JP5345834B2 - Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method - Google Patents

Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method Download PDF

Info

Publication number
JP5345834B2
JP5345834B2 JP2008328335A JP2008328335A JP5345834B2 JP 5345834 B2 JP5345834 B2 JP 5345834B2 JP 2008328335 A JP2008328335 A JP 2008328335A JP 2008328335 A JP2008328335 A JP 2008328335A JP 5345834 B2 JP5345834 B2 JP 5345834B2
Authority
JP
Japan
Prior art keywords
lead
piezoelectric ceramic
copper oxide
free
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008328335A
Other languages
Japanese (ja)
Other versions
JP2010150060A (en
Inventor
匡史 松本
義博 浅井
俊行 遠藤
宏東 藤井
健 高木
了一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2008328335A priority Critical patent/JP5345834B2/en
Publication of JP2010150060A publication Critical patent/JP2010150060A/en
Application granted granted Critical
Publication of JP5345834B2 publication Critical patent/JP5345834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free piezoelectric ceramic favorable for applying to a highly efficient piezoelectric actuator, a laminated piezoelectric device applying the same and a method for producing the lead-free piezoelectric ceramic. <P>SOLUTION: The lead-free piezoelectric ceramic whose main ingredient is a compound having a composition denoted as x(Bi<SB>0.5</SB>Na<SB>0.5</SB>TiO<SB>3</SB>)-y(BaTiO<SB>3</SB>)-z(SrTiO<SB>3</SB>) (wherein, x+y+z=1) is obtained by adding a copper oxide of 0.1 wt.% or more and 2 wt.% or less and manganese dioxide (MnO<SB>2</SB>) and by baking at 1,100&deg;C or lower and then the lead-free piezoelectric ceramic has a low temperature sintering property and a large mechanical quality factor. As a result, a highly efficient laminated piezoelectric actuator is produced with a lead-free material. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、低温焼結性を有する非鉛系圧電セラミックス、積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法に関する。   The present invention relates to a lead-free piezoelectric ceramic having a low temperature sintering property, a laminated piezoelectric device, and a method for producing a lead-free piezoelectric ceramic.

近年、圧電セラミック素子材料として鉛化合物を含まない圧電磁器組成物が注目され、研究開発が進められている(たとえば、特許文献1)。このような圧電磁器組成物は鉛化合物を含まないため、自然環境に対して負荷を小さくすることができる。   In recent years, piezoelectric ceramic compositions containing no lead compound have attracted attention as piezoelectric ceramic element materials, and research and development have been promoted (for example, Patent Document 1). Since such a piezoelectric ceramic composition does not contain a lead compound, the load on the natural environment can be reduced.

上記の特許文献1に記載されている圧電磁器組成物は、組成式をx(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(x+y+z=1)としたとき、これらの成分を頂点とする三角座標中、組成が所定の点で囲まれる範囲内に存在する。これにより、キュリー温度が高く、実用が可能な非鉛の圧電磁器組成物を提供している。 The piezoelectric ceramic composition described in Patent Document 1 has a composition formula of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (x + y + z = 1). Then, in the triangular coordinates having these components as vertices, the composition exists within a range surrounded by a predetermined point. This provides a lead-free piezoelectric ceramic composition that has a high Curie temperature and is practical.

一方、デバイスの機能を高めるために、圧電セラミックスと電極とを積層させた積層型の圧電デバイスの需要が高まっている。その積層型圧電デバイスの内部には、Ag−Pd等の材料を用いた内部電極が設けられており、内部電極に用いられるAg−Pd等の材料は、1000℃を超える温度に達すると溶融し始める。
特開2003−201172号公報
On the other hand, in order to enhance the function of the device, there is an increasing demand for a laminated piezoelectric device in which piezoelectric ceramics and electrodes are laminated. An internal electrode using a material such as Ag—Pd is provided inside the multilayer piezoelectric device, and the material such as Ag—Pd used for the internal electrode melts when it reaches a temperature exceeding 1000 ° C. start.
JP 2003-201172 A

上記の特許文献1の圧電セラミックスは、1200℃の高温で焼成される場合には焼結体は緻密化するが、非鉛系材料で積層型の圧電デバイスを製造しようとすると、圧電体層の緻密化の温度が内部電極の融解温度を超えてしまう。本発明の発明者らは、BNT−BT−ST系圧電セラミックスを圧電体層とした積層型圧電デバイスを開発した。その過程において、内部電極が融解しない温度で積層型圧電デバイスを焼成する必要があることに着目し、酸化銅(CuO)を添加することでBNT−BT−ST系圧電セラミックスを低温で緻密化できることを見出した。   In the piezoelectric ceramic disclosed in Patent Document 1, the sintered body becomes dense when fired at a high temperature of 1200 ° C. However, when a multilayer piezoelectric device is manufactured using a non-lead material, The densification temperature exceeds the melting temperature of the internal electrode. The inventors of the present invention have developed a multilayer piezoelectric device using a BNT-BT-ST piezoelectric ceramic as a piezoelectric layer. In that process, paying attention to the need to fire the multilayer piezoelectric device at a temperature at which the internal electrodes do not melt, and by adding copper oxide (CuO), the BNT-BT-ST piezoelectric ceramics can be densified at low temperature I found.

しかしながら、圧電デバイスの効率を高めるためには、低温焼成に適し積層し易いだけでは不十分であり大きい機械的品質係数を有していることが必要である。酸化銅の添加によりBNT−BT−ST系圧電セラミックスの機械的品質係数は若干高くなるものの、十分に大きいとはいえない。本発明は、このような事情に鑑みてなされたものであり、効率の高い圧電デバイスへの適用に好ましい非鉛系圧電セラミックス、それを応用した積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法を提供することを目的とする。   However, in order to increase the efficiency of the piezoelectric device, it is not sufficient that it is suitable for low-temperature firing and easy lamination, and it is necessary to have a large mechanical quality factor. Although the mechanical quality factor of the BNT-BT-ST piezoelectric ceramic is slightly increased by the addition of copper oxide, it cannot be said to be sufficiently large. The present invention has been made in view of such circumstances, and is preferably a lead-free piezoelectric ceramic suitable for application to a highly efficient piezoelectric device, a laminated piezoelectric device using the same, and a method for producing a lead-free piezoelectric ceramic The purpose is to provide.

(1)上記の目的を達成するため、本発明に係る非鉛系圧電セラミックスは、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスであって、前記非鉛系圧電セラミックス材料に対して、酸化銅を0.1重量%(wt%)以上2重量%以下添加するとともに、二酸化マンガン(MnO)を添加し、1100℃以下で焼成して得られることを特徴としている。 (1) In order to achieve the above object, the lead-free piezoelectric ceramic according to the present invention includes x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (however, x + y + z = 1), which is a lead-free piezoelectric ceramic mainly composed of a compound represented by the composition: 1% by weight (wt%) or more of copper oxide with respect to the lead-free piezoelectric ceramic material. It is characterized in that it is obtained by adding manganese dioxide (MnO 2 ) and firing at 1100 ° C. or lower, in addition to adding by weight% or less.

このように、本発明の非鉛系圧電セラミックスは、酸化銅を含んで焼成されるため低温焼結性を有し積層型圧電デバイスの圧電層に好適である。また、二酸化マンガンを含むことにより、二酸化マンガンを含まないものに比べ2倍以上大きい機械的品質係数を有する。その結果、非鉛系の材料で効率の高い積層型の圧電デバイスを作製することができる。   Thus, since the lead-free piezoelectric ceramic of the present invention is fired containing copper oxide, it has low-temperature sinterability and is suitable for a piezoelectric layer of a multilayer piezoelectric device. Further, by including manganese dioxide, it has a mechanical quality factor that is at least twice as large as that not including manganese dioxide. As a result, a highly efficient stacked piezoelectric device can be manufactured using a lead-free material.

