of 2% by weight or more, but sintering is also performed with an addition amount of 0.5% by weight or more from the tendency of the graph. The body is thought to be densified.

このようにして各BBZ焼結助剤添加量および各焼成温度において焼成された試料に、電極を設けて分極し、機械結合係数krを測定した。ペレット状の焼結体の両主面に銀ペーストを印刷し、焼成することで電極を形成し、60〜150℃、5〜20分、2〜4kV/mmの条件で、焼結体を厚み方向に分極させた。BBZ焼結助剤の添加量を0、2、3、5重量%とし、900℃、950℃、1000℃、1050℃、1100℃で焼成した試料について測定を行った。また、参考としてBBZ焼結助剤を添加せず1200℃で焼成した試料についても機械結合係数を測定した。   The samples fired at each BBZ sintering additive addition amount and each firing temperature in this way were provided with electrodes and polarized, and the mechanical coupling coefficient kr was measured. A silver paste is printed on both main surfaces of the pellet-shaped sintered body, and an electrode is formed by firing, and the sintered body is thickened under conditions of 60 to 150 ° C., 5 to 20 minutes, and 2 to 4 kV / mm. Polarized in the direction. Measurement was performed on samples fired at 900 ° C., 950 ° C., 1000 ° C., 1050 ° C., and 1100 ° C. with the addition amount of the BBZ sintering aid being 0, 2, 3, 5 wt%. For reference, the mechanical coupling coefficient was also measured for a sample fired at 1200 ° C. without adding a BBZ sintering aid.

図4は、各焼成温度および各添加量での機械結合係数を示す表である。たとえば、BBZ焼結助剤の添加量を2重量%とし、1100℃で焼成した試料について測定された機械結合係数は、0.12であることを示している。図中の「−」は、分極不可能だったことを、空欄は、測定していないことを示している。試料番号1の母材組成の試料について測定したところ、BBZ焼結助剤添加量が0重量%では、焼成温度1150℃、1100℃のいずれのものも分極が不可能であったが、1150℃焼成で2重量%助剤添加のもの、ならびに1100℃焼成で2重量%添加のもの、3重量%添加のもの、および5重量%助剤添加のものはいずれも分極できた。焼成温度が1050℃以下のものについては、BBZ焼結助剤を5重量%添加したものでも分極ができなかった。   FIG. 4 is a table showing mechanical coupling coefficients at each firing temperature and each addition amount. For example, the mechanical coupling coefficient measured for a sample fired at 1100 ° C. with an addition amount of BBZ sintering aid of 2% by weight is 0.12. “−” In the figure indicates that polarization was impossible, and the blank indicates that measurement was not performed. When the sample of the base material composition of sample number 1 was measured, when the BBZ sintering aid addition amount was 0% by weight, polarization at any of the firing temperatures of 1150 ° C. and 1100 ° C. was impossible, but 1150 ° C. Those having a 2% by weight additive added during baking, those having a 2% added additive by baking at 1100 ° C., those added by 3% by weight, and those added with 5% by weight auxiliary could all be polarized. For those having a firing temperature of 1050 ° C. or lower, polarization could not be achieved even when 5% by weight of a BBZ sintering aid was added.

一方、試料番号13の母材組成の試料について測定したところ、BBZ焼結助剤添加量が0重量%では、焼成温度1100℃の試料が分極が不可能であったが、1150℃焼成で0重量%のもの、および2重量%助剤添加のもの、ならびに1100℃焼成で2重量%添加のもの、3重量%添加のもの、および5重量%助剤添加のものはいずれも分極できた。また、分極できた試料の機械結合係数krは、0.15以上の高い値であった。焼成温度が1050℃以下のものについては、BBZ焼結助剤を5重量%添加したものでも分極ができなかった。以上の結果から、BNT−BT−ST系圧電セラミックス母材に対するCuO焼結助剤の添加量を2重量%以上5重量%以下とすることで、1100℃以下で焼成しても、良好な機械結合係数を得られることが実証された。特に、試料番号13の母材組成では、高い値が得られた。   On the other hand, when the sample having the base material composition of Sample No. 13 was measured, when the amount of the BBZ sintering aid added was 0% by weight, the sample at the firing temperature of 1100 ° C. could not be polarized. The ones with the addition of 2% by weight and those with the addition of 2% by weight, and those with addition of 2% by weight at 1100 ° C., those with the addition of 3% by weight, and those with the addition of 5% by weight of the auxiliary could be polarized. Further, the mechanical coupling coefficient kr of the sample that could be polarized was a high value of 0.15 or more. For those having a firing temperature of 1050 ° C. or lower, polarization could not be achieved even when 5% by weight of a BBZ sintering aid was added. From the above results, even when fired at 1100 ° C. or less, a good machine can be obtained by setting the addition amount of the CuO sintering aid to the BNT-BT-ST piezoelectric ceramic base material to be 2 wt% or more and 5 wt% or less. It has been demonstrated that a coupling coefficient can be obtained. In particular, with the base material composition of sample number 13, a high value was obtained.

また、この結果を考慮し、他の特性についても確認的に測定を行った。焼結助剤を添加したもの、または5重量%添加したもので、1200℃、1100℃で焼成された試料について、比誘電率εrおよび誘電損失tanδを測定した。図5は、各BBZ焼結助剤添加量、各焼成温度で作製されたBNT−BT−ST系圧電セラミックス試料の特性をまとめた表である。焼成温度1200℃および1100℃、BBZ焼結助剤添加量0重量%、5重量%の場合のデータがそれぞれ示されている。図5に示すように、BNT−BT−ST系圧電セラミックスは、BBZ焼結助剤を5重量%添加すれば1100℃で焼成しても、1200℃で焼成したものと同程度の圧電特性を得られることが実証された。   In consideration of this result, other characteristics were also measured for confirmation. A sample added with a sintering aid or 5% by weight and calcined at 1200 ° C. and 1100 ° C. was measured for relative dielectric constant εr and dielectric loss tan δ. FIG. 5 is a table summarizing the characteristics of BNT-BT-ST piezoelectric ceramic samples prepared at each BBZ sintering additive addition amount and at each firing temperature. Data are shown for firing temperatures of 1200 ° C. and 1100 ° C., and BBZ sintering aid additions of 0 wt% and 5 wt%, respectively. As shown in FIG. 5, the BNT-BT-ST piezoelectric ceramic has the same piezoelectric properties as those fired at 1200 ° C. even when fired at 1100 ° C. when 5 wt% of BBZ sintering aid is added. It has been demonstrated that

(積層型圧電デバイス)
なお、BBZ焼結助剤を用いて焼結されたBNT−BT−ST系圧電セラミックスは、電極と圧電体層が交互に積層された積層型圧電デバイスに用いられることで、大きな効果が得られる。BNT−BT−ST系圧電セラミックスは、固相焼結が簡便と言う利点があり積層化に適している。積層型圧電デバイスには、たとえば積層型圧電トランスがある。積層型の圧電トランスは、小型で大きい昇圧比が得られるため、液晶ディスプレイのバックライト用等で需要が高まっている。BBZ焼結助剤を用いてBNT−BT−ST系圧電セラミックスを圧電体層とする積層型の圧電トランスが実現することで、鉛を含まず、かつ十分な特性を有する積層型の圧電トランスを得ることができる。
(Laminated piezoelectric device)
The BNT-BT-ST piezoelectric ceramics sintered with the BBZ sintering aid can be used for a laminated piezoelectric device in which electrodes and piezoelectric layers are alternately laminated, thereby obtaining a great effect. . BNT-BT-ST piezoelectric ceramics have the advantage of simple solid-phase sintering and are suitable for lamination. An example of the multilayer piezoelectric device is a multilayer piezoelectric transformer. Multilayer piezoelectric transformers are small and can provide a large step-up ratio, so that there is an increasing demand for backlights for liquid crystal displays. By using a BBZ sintering aid to realize a multilayer piezoelectric transformer that uses a BNT-BT-ST piezoelectric ceramic as a piezoelectric layer, a multilayer piezoelectric transformer that does not contain lead and has sufficient characteristics can be obtained. Obtainable.

BBZ焼結助剤を用いた圧電セラミックスを応用する製造方法の一例として、BNT−BT−ST系圧電セラミックスを圧電体層とする積層型圧電トランスの製造方法を以下に説明する。   As an example of a manufacturing method that applies piezoelectric ceramics using a BBZ sintering aid, a manufacturing method of a laminated piezoelectric transformer that uses BNT-BT-ST piezoelectric ceramics as a piezoelectric layer will be described below.