(2)また、本発明に係る非鉛系圧電セラミックスは、200以上の機械的品質係数を有することを特徴としている。これにより、弾性的にエネルギー効率の高い材料として圧電デバイスへの用途が広がる。   (2) Further, the lead-free piezoelectric ceramic according to the present invention is characterized by having a mechanical quality factor of 200 or more. As a result, the use for piezoelectric devices is expanded as an elastically energy-efficient material.

(3)また、本発明に係る非鉛系圧電セラミックスは、前記添加される二酸化マンガンが、0.1重量%以上2.0重量%以下であることを特徴としている。これにより、非鉛系圧電セラミックスの機械的品質係数は200より大きくなり、弾性的にエネルギー効率の高い材料として圧電デバイスへの用途が広がる。   (3) The lead-free piezoelectric ceramic according to the present invention is characterized in that the added manganese dioxide is 0.1 wt% or more and 2.0 wt% or less. As a result, the mechanical quality factor of the lead-free piezoelectric ceramic becomes larger than 200, and the application to the piezoelectric device is expanded as an elastically energy-efficient material.

(4)また、本発明に係る積層型圧電デバイスは、上記の非鉛系圧電セラミックスからなる圧電体層とAg−Pdからなる内部電極層とを交互に積層して、一体焼成により形成されていることを特徴としている。このように、本発明の積層型圧電デバイスは内部電極層と一体焼成され、高い効率で駆動される。   (4) Further, the multilayer piezoelectric device according to the present invention is formed by alternately laminating piezoelectric layers made of the above lead-free piezoelectric ceramics and internal electrode layers made of Ag-Pd, and integrally firing. It is characterized by being. Thus, the multilayer piezoelectric device of the present invention is integrally fired with the internal electrode layer and is driven with high efficiency.

(5)また、本発明に係る非鉛系圧電セラミックスの製造方法は、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスの仮焼粉末に対して、酸化銅を0.1重量%以上2重量%以下添加するとともに、二酸化マンガンを添加する添加工程と、前記添加工程により得られた材料の成形体を1100℃以下で焼成する焼成工程と、を含むことを特徴としている。このように、酸化銅を添加することにより非鉛系圧電セラミックスは低温焼結が可能となる。また、二酸化マンガンを添加することにより大きい機械的品質係数を実現でき、非鉛系圧電セラミックスを効率の高い圧電デバイスに応用できる。 (5) Moreover, the manufacturing method of the lead-free piezoelectric ceramics according to the present invention is x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (where x + y + z = 1). The addition step of adding manganese dioxide to the calcined powder of lead-free piezoelectric ceramics whose main component is a compound represented by the following formula: And a firing step of firing the molded body of the material obtained by the addition step at 1100 ° C. or lower. As described above, the lead-free piezoelectric ceramics can be sintered at a low temperature by adding copper oxide. Moreover, a larger mechanical quality factor can be realized by adding manganese dioxide, and lead-free piezoelectric ceramics can be applied to highly efficient piezoelectric devices.

本発明によれば、効率の高い圧電デバイスへの適用に好ましい非鉛系圧電セラミックス、それを応用した積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法を提供することができる。   According to the present invention, it is possible to provide a lead-free piezoelectric ceramic preferable for application to a highly efficient piezoelectric device, a laminated piezoelectric device to which the lead-free piezoelectric ceramic is applied, and a method for producing the lead-free piezoelectric ceramic.

(母材の組成)
本発明の非鉛系圧電セラミックスは、BNT−BT−ST系圧電セラミックスを母材としている。BNT−BT−ST系圧電セラミックスとは、x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスである。
(Composition of base material)
The lead-free piezoelectric ceramic of the present invention uses a BNT-BT-ST piezoelectric ceramic as a base material. The BNT-BT-ST-based piezoelectric ceramics, x (Bi 0.5 Na 0.5 TiO 3) -y (BaTiO 3) -z (SrTiO 3) ( provided that, x + y + z = 1 ) of the compound represented by the composition Is a lead-free piezoelectric ceramic.

(母材の実験)
x(Bi0.5Na0.5TiO)−y(BaTiO)−z(SrTiO)(ただし、x+y+z=1)と表したとき、0.79≦x≦0.87、0.10≦y≦0.19、0≦z≦0.07を満たす範囲で適宜選択し、組成トレースの実験を行ったところ、ほとんどの組成において電気機械結合係数kr=0.17という結果が得られ、非鉛圧電材料の電気機械結合係数krとしては比較的大きな値が得られた。トレース実験では、焼結体ペレットの両主面に銀ペーストを印刷し、焼成することで電極を設けて分極し、各特性を測定した。なお、60〜150℃、5〜20分、2〜4kV/mmの条件で、焼結体を厚み方向に分極させた(以下、特性測定について同様)。
(Base material experiment)
When expressed as x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (where x + y + z = 1), 0.79 ≦ x ≦ 0.87, 0.10 ≦ y ≦ 0.19, appropriately selected in a range satisfying 0 ≦ z ≦ 0.07, and when the composition trace experiment was performed, the result that the electromechanical coupling coefficient kr = 0.17 was obtained in most compositions, A relatively large value was obtained as the electromechanical coupling coefficient kr of the lead-free piezoelectric material. In the trace experiment, a silver paste was printed on both main surfaces of the sintered pellet, and the electrodes were polarized by firing, and each characteristic was measured. The sintered body was polarized in the thickness direction under the conditions of 60 to 150 ° C., 5 to 20 minutes, and 2 to 4 kV / mm (hereinafter, the same applies to the characteristic measurement).

図1は、各組成のBNT−BT−ST系圧電セラミックスについて、密度、電気機械結合係数、比誘電率、誘電損失を測定した結果を示す表である。また、その後の実験において、x=0.83、y=0.08、z=0.09の組成および、その近傍の組成における特性が好ましいことが分かった。BNT−BT−ST系圧電セラミックスの組成と、低温焼結性または機械的品質係数の大きさとの間に直接の関係はない。なお、密度は、かさ密度を示しており、アルキメデス法により測定される(以下、密度測定について同様)。   FIG. 1 is a table showing the results of measurement of density, electromechanical coupling coefficient, relative dielectric constant, and dielectric loss for BNT-BT-ST piezoelectric ceramics of each composition. Further, in subsequent experiments, it was found that the characteristics in the composition of x = 0.83, y = 0.08, z = 0.09 and the composition in the vicinity thereof are preferable. There is no direct relationship between the composition of the BNT-BT-ST piezoelectric ceramic and the size of the low temperature sinterability or mechanical quality factor. The density indicates a bulk density and is measured by Archimedes method (hereinafter, the same applies to the density measurement).

(酸化銅の添加)
BNT−BT−ST系圧電セラミックスの母材の圧電特性を悪化させずに、セラミック部材の焼結温度を低下させるには、反応性が高く融点の低い物質を添加し、粒界相に液相を作り低温焼結を促進するのが効果的である。
(Addition of copper oxide)
In order to lower the sintering temperature of the ceramic member without deteriorating the piezoelectric characteristics of the base material of the BNT-BT-ST piezoelectric ceramic, a substance having a high reactivity and a low melting point is added, and a liquid phase is added to the grain boundary phase. It is effective to promote low temperature sintering.

酸化銅からなる焼結助剤は、BNT−BT−ST系圧電セラミックスを緻密化させるのに適している。酸化銅をBNT−BT−ST系圧電セラミックスの製造工程において圧電セラミックスに添加することで、BNT−BT−ST系圧電セラミックスは1100℃以下の焼成温度で緻密化される。酸化銅がBNT−BT−ST系圧電セラミックスの焼結助剤として好ましいのは、PZT(PbTiO−PbZrO)系圧電セラミックスやBaTiO系圧電セラミックスの焼結助剤として同様の組成を有する焼結助剤が十分に機能することから推測できる。PZT系圧電セラミックス等に対するBBZ焼結助剤であっても、BNT−BT−ST系圧電セラミックスに対する酸化銅であっても、粒界相に液相を作り低温焼結を促進するメカニズムは同様である。 A sintering aid made of copper oxide is suitable for densifying BNT-BT-ST piezoelectric ceramics. By adding copper oxide to the piezoelectric ceramic in the manufacturing process of the BNT-BT-ST piezoelectric ceramic, the BNT-BT-ST piezoelectric ceramic is densified at a firing temperature of 1100 ° C. or lower. Copper oxide is preferably used as a sintering aid for BNT-BT-ST piezoelectric ceramics because it has a similar composition as a sintering aid for PZT (PbTiO 3 -PbZrO 3 ) piezoelectric ceramics and BaTiO 3 piezoelectric ceramics. It can be inferred from the fact that the binding agent functions sufficiently. Whether it is a BBZ sintering aid for PZT-based piezoelectric ceramics or copper oxide for BNT-BT-ST-based piezoelectric ceramics, the mechanism for creating a liquid phase in the grain boundary phase and promoting low-temperature sintering is the same. is there.

(酸化銅添加の実験)
図1に示す試料番号1および13の組成のBNT−BT−ST系圧電セラミックスを母材として、各酸化銅の添加量、各焼成温度で焼成を行った。粉末の秤量時に母材組成を調整した。このような母材の仮焼粉末に酸化銅の粉末を混合した。酸化銅の添加は仮焼後の粉砕時に行い、仮焼粉末に対し外割り重量比で添加した。すなわち、助剤添加割合は、母材の重量(E)に対する焼結助剤の重量(H)の割合(H/E)である。このようにして酸化銅を0.3重量%、または0.6重量%添加した。
(Experiment of adding copper oxide)
Using the BNT-BT-ST piezoelectric ceramics having the compositions of sample numbers 1 and 13 shown in FIG. 1 as the base material, firing was performed at each copper oxide addition amount and at each firing temperature. The matrix composition was adjusted when the powder was weighed. Copper oxide powder was mixed with the calcined powder of the base material. Copper oxide was added at the time of pulverization after calcination, and added in an externally divided weight ratio with respect to the calcination powder. That is, the auxiliary agent addition ratio is a ratio (H / E) of the weight (H) of the sintering auxiliary agent to the weight (E) of the base material. In this way, 0.3% by weight or 0.6% by weight of copper oxide was added.

酸化銅の添加量0重量%、0.3重量%、0.6重量%のそれぞれの成形体を1000℃、1050℃、1100℃で焼成した。また、助剤添加していない成形体を1200℃で焼成した。そして、焼結体の密度を測定したところ、試料番号1の組成を母材とし、焼成温度1000℃以上、酸化銅の添加量0.3重量%以上の条件で得られたBNT−BT−ST系圧電セラミックスの密度が5.5×10kg/mを超えていた。また、焼成温度1100℃以上、酸化銅の添加量0.3重量%以上の条件で得られたBNT−BT−ST系圧電セラミックスの密度は5.7×10kg/mを超えており、酸化銅を添加せず1200℃で焼成した試料の密度と同程度であった。酸化銅を添加せず1200℃で焼成した試料の密度は、5.72×10kg/mであった。 Molded bodies with addition amounts of copper oxide of 0 wt%, 0.3 wt%, and 0.6 wt% were fired at 1000 ° C, 1050 ° C, and 1100 ° C, respectively. Moreover, the molded object which did not add an auxiliary agent was baked at 1200 degreeC. And when the density of the sintered compact was measured, BNT-BT-ST obtained by using the composition of sample number 1 as a base material, with a firing temperature of 1000 ° C. or higher and a copper oxide addition amount of 0.3 wt% or higher. The density of the piezoelectric ceramics exceeded 5.5 × 10 3 kg / m 3 . Further, the density of the BNT-BT-ST piezoelectric ceramic obtained under the conditions of a firing temperature of 1100 ° C. or higher and an addition amount of copper oxide of 0.3% by weight or higher exceeds 5.7 × 10 3 kg / m 3. The density was the same as the density of the sample fired at 1200 ° C. without adding copper oxide. The density of the sample fired at 1200 ° C. without adding copper oxide was 5.72 × 10 3 kg / m 3 .

図2は、試料番号1の組成を母材とするBNT−BT−ST系圧電セラミックスについて、酸化銅の添加量と密度との関係を示すグラフである。図2に示すように、試料番号1の組成のBNT−BT−ST系圧電セラミックスについて、酸化銅の添加量を0.3重量%以上とすることで焼成温度を1000℃としても緻密な焼結体が得られることが分かった。   FIG. 2 is a graph showing the relationship between the amount of copper oxide added and the density of a BNT-BT-ST piezoelectric ceramic having the composition of sample number 1 as a base material. As shown in FIG. 2, the BNT-BT-ST piezoelectric ceramic having the composition of sample number 1 is densely sintered even when the firing temperature is set to 1000 ° C. by setting the addition amount of copper oxide to 0.3% by weight or more. It turns out that a body is obtained.

一方、試料番号13の組成を母材とし、焼成温度1000℃以上、酸化銅の添加量0.3重量%以上のBNT−BT−ST系圧電セラミックスの密度が5.7×10kg/mを超えており、酸化銅を添加せず1200℃で焼成した試料の密度と同程度であった。酸化銅を添加せず1200℃で焼成した試料の密度は、5.72×10kg/mであった。 On the other hand, the density of the BNT-BT-ST piezoelectric ceramics having the composition of sample number 13 as a base material and a firing temperature of 1000 ° C. or higher and an added amount of copper oxide of 0.3 wt% or higher is 5.7 × 10 3 kg / m. It was over 3 and was comparable to the density of the sample fired at 1200 ° C. without adding copper oxide. The density of the sample fired at 1200 ° C. without adding copper oxide was 5.72 × 10 3 kg / m 3 .

図3は、試料番号13の組成を母材とするBNT−BT−ST系圧電セラミックスについて、酸化銅の添加量と密度との関係を示すグラフである。図3に示すように、試料番号13の組成のBNT−BT−ST系圧電セラミックスについても、酸化銅の添加量を0.3重量%以上とすることで焼成温度を1000℃としても緻密な焼結体が得られることが分かった。   FIG. 3 is a graph showing the relationship between the amount of copper oxide added and the density of the BNT-BT-ST piezoelectric ceramics having the composition of Sample No. 13 as a base material. As shown in FIG. 3, the BNT-BT-ST piezoelectric ceramic having the composition of Sample No. 13 is densely fired even when the firing temperature is 1000 ° C. by setting the amount of copper oxide to be 0.3% by weight or more. It was found that a knot was obtained.

なお、上記の実験により得られた結果を参照すると、実際は酸化銅0.3重量%以上の添加量で緻密化が生じているが、グラフの傾向から0.1重量%以上の添加量でも緻密化が生じるものと考えられる。   In addition, referring to the results obtained by the above experiment, in reality, densification occurs at an addition amount of 0.3% by weight or more of copper oxide. It is thought that crystallization will occur.