まず、Bi、NaCO、BaTiO、SrCOおよびTiOのそれぞれ適量を配合しボールミル等により均一に混合する。混合後のスラリは乾燥させ、800℃で仮焼を行なう。なお、仮焼温度は800℃以下とするのが好ましい。たとえば、800℃以下とすることにより焼結体の誘電損失が小さくなる。 First, appropriate amounts of Bi 2 O 3 , Na 2 CO 3 , BaTiO 3 , SrCO 3 and TiO 2 are blended and mixed uniformly by a ball mill or the like. The slurry after mixing is dried and calcined at 800 ° C. The calcining temperature is preferably 800 ° C. or lower. For example, the dielectric loss of a sintered compact becomes small by setting it as 800 degrees C or less.

次に、仮焼体を、ボールミル等で粉砕しスラリを乾燥させる。そして、BBZ焼結助剤を0.5重量%以上5.0重量%以下の適量を添加し、バインダを混合してグリーンシートを成形する。BBZ焼結助剤を0.5重量%以上添加し、1100℃以下で焼成することで、密度が5.0×10kg/m以上のBNT−BT−ST系圧電セラミックスを得ることができる。 Next, the calcined body is pulverized with a ball mill or the like to dry the slurry. Then, an appropriate amount of BBZ sintering aid of 0.5 wt% or more and 5.0 wt% or less is added, and a binder is mixed to form a green sheet. A BNT-BT-ST piezoelectric ceramic having a density of 5.0 × 10 3 kg / m 3 or more can be obtained by adding BBZ sintering aid 0.5% by weight or more and firing at 1100 ° C. or less. it can.

グリーンシートの作製は、公知の方法、たとえば、ドクターブレード法や押出成形法、カレンダロール法等を用いることができる。グリーンシートの厚みは、たとえば、焼成後に所望の厚みとなるように調整する。こうして作製したグリーンシートを焼成収縮や加工しろを考慮して打ち抜き加工または切り取り加工等し、作製する圧電トランスの短冊状の形状に適合した所定の形状の印刷用シートを得る。印刷用シートにおける長手方向半分の領域に、AgおよびPdを含む内部電極ペーストをスクリーン印刷法等で印刷する。ここで、Ag−Pdの内部電極ペーストの印刷は、たとえば、焼成後に2μm〜5μm程度となるように印刷厚みを調節する。また、形成される内部電極をその後に一層おきに接続することが容易となるように、内部電極ペーストを印刷するパターンを定めておくことが望ましい。   The green sheet can be produced by a known method such as a doctor blade method, an extrusion method, a calendar roll method, or the like. The thickness of the green sheet is adjusted so as to have a desired thickness after firing, for example. The green sheet thus manufactured is punched or cut in consideration of firing shrinkage and processing margin, and a printing sheet having a predetermined shape suitable for the rectangular shape of the piezoelectric transformer to be manufactured is obtained. An internal electrode paste containing Ag and Pd is printed by a screen printing method or the like on a half region in the longitudinal direction of the printing sheet. Here, in the printing of the internal electrode paste of Ag—Pd, for example, the printing thickness is adjusted to be about 2 μm to 5 μm after firing. Further, it is desirable to determine a pattern for printing the internal electrode paste so that the internal electrodes to be formed can be easily connected every other layer thereafter.

次いで、内部電極ペーストが印刷された印刷用シートを位置合わせして所定枚数ほど積層し、こうして積層された印刷用シートどうしを熱プレス等で熱圧着し、一体化する。このように、シートを所定位置に合わせて圧着させたプレス体を型抜きし、成形体を作製する。   Next, the printing sheets on which the internal electrode paste is printed are aligned and laminated by a predetermined number, and the printing sheets thus laminated are thermocompression bonded by a hot press or the like to be integrated. In this way, the press body in which the sheet is press-fitted in accordance with a predetermined position is punched to produce a molded body.

続いて、所定の温度パターンに従い1100℃以下で成形体を焼成する。得られた焼成体の側面や表面に必要に応じて、研削加工や研磨加工を施して形状を整える。次に、Ag−Pdペースト等を用いて、入力部の内部電極を一層おきに接続して1対の電極を形成し、また、出力部の端面に出力用電極を形成した後、所定の温度で処理してAg−Pdペースト等を焼き付ける。通常、このAg−Pdペースト等の焼き付け処理は焼成温度よりも低い温度で行なう。そして、必要に応じて形成された電極にリード線を取り付ける。得られた焼結体は、分極処理を行なう。入力部に設けられた1対の電極と、出力部の端面に設けられた電極との間に所定の電圧を印加して出力部の分極処理を行い、その後に入力部に設けられた1対の電極間に所定の電圧を印加して入力部の分極処理を行なうことで圧電トランスが作製される。   Subsequently, the molded body is fired at 1100 ° C. or less according to a predetermined temperature pattern. If necessary, the shape and the shape of the fired body are adjusted by grinding or polishing. Next, using an Ag-Pd paste or the like, the internal electrodes of the input part are connected every other layer to form a pair of electrodes, and the output electrode is formed on the end face of the output part, and then at a predetermined temperature. The Ag-Pd paste or the like is baked by processing. Usually, the baking treatment of the Ag—Pd paste or the like is performed at a temperature lower than the firing temperature. And a lead wire is attached to the electrode formed as needed. The obtained sintered body is subjected to polarization treatment. A predetermined voltage is applied between the pair of electrodes provided in the input unit and the electrode provided on the end face of the output unit to perform polarization processing of the output unit, and then the pair of electrodes provided in the input unit A piezoelectric transformer is manufactured by applying a predetermined voltage between the electrodes and performing polarization processing of the input portion.

なお、分極処理は、圧電セラミックスのキュリー点より低い所定の温度において、所定時間行われる。このようにして、非鉛のBNT−BT−ST系積層型圧電トランスを製造することができる。このように、BNT−BT−ST系圧電セラミックスからなる圧電体層とAg−Pd等からなる内部電極層とが交互に積層されたプレス体を、一体焼成して非鉛の積層型圧電トランスを製造することができる。   The polarization process is performed for a predetermined time at a predetermined temperature lower than the Curie point of the piezoelectric ceramic. In this way, a lead-free BNT-BT-ST laminated piezoelectric transformer can be manufactured. Thus, a press body in which piezoelectric layers made of BNT-BT-ST piezoelectric ceramics and internal electrode layers made of Ag-Pd or the like are alternately laminated is integrally fired to produce a lead-free laminated piezoelectric transformer. Can be manufactured.

なお、上記の実施形態では、少なくとも酸化ビスマスと酸化亜鉛とを有し残部が酸化ホウ素からなるBBZ焼結助剤について説明したが、亜鉛をカドミウムに置き換えたBB−Cd焼結助剤でも同様の効果が得られると考えられる。亜鉛またはカドミウムは、液相焼結において、粒成長に適当な液相を生成するとともに、溶解したビスマスがセラミックス内に入るのを助けると考えられている。   In the above-described embodiment, the BBZ sintering aid having at least bismuth oxide and zinc oxide and the balance being boron oxide has been described. However, the same applies to a BB-Cd sintering aid in which zinc is replaced with cadmium. It is thought that an effect is acquired. Zinc or cadmium is believed to produce a liquid phase suitable for grain growth in liquid phase sintering and to help dissolved bismuth enter the ceramic.

各組成のBNT−BT−ST系圧電セラミックスの特性を示す表である。It is a table | surface which shows the characteristic of the BNT-BT-ST type piezoelectric ceramic of each composition. 本発明に係る非鉛系圧電セラミックスのBBZ焼結助剤添加量に対する密度の関係を示すグラフである。It is a graph which shows the relationship of the density with respect to BBZ sintering auxiliary agent addition amount of the lead-free piezoelectric ceramic which concerns on this invention. 本発明に係る非鉛系圧電セラミックスのBBZ焼結助剤添加量に対する密度の関係を示すグラフである。It is a graph which shows the relationship of the density with respect to BBZ sintering auxiliary agent addition amount of the lead-free piezoelectric ceramic which concerns on this invention. 本発明に係る非鉛系圧電セラミックスの各焼成温度および各添加量での機械結合係数を示す表である。It is a table | surface which shows the mechanical coupling coefficient in each baking temperature and each addition amount of the lead-free piezoelectric ceramic which concerns on this invention. 本発明にかかる非鉛系圧電セラミックス試料の特性をまとめた表である。It is the table | surface which put together the characteristic of the lead-free piezoelectric ceramic sample concerning this invention.