このようにして各酸化銅の添加量および各焼成温度において焼成されたペレット状の焼結体の試料を分極し、電気機械結合係数を測定した。酸化銅の添加量が0重量%、0.3重量%、0.6重量%、焼成温度が1000℃、1050℃、1100℃の試料について測定を行った。また、参考として酸化銅を添加せず1200℃で焼成した試料についても電気機械結合係数を測定した。   The pellet-like sintered body sample fired at each copper oxide addition amount and each firing temperature in this way was polarized, and the electromechanical coupling coefficient was measured. Measurements were performed on samples having an addition amount of copper oxide of 0 wt%, 0.3 wt%, 0.6 wt%, and firing temperatures of 1000 ° C, 1050 ° C, and 1100 ° C. For reference, the electromechanical coupling coefficient was also measured for a sample fired at 1200 ° C. without adding copper oxide.

図4は、各焼成温度および各添加量と電気機械結合係数との関係を示す表である。たとえば、酸化銅の添加量を0.3重量%とし、1100℃で焼成した試料について測定された電気機械結合係数は、0.15であることを示している。図中の「−」は、分極不可能だったことを、空欄は、測定していないことを示している。   FIG. 4 is a table showing the relationship between each firing temperature, each added amount, and the electromechanical coupling coefficient. For example, the electromechanical coupling coefficient measured for a sample fired at 1100 ° C. with an addition amount of copper oxide of 0.3% by weight is 0.15. “−” In the figure indicates that polarization was impossible, and the blank indicates that measurement was not performed.

試料番号1の母材組成の試料について測定したところ、酸化銅の添加量が0重量%では、いずれも分極が不可能であったが、0.3重量%添加のものおよび0.6重量%添加のものはいずれも分極でき、0.12以上の高い電気機械結合係数が得られた。一方、試料番号13の母材組成の試料について測定したところ、分極ができないために酸化銅の添加量が0.3重量%、1000℃焼成の試料以外は測定が不可能であった。試料番号1の母材組成の試料の結果から、BNT−BT−ST系圧電セラミックス母材に対する酸化銅の添加量を0.3重量%以上0.6重量%以下とすることで大きい電気機械結合係数を得られることが実証された。なお、試料番号13の母材組成の試料の結果から、ストロンチウムを含まない母材組成に対しては、酸化銅を添加しても十分な圧電特性を得られない場合があることが分かった。   When the sample of the base material composition of sample number 1 was measured, polarization was impossible when the addition amount of copper oxide was 0% by weight, but 0.3% by weight and 0.6% by weight were added. Any of those added could be polarized, and a high electromechanical coupling coefficient of 0.12 or more was obtained. On the other hand, when the sample of the base material composition of sample number 13 was measured, it could not be measured except for the sample which was not added with copper oxide at 0.3 wt% and baked at 1000 ° C. From the result of the sample of the base material composition of sample number 1, a large electromechanical coupling is achieved by setting the amount of copper oxide added to the BNT-BT-ST piezoelectric ceramic base material to be 0.3 wt% or more and 0.6 wt% or less. It has been demonstrated that the coefficient can be obtained. In addition, from the result of the sample of the base material composition of sample number 13, it was found that sufficient piezoelectric characteristics may not be obtained even when copper oxide is added to the base material composition not containing strontium.

この結果を考慮し、他の特性についても確認的に測定を行った。試料番号1の母材組成に、酸化銅を添加しないもの、または0.6重量%添加したもので、1200℃、1100℃で焼成された試料について、比誘電率εrおよび誘電損失tanδを測定した。図5は、各酸化銅の添加量、各焼成温度で作製されたBNT−BT−ST系圧電セラミックス試料の特性をまとめた表である。焼成温度1200℃および1100℃、酸化銅の添加量0重量%、0.6重量%の場合のデータがそれぞれ示されている。図5に示すように、BNT−BT−ST系圧電セラミックスは、酸化銅を0.6重量%添加すれば1000℃で焼成しても、1200℃で焼成したものと同程度の圧電特性を得られることが実証された。   In consideration of this result, other characteristics were also measured in a confirming manner. The sample of sample No. 1 with no copper oxide added or 0.6% by weight added, and the samples fired at 1200 ° C. and 1100 ° C. were measured for relative dielectric constant εr and dielectric loss tan δ. . FIG. 5 is a table summarizing the characteristics of BNT-BT-ST piezoelectric ceramic samples prepared at each copper oxide addition amount and at each firing temperature. Data are shown for firing temperatures of 1200 ° C. and 1100 ° C., and copper oxide additions of 0 wt% and 0.6 wt%, respectively. As shown in FIG. 5, the BNT-BT-ST piezoelectric ceramics obtain the same piezoelectric properties as those fired at 1200 ° C. even when fired at 1000 ° C. when 0.6 wt% of copper oxide is added. It has been demonstrated that

(二酸化マンガンの添加)
上記のように、BNT−BT−ST系圧電セラミックスに酸化銅を0.1重量%以上2重量%以下添加すれば、1100℃以下の温度でも焼結する。本発明に係る非鉛系圧電セラミックスは、BNT−BT−ST系圧電セラミックスの仮焼粉末に対して、さらに二酸化マンガンを0.1重量%以上2重量%以下添加して焼成されている。酸化銅を添加することで低温焼成を可能にし、二酸化マンガンを添加することにより機械的品質係数を飛躍的に高めることができる。その結果、環境への負荷の少ない非鉛系の材料で、効率の高い圧電デバイスを作製することができる。
(Addition of manganese dioxide)
As described above, if copper oxide is added to the BNT-BT-ST piezoelectric ceramic in an amount of 0.1 wt% or more and 2 wt% or less, sintering is performed at a temperature of 1100 ° C. or less. The lead-free piezoelectric ceramic according to the present invention is fired by further adding 0.1% by weight or more and 2% by weight or less of manganese dioxide to the calcined powder of BNT-BT-ST piezoelectric ceramic. By adding copper oxide, low temperature firing is possible, and by adding manganese dioxide, the mechanical quality factor can be dramatically increased. As a result, a highly efficient piezoelectric device can be manufactured using a lead-free material with a low environmental load.

本発明の非鉛系圧電セラミックスを低温焼成で作製する作製方法は以下の通りである。まず、Bi、NaCO、BaTiO、SrCO、TiOの粉末を秤量し、溶媒とともにミルで混合する。そして、混合粉末を乾燥させ、メッシュパスにより造粒する。次いで、粉末を800℃で仮焼し、粉砕する。そして、バインダとともに所定量の酸化銅および二酸化マンガンの粉末を加え、乾燥、造粒する。このようにして得られた粉末を所望の形状に成形して1100℃以下で焼成すれば、低温焼成によるBNT−BT−ST系圧電セラミックスの焼結体が得られる。 A production method for producing the lead-free piezoelectric ceramic of the present invention by low-temperature firing is as follows. First, Bi 2 O 3 , Na 2 CO 3 , BaTiO 3 , SrCO 3 , and TiO 2 powders are weighed and mixed with a solvent in a mill. Then, the mixed powder is dried and granulated by a mesh pass. Subsequently, the powder is calcined at 800 ° C. and pulverized. Then, a predetermined amount of copper oxide and manganese dioxide powder is added together with the binder, dried and granulated. If the powder thus obtained is formed into a desired shape and fired at 1100 ° C. or lower, a sintered body of BNT-BT-ST piezoelectric ceramics is obtained by low-temperature firing.

(二酸化マンガン添加の実験)
上記の酸化銅の添加実験の結果を参照し、BNT−BT−ST系圧電セラミックスを母材として、一定量の酸化銅、および各量の二酸化マンガンを添加して焼成し、各試料を作製した。
(Experiment with manganese dioxide addition)
Referring to the results of the above copper oxide addition experiment, using a BNT-BT-ST piezoelectric ceramic as a base material, a certain amount of copper oxide and each amount of manganese dioxide were added and fired to prepare each sample. .

まず、粉末の秤量時にx(Bi0.5Na0.5TiO)+y(BaTiO)+z(SrTiO)(ただし、x+y+z=1)で表したときに、x=0.83、y=0.08、z=0.09となるように秤量して、母材組成とした。このような母材の仮焼粉末に酸化銅粉末および二酸化マンガン粉末を混合した。酸化銅粉末および二酸化マンガン粉末の添加は仮焼後の粉砕時に行った。仮焼粉末に対し外割り重量比で添加した。すなわち、助剤添加割合は、母材の重量(E)に対する焼結助剤の重量(H)の割合(H/E)である。母材の仮焼粉末に対する酸化銅の添加量は、すべての試料で0.5重量%とし一定とした。母材の仮焼粉末に対する二酸化マンガンの添加量は、各試料で0重量%、0.3重量%、0.5重量%、1.0重量%、2.0重量%と変えた。このように酸化銅粉末および二酸化マンガン粉末を混合した粉末によりペレット状のCIP成形体を作製した。 First, when powder is weighed and expressed as x (Bi 0.5 Na 0.5 TiO 3 ) + y (BaTiO 3 ) + z (SrTiO 3 ) (where x + y + z = 1), x = 0.83, y = The base material composition was weighed so that 0.08 and z = 0.09. Copper oxide powder and manganese dioxide powder were mixed with the calcined powder of such a base material. Copper oxide powder and manganese dioxide powder were added during pulverization after calcination. It added by the external weight ratio with respect to calcining powder. That is, the auxiliary agent addition ratio is a ratio (H / E) of the weight (H) of the sintering auxiliary agent to the weight (E) of the base material. The amount of copper oxide added to the calcined powder of the base material was constant at 0.5% by weight in all samples. The amount of manganese dioxide added to the calcined powder of the base material was changed to 0 wt%, 0.3 wt%, 0.5 wt%, 1.0 wt%, and 2.0 wt% for each sample. A pellet-like CIP compact was produced from the powder obtained by mixing the copper oxide powder and the manganese dioxide powder in this manner.

そして、それぞれの成形体を1000℃で焼成し、直径15mm、厚さ1mmのペレットを作製し、密度を測定した。また、焼結体を分極し、その静電容量、共振・反共振周波数、共振抵抗を測定し、機械的品質係数を測定した。   And each molded object was baked at 1000 degreeC, the diameter 15mm and the pellet of thickness 1mm were produced, and the density was measured. In addition, the sintered body was polarized, its capacitance, resonance / antiresonance frequency, resonance resistance were measured, and the mechanical quality factor was measured.

図6(a)は、二酸化マンガンの添加量と非鉛系圧電セラミックスの密度および機械的品質係数Qmとの関係を示す表である。図6(b)は、二酸化マンガンの添加量と非鉛系圧電セラミックスの機械的品質係数Qmとの関係を示すグラフである。図6(a)、(b)に示すように、二酸化マンガンを添加することにより機械的品質係数Qmが飛躍的に大きくなっている。その結果、非鉛系の材料で効率の高い圧電デバイスを実現することができる。一方、密度はいずれも5.7×10kg/m程度であり、得られた非鉛系圧電セラミックスが焼結していることを示している。 FIG. 6A is a table showing the relationship between the amount of manganese dioxide added, the density of the lead-free piezoelectric ceramic, and the mechanical quality factor Qm. FIG. 6B is a graph showing the relationship between the amount of manganese dioxide added and the mechanical quality factor Qm of the lead-free piezoelectric ceramic. As shown in FIGS. 6A and 6B, the mechanical quality factor Qm is remarkably increased by adding manganese dioxide. As a result, a highly efficient piezoelectric device can be realized with a lead-free material. On the other hand, the densities are all about 5.7 × 10 3 kg / m 3 , indicating that the obtained lead-free piezoelectric ceramics are sintered.

いずれの量の二酸化マンガンを添加した場合の機械的品質係数Qmも添加しない場合の機械的品質係数Qmの2倍以上である。また、図6(a)、(b)に示すように、二酸化マンガンの添加量が0.1重量%以上2.0重量%以下の範囲のときに機械的品質係数Qmが200を超えており、0.2重量%以上1.5重量%以下の範囲で機械的品質係数Qmが400を超えている。圧電セラミックスを工業的に使用するには機械的品質係数Qmが400以上であることが好ましく、二酸化マンガンの添加量が0.2重量%以上1.5重量%以下であることが好ましい。また、実測のデータから導かれる近似曲線(図6(b))を参照すると、0.3重量%以上0.7重量%の範囲で機械的品質係数Qmが500を超えており、0.3重量%以上0.5重量%以下の範囲であればさらにQmが向上している。   The mechanical quality factor Qm when any amount of manganese dioxide is added is twice or more the mechanical quality factor Qm when no manganese dioxide is added. Further, as shown in FIGS. 6A and 6B, the mechanical quality factor Qm exceeds 200 when the amount of manganese dioxide added is in the range of 0.1 wt% to 2.0 wt%. The mechanical quality factor Qm exceeds 400 in the range of 0.2 wt% to 1.5 wt%. In order to use piezoelectric ceramics industrially, the mechanical quality factor Qm is preferably 400 or more, and the addition amount of manganese dioxide is preferably 0.2 wt% or more and 1.5 wt% or less. Further, referring to the approximate curve derived from the actually measured data (FIG. 6B), the mechanical quality factor Qm exceeds 500 in the range of 0.3 wt% to 0.7 wt%, and 0.3 Qm is further improved in the range of not less than 0.5% by weight.

次に、上記と同様の作製方法で、二酸化マンガンの添加量を一定にし、酸化銅の添加量を変えて非鉛系圧電セラミックスを作製した。母材の仮焼粉末に対する二酸化マンガンの添加量を0.3重量%とし一定とした。また、母材の仮焼粉末に対する酸化銅の添加量を各試料で0.2重量%、0.3重量%、0.4重量%、0.5重量%と変えて焼成し、各焼結体を得た。そして、上記と同様の測定方法で密度および機械的品質係数Qmを測定した。   Next, by the same production method as described above, a lead-free piezoelectric ceramic was produced by changing the addition amount of manganese dioxide and changing the addition amount of copper oxide. The amount of manganese dioxide added to the calcined powder of the base material was kept constant at 0.3% by weight. In addition, the amount of copper oxide added to the calcined powder of the base material was changed to 0.2% by weight, 0.3% by weight, 0.4% by weight, and 0.5% by weight for each sample. Got the body. Then, the density and the mechanical quality factor Qm were measured by the same measuring method as described above.

図7(a)は、酸化銅の添加量と、非鉛系圧電セラミックスの密度および機械的品質係数Qmとの関係を示す表である。図6(b)は、二酸化マンガンの添加量と非鉛系圧電セラミックスの機械的品質係数Qmとの関係を示すグラフである。図7(a)、(b)により、若干、酸化銅の添加量に対して機械的品質係数Qmは増加しているが、酸化銅の添加量によって機械的品質係数Qmは大きく影響を受けないことが分かる。このように、酸化銅の添加量は機械的品質係数Qmに大きな影響を与えないことが実証された。したがって、0.1重量%以上2重量%以下の範囲では、酸化銅の添加量で機械的品質係数Qmが大きく変わることはないと考えられる。   FIG. 7A is a table showing the relationship between the amount of copper oxide added, the density of the lead-free piezoelectric ceramic, and the mechanical quality factor Qm. FIG. 6B is a graph showing the relationship between the amount of manganese dioxide added and the mechanical quality factor Qm of the lead-free piezoelectric ceramic. 7 (a) and 7 (b), the mechanical quality factor Qm slightly increases with respect to the added amount of copper oxide, but the mechanical quality factor Qm is not significantly affected by the added amount of copper oxide. I understand that. Thus, it was demonstrated that the amount of copper oxide added does not significantly affect the mechanical quality factor Qm. Therefore, in the range of 0.1 wt% or more and 2 wt% or less, it is considered that the mechanical quality factor Qm does not change greatly with the amount of copper oxide added.

次に、上記と同様の作製方法にて、酸化銅および二酸化マンガンの両方を添加しない場合、いずれかを添加する場合、両方を添加する場合のそれぞれについて非鉛系圧電セラミックスの試料を作製した。そして、各試料について密度および機械的品質係数Qmを測定した。   Next, in the same production method as described above, a lead-free piezoelectric ceramic sample was produced for each of the case where both copper oxide and manganese dioxide were not added, the case where either was added, and the case where both were added. Then, the density and the mechanical quality factor Qm were measured for each sample.

図8は、酸化銅および二酸化マンガンの添加量と、非鉛系圧電セラミックスの密度および機械的品質係数Qmとの関係を示す表である。酸化銅のみを添加する場合および両方を添加する場合では、1000℃で焼成した。ただし、両方を添加しない場合の試料および二酸化マンガンのみ添加した試料は、1000℃で焼成しても十分に緻密化しないため1200℃で焼成した。   FIG. 8 is a table showing the relationship between the amount of copper oxide and manganese dioxide added, the density of the lead-free piezoelectric ceramic, and the mechanical quality factor Qm. When only copper oxide was added and when both were added, firing was performed at 1000 ° C. However, the sample in which both were not added and the sample in which only manganese dioxide was added were fired at 1200 ° C. because they were not sufficiently densified even when fired at 1000 ° C.

図8に示すように、酸化銅のみ添加された試料は、十分な密度を有し焼結しているが、緻密化の影響により機械的品質係数Qmは若干増加するものの100程度であり、高い機械的品質係数Qmが求められる超音波モーター等の超音波素子に用いるには低すぎることが分かった。また、二酸化マンガンのみ添加された試料では、1200℃でも緻密化せず二酸化マンガンが緻密化を阻害している傾向が見られた。また、両方が添加された試料では、低温焼成でも十分に緻密化し、機械的品質係数Qmが飛躍的に増加することが確認された。二酸化マンガンは緻密化の阻害要因となるものの、酸化銅が添加されることで低温でも十分に緻密化が可能となる。このように、BNT−BT−ST系圧電セラミックスを効率の高い圧電デバイスとして機能させるには、酸化銅および二酸化マンガンの両方が添加されることが重要であることが確認された。   As shown in FIG. 8, the sample to which only copper oxide is added has a sufficient density and is sintered, but the mechanical quality factor Qm slightly increases due to the influence of densification, but is about 100, which is high. It was found that the mechanical quality factor Qm is too low for use in an ultrasonic element such as an ultrasonic motor. In addition, in the sample to which only manganese dioxide was added, there was a tendency that manganese dioxide was not densified even at 1200 ° C. and manganese dioxide inhibited densification. In addition, it was confirmed that the sample to which both were added was sufficiently densified even at low temperature firing, and the mechanical quality factor Qm increased dramatically. Manganese dioxide is an obstacle to densification, but the addition of copper oxide makes it possible to achieve sufficient densification even at low temperatures. As described above, it was confirmed that it is important to add both copper oxide and manganese dioxide in order to make the BNT-BT-ST piezoelectric ceramic function as a highly efficient piezoelectric device.

(積層型圧電デバイス)
なお、本発明の非鉛系圧電セラミックスは、電極と圧電体層が交互に積層された積層型圧電デバイスに用いられることで、大きな効果が得られる。BNT−BT−ST系圧電セラミックスは、固相焼結が簡便と言う利点があり積層化に適している。積層型圧電デバイスには、たとえば積層型圧電トランスがある。積層型の圧電トランスは、小型で大きい昇圧比が得られるため、液晶ディスプレイのバックライト用等で需要が高まっている。酸化銅および二酸化マンガンを用いてBNT−BT−ST系圧電セラミックスを圧電体層とする積層型の圧電トランスが作製することで、鉛を含まない積層型圧電トランスを得ることができる。
(Laminated piezoelectric device)
In addition, the lead-free piezoelectric ceramic of the present invention provides a great effect when used in a laminated piezoelectric device in which electrodes and piezoelectric layers are alternately laminated. BNT-BT-ST piezoelectric ceramics have the advantage of simple solid-phase sintering and are suitable for lamination. An example of the multilayer piezoelectric device is a multilayer piezoelectric transformer. Multilayer piezoelectric transformers are small and can provide a large step-up ratio, so that there is an increasing demand for backlights for liquid crystal displays. By producing a multilayered piezoelectric transformer using BNT-BT-ST piezoelectric ceramics as a piezoelectric layer using copper oxide and manganese dioxide, a multilayered piezoelectric transformer containing no lead can be obtained.

酸化銅および二酸化マンガンを用いた非鉛系圧電セラミックスを応用した積層型圧電デバイスの製造方法の一例として、BNT−BT−ST系圧電セラミックスを圧電体層とする積層型圧電トランスの製造方法を以下に説明する。   As an example of a manufacturing method of a multilayer piezoelectric device using a lead-free piezoelectric ceramic using copper oxide and manganese dioxide, a manufacturing method of a multilayer piezoelectric transformer using a BNT-BT-ST piezoelectric ceramic as a piezoelectric layer is as follows. Explained.

まず、Bi、NaCO、BaTiO、SrCOおよびTiOのそれぞれ適量を配合しボールミル等により均一に混合する。混合後のスラリは乾燥させ、800℃で仮焼を行なう。なお、仮焼温度は800℃以下とするのが好ましい。たとえば、800℃以下とすることにより焼結体の誘電損失が小さくなる。 First, appropriate amounts of Bi 2 O 3 , Na 2 CO 3 , BaTiO 3 , SrCO 3 and TiO 2 are blended and mixed uniformly by a ball mill or the like. The slurry after mixing is dried and calcined at 800 ° C. The calcining temperature is preferably 800 ° C. or lower. For example, the dielectric loss of a sintered compact becomes small by setting it as 800 degrees C or less.

次に、仮焼体を、ボールミル等で粉砕しスラリを乾燥させる。そして、酸化銅を0.1重量%以上2重量%以下の所定量、二酸化マンガンを0.1重量%以上2重量%以下の所定量それぞれ添加し、バインダを混合してグリーンシートを成形する。酸化銅を0.1重量%以上添加し、1000℃以下で焼成することで、密度が5.5×10kg/m以上のBNT−BT−ST系圧電セラミックスを得ることができる。一方、2重量%以下とすることで、酸化銅による導電性を抑制することができる。また、二酸化マンガンを添加することで、効率の高い駆動が可能な非鉛系圧電セラミックスを提供できる。 Next, the calcined body is pulverized with a ball mill or the like to dry the slurry. Then, a predetermined amount of 0.1% to 2% by weight of copper oxide and a predetermined amount of 0.1% to 2% by weight of manganese dioxide are added, and a binder is mixed to form a green sheet. BNT-BT-ST piezoelectric ceramics having a density of 5.5 × 10 3 kg / m 3 or more can be obtained by adding 0.1% by weight or more of copper oxide and firing at 1000 ° C. or less. On the other hand, the conductivity by copper oxide can be suppressed by setting it as 2 weight% or less. Further, by adding manganese dioxide, it is possible to provide lead-free piezoelectric ceramics that can be driven with high efficiency.

グリーンシートの作製は、公知の方法、たとえば、ドクターブレード法や押出成形法、カレンダロール法等を用いることができる。グリーンシートの厚みは、たとえば、焼成後に所望の厚みとなるように調整する。こうして作製したグリーンシートを焼成収縮や加工しろを考慮して打ち抜き加工または切り取り加工等し、作製する圧電トランスの短冊状の形状に適合した所定の形状の印刷用シートを得る。印刷用シートにおける長手方向半分の領域に、AgおよびPdを含む内部電極ペーストをスクリーン印刷法等で印刷する。ここで、Ag−Pdの内部電極ペーストの印刷は、たとえば、焼成後に2μm〜5μm程度となるように印刷厚みを調節する。また、形成される内部電極をその後に一層おきに接続することが容易となるように、内部電極ペーストを印刷するパターンを定めておくことが望ましい。   The green sheet can be produced by a known method such as a doctor blade method, an extrusion method, a calendar roll method, or the like. The thickness of the green sheet is adjusted so as to have a desired thickness after firing, for example. The green sheet thus manufactured is punched or cut in consideration of firing shrinkage and processing margin, and a printing sheet having a predetermined shape suitable for the rectangular shape of the piezoelectric transformer to be manufactured is obtained. An internal electrode paste containing Ag and Pd is printed by a screen printing method or the like on a half region in the longitudinal direction of the printing sheet. Here, in the printing of the internal electrode paste of Ag—Pd, for example, the printing thickness is adjusted to be about 2 μm to 5 μm after firing. Further, it is desirable to determine a pattern for printing the internal electrode paste so that the internal electrodes to be formed can be easily connected every other layer thereafter.

次いで、内部電極ペーストが印刷された印刷用シートを位置合わせして所定枚数ほど積層し、こうして積層された印刷用シートどうしを熱プレス等で熱圧着し、一体化する。このように、シートを所定位置に合わせて圧着させたプレス体を型抜きし、成形体を作製する。   Next, the printing sheets on which the internal electrode paste is printed are aligned and laminated by a predetermined number, and the printing sheets thus laminated are thermocompression bonded by a hot press or the like to be integrated. In this way, the press body in which the sheet is press-fitted in accordance with a predetermined position is punched to produce a molded body.

続いて、所定の温度パターンに従い1100℃以下で成形体を焼成する。得られた焼成体の側面や表面に必要に応じて、研削加工や研磨加工を施して形状を整える。次に、Ag−Pdペースト等を用いて、入力部の内部電極を一層おきに接続して1対の電極を形成し、また、出力部の端面に出力用電極を形成した後、所定の温度で処理してAg−Pdペースト等を焼き付ける。通常、このAg−Pdペースト等の焼き付け処理は焼成温度よりも低い温度で行なう。そして、必要に応じて形成された電極にリード線を取り付ける。得られた焼結体は、分極処理を行なう。入力部に設けられた1対の電極と、出力部の端面に設けられた電極との間に所定の電圧を印加して出力部の分極処理を行い、その後に入力部に設けられた1対の電極間に所定の電圧を印加して入力部の分極処理を行なうことで圧電トランスが作製される。   Subsequently, the molded body is fired at 1100 ° C. or less according to a predetermined temperature pattern. If necessary, the shape and the shape of the fired body are adjusted by grinding or polishing. Next, using an Ag-Pd paste or the like, the internal electrodes of the input part are connected every other layer to form a pair of electrodes, and the output electrode is formed on the end face of the output part, and then at a predetermined temperature. The Ag-Pd paste or the like is baked by processing. Usually, the baking treatment of the Ag—Pd paste or the like is performed at a temperature lower than the firing temperature. And a lead wire is attached to the electrode formed as needed. The obtained sintered body is subjected to polarization treatment. A predetermined voltage is applied between the pair of electrodes provided in the input unit and the electrode provided on the end face of the output unit to perform polarization processing of the output unit, and then the pair of electrodes provided in the input unit A piezoelectric transformer is manufactured by applying a predetermined voltage between the electrodes and performing polarization processing of the input portion.

なお、分極処理は、圧電セラミックスのキュリー点より低い所定の温度において、所定時間行われる。このようにして、非鉛のBNT−BT−ST系積層型圧電トランスを製造することができる。このように、BNT−BT−ST系圧電セラミックスからなる圧電体層とAg−Pd等からなる内部電極層とが交互に積層されたプレス体を、一体焼成して非鉛の積層型圧電トランスを製造することができる。   The polarization process is performed for a predetermined time at a predetermined temperature lower than the Curie point of the piezoelectric ceramic. In this way, a lead-free BNT-BT-ST laminated piezoelectric transformer can be manufactured. Thus, a press body in which piezoelectric layers made of BNT-BT-ST piezoelectric ceramics and internal electrode layers made of Ag-Pd or the like are alternately laminated is integrally fired to produce a lead-free laminated piezoelectric transformer. Can be manufactured.

各組成のBNT−BT−ST系圧電セラミックスの特性を示す表である。It is a table | surface which shows the characteristic of the BNT-BT-ST type piezoelectric ceramic of each composition. BNT−BT−ST系圧電セラミックスについて、酸化銅の添加量と密度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of copper oxide, and a density about a BNT-BT-ST type piezoelectric ceramic. BNT−BT−ST系圧電セラミックスについて、酸化銅の添加量と密度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of copper oxide, and a density about a BNT-BT-ST type piezoelectric ceramic. BNT−BT−ST系圧電セラミックスについて、各焼成温度および各添加量と電気機械結合係数との関係を示す表である。It is a table | surface which shows the relationship between each baking temperature and each addition amount, and an electromechanical coupling coefficient about a BNT-BT-ST type piezoelectric ceramic. BNT−BT−ST系圧電セラミックス試料の特性をまとめた表である。It is the table | surface which put together the characteristic of the BNT-BT-ST type piezoelectric ceramic sample. 本発明の非鉛系圧電セラミックスについて、(a)二酸化マンガンの添加量と非鉛系圧電セラミックスの密度および機械的品質係数Qmとの関係を示す表、(b)二酸化マンガンの添加量と非鉛系圧電セラミックスの機械的品質係数Qmとの関係を示すグラフである。Regarding the lead-free piezoelectric ceramic of the present invention, (a) a table showing the relationship between the addition amount of manganese dioxide and the density and mechanical quality factor Qm of the lead-free piezoelectric ceramic, (b) the addition amount of manganese dioxide and the lead-free It is a graph which shows the relationship with the mechanical quality factor Qm of a piezoelectric ceramic. (a)酸化銅の添加量と、非鉛系圧電セラミックスの密度および機械的品質係数Qmとの関係を示す表、(b)は、二酸化マンガンの添加量と非鉛系圧電セラミックスの機械的品質係数Qmとの関係を示すグラフである。(A) Table showing the relationship between the amount of copper oxide added and the density and mechanical quality factor Qm of lead-free piezoelectric ceramics, (b) shows the amount of manganese dioxide added and the mechanical quality of lead-free piezoelectric ceramics It is a graph which shows the relationship with the coefficient Qm. 酸化銅および二酸化マンガンの添加量と、非鉛系圧電セラミックスの密度および機械的品質係数Qmとの関係を示す表である。It is a table | surface which shows the relationship between the addition amount of a copper oxide and manganese dioxide, the density of a lead-free piezoelectric ceramic, and the mechanical quality factor Qm.

Claims (3)

x(Bi0.5Na0.5TiO3)−y(BaTiO3)−z(SrTiO3)(ただし、x+y+z=1)の組成で表される化合物を主成分とする材料に対して、酸化銅を0.1重量%以上2重量%以下添加するとともに、0.1重量%以上2.0重量%以下の二酸化マンガンを添加し、1100℃以下で焼成して得られる非鉛系圧電セラミックスからなる圧電体層とAg−Pdからなる内部電極層とを交互に積層して、一体焼成により形成されていることを特徴とする積層型圧電デバイスFor a material mainly composed of a compound represented by the composition of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (x + y + z = 1), 0. Piezoelectric layer made of lead-free piezoelectric ceramic obtained by adding 1% by weight or more and 2% by weight or less and adding 0.1% by weight or more and 2.0% by weight or less of manganese dioxide and firing at 1100 ° C. or less And an internal electrode layer made of Ag—Pd are alternately laminated and formed by integral firing . 前記非鉛系圧電セラミックスは、200以上の機械的品質係数を有することを特徴とする請求項1記載の積層型圧電デバイスThe multilayer piezoelectric device according to claim 1, wherein the lead- free piezoelectric ceramic has a mechanical quality factor of 200 or more. x(Bi0.5Na0.5TiO3)−y(BaTiO3)−z(SrTiO3)(ただし、x+y+z=1)の組成で表される化合物を主成分とする非鉛系圧電セラミックスの仮焼粉末に対して、酸化銅を0.1重量%以上2重量%以下添加するとともに、0.1重量%以上2.0重量%以下の二酸化マンガンを添加する添加工程と、
前記添加工程により得られた材料のグリーンシート上に内部電極パターンでAg−Pdペーストを印刷する印刷工程と、
前記Ag−Pdペーストを塗布されたグリーンシートを複数枚積層して得られた成形体を1100℃以下で焼成する焼成工程と、を含むことを特徴とする積層型圧電デバイスの製造方法。
To a calcined powder of lead-free piezoelectric ceramics mainly composed of a compound represented by a composition of x (Bi 0.5 Na 0.5 TiO 3 ) -y (BaTiO 3 ) -z (SrTiO 3 ) (where x + y + z = 1) On the other hand, an addition step of adding 0.1 to 2% by weight of copper oxide and adding 0.1 to 2.0% by weight of manganese dioxide;
A printing step of printing an Ag-Pd paste with an internal electrode pattern on a green sheet of the material obtained by the addition step ;
Method for producing a laminated piezoelectric device, which comprises a firing step of firing the shaped body obtained a green sheet which is coated with the Ag-Pd paste laminating a plurality at 1100 ° C. or less.
JP2008328335A 2008-12-24 2008-12-24 Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method Active JP5345834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328335A JP5345834B2 (en) 2008-12-24 2008-12-24 Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328335A JP5345834B2 (en) 2008-12-24 2008-12-24 Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method

Publications (2)

Publication Number Publication Date
JP2010150060A JP2010150060A (en) 2010-07-08
JP5345834B2 true JP5345834B2 (en) 2013-11-20

Family

ID=42569582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328335A Active JP5345834B2 (en) 2008-12-24 2008-12-24 Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method

Country Status (1)

Country Link
JP (1) JP5345834B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700200B2 (en) * 2010-11-04 2015-04-15 セイコーエプソン株式会社 Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and piezoelectric ceramic
DE102014211465A1 (en) * 2013-08-07 2015-02-12 Pi Ceramic Gmbh Keramische Technologien Und Bauelemente Lead-free piezoceramic material based on bismuth sodium titanate (BNT)
CN106129242A (en) * 2016-06-28 2016-11-16 武汉华思创新科技有限公司 A kind of big strain multilamellar leadless piezoelectric actuator and preparation method thereof
CN108117386A (en) * 2017-12-14 2018-06-05 陕西科技大学 A kind of stannic oxide doping ST base energy storage materials and preparation method thereof
CN110511019A (en) * 2019-10-08 2019-11-29 哈尔滨商业大学 A kind of BNT base Lead-free ferroelectric ceramics and preparation method thereof that response lag is effectively reduced
JP7406952B2 (en) 2019-10-17 2023-12-28 太陽誘電株式会社 Piezoelectric ceramics and their manufacturing method, and piezoelectric elements
JP7320091B2 (en) * 2021-02-10 2023-08-02 住友化学株式会社 Laminated substrate with piezoelectric thin film, method for manufacturing laminated substrate with piezoelectric thin film, piezoelectric thin film element, sputtering target material, and method for manufacturing sputtering target material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772528B2 (en) * 1988-10-28 1998-07-02 京セラ株式会社 Dielectric porcelain composition
JP2000072539A (en) * 1998-08-31 2000-03-07 Kyocera Corp Piezoelectric material
JP3706489B2 (en) * 1998-11-30 2005-10-12 京セラ株式会社 Dielectric porcelain and manufacturing method thereof
JP4544712B2 (en) * 2000-07-31 2010-09-15 京セラ株式会社 Piezoelectric ceramic and piezoelectric element
JP3482394B2 (en) * 2000-11-20 2003-12-22 松下電器産業株式会社 Piezoelectric ceramic composition
JP2003095737A (en) * 2001-09-17 2003-04-03 National Institute Of Advanced Industrial & Technology Piezoelectric ceramic composition
JP4039029B2 (en) * 2001-10-23 2008-01-30 株式会社村田製作所 Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
JP2003201172A (en) * 2001-10-24 2003-07-15 National Institute Of Advanced Industrial & Technology Leadless piezoelectric porcelain composition and method of manufacturing the same
JP4231653B2 (en) * 2002-03-22 2009-03-04 独立行政法人科学技術振興機構 Manufacturing method of laminated piezoelectric actuator
JP2005047745A (en) * 2003-07-28 2005-02-24 Tdk Corp Piezoelectric ceramic
JP2005183701A (en) * 2003-12-19 2005-07-07 Murata Mfg Co Ltd Piezoelectric element and its manufacturing method
JP4044943B2 (en) * 2005-04-28 2008-02-06 本多電子株式会社 Piezoelectric ceramic material
JP4727458B2 (en) * 2006-03-08 2011-07-20 太平洋セメント株式会社 Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP4849338B2 (en) * 2007-03-26 2012-01-11 Tdk株式会社 Piezoelectric ceramic composition

Also Published As

Publication number Publication date
JP2010150060A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4988451B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP4400754B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
TW560094B (en) Piezoelectric ceramic and method of manufacturing
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP5345834B2 (en) Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method
JP2007258280A (en) Laminated piezoelectric element
JP2009242167A (en) Piezoelectric ceramic and piezoelectric element using it
WO2002053514A1 (en) Ceramic material and piezoelectric element using the same
JP2007290940A (en) Dielectric porcelain composition and electronic component
JP5192737B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP2005179143A (en) Piezoelectric ceramic and method of producing the same
JP4001362B2 (en) Piezoelectric ceramic and manufacturing method thereof
JP2002255644A (en) Ceramic material and piezoelectric element using the same
JP5530140B2 (en) BNT-BT piezoelectric ceramics and manufacturing method thereof
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JP5462759B2 (en) Piezoelectric ceramics and piezoelectric element
JP5158516B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP4432280B2 (en) Piezoelectric ceramic
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP2006036578A (en) Method of manufacturing piezoelectric material and piezoelectric material using the same
JP2008056549A (en) Unleaded piezoelectric porcelain composition
JP2012178584A (en) Laminated piezoelectric element
JP2010215423A (en) Piezoelectric or dielectric ceramic composition, piezoelectric device, and dielectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130815

R150 Certificate of patent or registration of utility model

Ref document number: 5345834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350