符号の説明Explanation of symbols

kr 機械結合係数
tanδ 誘電損失
εr 比誘電率
kr mechanical coupling coefficient tan δ dielectric loss εr relative dielectric constant

Claims (4)

x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1かつ0.03≦z)の組成で表される化合物を主成分とする非鉛系圧電セラミックスを備えて形成される積層型圧電デバイスであって、
前記非鉛系圧電セラミックス材料に対して、少なくとも酸化ビスマスと酸化亜鉛とを有し、残部が酸化ホウ素からなる非鉛系圧電セラミックス用焼結助剤を0.5重量%以上5重量%以下添加し、1100℃以下で焼成して得られ、
密度が5.2×10kg/m以上である非鉛系圧電セラミックスからなる圧電体層とAg−Pdからなる内部電極層とを交互に積層して一体焼成により形成されることを特徴とする積層型圧電デバイス。
The main component is a compound represented by a composition of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (x + y + z = 1 and 0.03 ≦ z 3 ). A laminated piezoelectric device formed with lead-free piezoelectric ceramics,
Addition of 0.5 wt% or more and 5 wt% or less of a sintering aid for lead-free piezoelectric ceramics having at least bismuth oxide and zinc oxide and the balance being boron oxide to the lead-free piezoelectric ceramic material Obtained by firing at 1100 ° C. or lower,
It is formed by alternately laminating piezoelectric layers made of lead-free piezoelectric ceramics having a density of 5.2 × 10 3 kg / m 3 or more and internal electrode layers made of Ag—Pd. A laminated piezoelectric device.
前記添加される非鉛系圧電セラミックス用焼結助剤は、前記酸化ビスマス、酸化亜鉛および酸化ホウ素の金属組成比は、モル%で、10≦Bi≦40、20≦Zn≦90、および0≦B≦40(合計100モル%)であることを特徴とする請求項1記載の積層型圧電デバイス。   In the added lead additive for lead-free piezoelectric ceramics, the metal composition ratio of the bismuth oxide, zinc oxide and boron oxide is mol%, 10 ≦ Bi ≦ 40, 20 ≦ Zn ≦ 90, and 0 ≦. 2. The multilayer piezoelectric device according to claim 1, wherein B ≦ 40 (total 100 mol%). 前記非鉛系圧電セラミックスは、前記x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1かつ0.03≦z)の組成において、x=0.83、0.10≦y≦0.140.03≦z≦0.07を満たすことを特徴とする請求項1または請求項2記載の積層型圧電デバイス。 The lead-free piezoelectric ceramics are in the composition of the x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3) -z (SrTiO 3) ( provided that, x + y + z = 1 and 0.03 ≦ z) The multilayer piezoelectric device according to claim 1, wherein x = 0.83, 0.10 ≦ y ≦ 0.14 , and 0.03 ≦ z ≦ 0.07 are satisfied. x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1かつ0.03≦z)の組成で表される化合物を主成分とする非鉛系圧電セラミックスの仮焼粉末に対して、少なくとも酸化ビスマスと酸化亜鉛とを有し、残部が酸化ホウ素からなる非鉛系圧電セラミックス用焼結助剤を0.5重量%以上5重量%以下添加する添加工程と、
前記添加工程により得られた非鉛系圧電セラミックスからなる圧電体層とAg−Pdからなる内部電極層とを交互に積層した成形体を1100℃以下で一体焼成により焼成する焼成工程と、を含むことを特徴とする積層型圧電デバイスの製造方法。
The main component is a compound represented by a composition of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (x + y + z = 1 and 0.03 ≦ z 3 ). The sintering aid for lead-free piezoelectric ceramics containing at least bismuth oxide and zinc oxide and the balance being boron oxide is 0.5% by weight or more and 5% by weight with respect to the calcined powder of lead-free piezoelectric ceramics. An addition step to be added below;
A firing step of firing a molded body in which piezoelectric layers made of lead-free piezoelectric ceramics obtained by the addition step and internal electrode layers made of Ag-Pd are alternately laminated at 1100 ° C. or less by integral firing. A method for manufacturing a laminated piezoelectric device, comprising:
JP2007167230A 2007-06-26 2007-06-26 Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics Expired - Fee Related JP4988451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167230A JP4988451B2 (en) 2007-06-26 2007-06-26 Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167230A JP4988451B2 (en) 2007-06-26 2007-06-26 Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics

Publications (2)

Publication Number Publication Date
JP2009007181A JP2009007181A (en) 2009-01-15
JP4988451B2 true JP4988451B2 (en) 2012-08-01

Family

ID=40322648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167230A Expired - Fee Related JP4988451B2 (en) 2007-06-26 2007-06-26 Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JP4988451B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035425A1 (en) 2009-07-31 2011-02-17 Epcos Ag Piezoelectric ceramic composition, process for the preparation of the composition and electrical component, comprising the composition
JP5530140B2 (en) * 2009-09-28 2014-06-25 太平洋セメント株式会社 BNT-BT piezoelectric ceramics and manufacturing method thereof
KR101347451B1 (en) * 2010-04-27 2014-01-03 울산대학교 산학협력단 lead-free piezoelectric ceramic multilayer actuator
JP5700200B2 (en) * 2010-11-04 2015-04-15 セイコーエプソン株式会社 Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and piezoelectric ceramic
JP2014172799A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Piezoelectric material, manufacturing method of piezoelectric material, piezoelectric actuator, manufacturing method of piezoelectric actuator
DE102014211465A1 (en) * 2013-08-07 2015-02-12 Pi Ceramic Gmbh Keramische Technologien Und Bauelemente Lead-free piezoceramic material based on bismuth sodium titanate (BNT)
JP2015137193A (en) * 2014-01-21 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag Dielectric ceramic composition, dielectric element, electronic component and laminated electronic component
KR102115679B1 (en) 2015-07-17 2020-05-26 티디케이 일렉트로닉스 아게 Dielectric composition, dielectric element, electronic component and multilayer electronic component
KR102576609B1 (en) * 2016-06-30 2023-09-11 울산대학교 산학협력단 Producing method of lead-free piezoelectric ceramics with high strains
CN106915960B (en) * 2017-02-21 2020-04-07 陕西科技大学 Lead-free ceramic material with high energy storage density and energy storage efficiency and preparation method thereof
KR102069360B1 (en) * 2018-03-22 2020-01-22 울산대학교 산학협력단 Lead-free piezoceramics composition and manufacturing the same
CN114315350B (en) * 2022-01-24 2023-05-23 武汉理工大学 Bismuth sodium titanate-barium zirconate titanate leadless wide-temperature energy storage ceramic and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510966B2 (en) * 1999-11-19 2010-07-28 日本特殊陶業株式会社 Piezoelectric ceramics
JP4070967B2 (en) * 2001-03-01 2008-04-02 Tdk株式会社 Piezoelectric ceramic
JP2006232616A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Laminated ceramic component
JP4727458B2 (en) * 2006-03-08 2011-07-20 太平洋セメント株式会社 Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics

Also Published As

Publication number Publication date
JP2009007181A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4988451B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP4400754B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
TW560094B (en) Piezoelectric ceramic and method of manufacturing
JP5151990B2 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP2007258280A (en) Laminated piezoelectric element
JP5192737B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP5345834B2 (en) Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method
EP0534378A1 (en) Non-reducible dielectric ceramic composition
JP2005179143A (en) Piezoelectric ceramic and method of producing the same
JP4403967B2 (en) Method for manufacturing piezoelectric device
WO2012043208A1 (en) Dielectric ceramic, multilayer ceramic electronic component, and methods for producing same
JP2005047745A (en) Piezoelectric ceramic
JP5530140B2 (en) BNT-BT piezoelectric ceramics and manufacturing method thereof
JP2002255644A (en) Ceramic material and piezoelectric element using the same
US7564176B2 (en) Laminated piezoelectric element and production method of the same
JP5462759B2 (en) Piezoelectric ceramics and piezoelectric element
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP3971779B1 (en) Piezoelectric ceramic composition
JP2002348173A (en) Piezoelectric ceramic material and its manufacturing method
JP2006036578A (en) Method of manufacturing piezoelectric material and piezoelectric material using the same
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP2012178584A (en) Laminated piezoelectric element
JP5468984B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics and manufacturing method thereof
JP5018602B2 (en) Piezoelectric ceramic composition, and piezoelectric ceramic and laminated piezoelectric element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 4988451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees