JP4177615B2 - Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component - Google Patents

Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component Download PDF

Info

Publication number
JP4177615B2
JP4177615B2 JP2002236996A JP2002236996A JP4177615B2 JP 4177615 B2 JP4177615 B2 JP 4177615B2 JP 2002236996 A JP2002236996 A JP 2002236996A JP 2002236996 A JP2002236996 A JP 2002236996A JP 4177615 B2 JP4177615 B2 JP 4177615B2
Authority
JP
Japan
Prior art keywords
general formula
piezoelectric ceramic
piezoelectric
range
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002236996A
Other languages
Japanese (ja)
Other versions
JP2004075449A (en
Inventor
豊 土信田
朋美 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2002236996A priority Critical patent/JP4177615B2/en
Publication of JP2004075449A publication Critical patent/JP2004075449A/en
Application granted granted Critical
Publication of JP4177615B2 publication Critical patent/JP4177615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品に関し、特にたとえば、圧電発音体、圧電センサ、圧電アクチュエータ、圧電トランス、圧電超音波モータなどの圧電セラミック部品などの材料として有用な無鉛圧電磁器組成物、無鉛圧電磁器組成物の製造方法およびこの無鉛圧電磁器組成物を用いた圧電セラミック部品に関する。
【0002】
【従来の技術】
圧電体磁器組成物としては、二成分系で構成されるPZT(PbTiO−PbZrO)系磁器や三成分で構成されるPCM[PbTiO−PbZrO−Pb(Mg0.5Nb0.5)TiO]系磁器が主に用いられてきた。
【0003】
しかし、これらの磁器組成物は、いずれも鉛を主成分とするもので、焼成時に揮発する酸化鉛などの鉛成分による環境面への影響が問題となる。
【0004】
従来、この代替として、ABOのペロブスカイト構造を有する材料の中で、(Bi0.5Na0.5)TiO、(Bi0.50.5)TiOや(Bi,Na,K)TiO、(Bi,Na,Ba)TiOなどのBiを含む複合ペロブスカイト構造をもつ材料(Biペロブスカイト)、これらの固溶体、および(Bi,Na,K)TiOにFe、Cr、MnO、NiO、Co、La、In、Al、BaCO、Sb、Nbなどを添加した無鉛圧電磁器組成物が提案されている。
【0005】
例えば、特開平11−171643、特公平04−60073、特開2001−151566、特開2001−48642、特開平11−217262、特開2000−22235、特開2000−272962には種々の無鉛圧電磁器組成物が提案されている。
【0006】
【発明が解決しようとする課題】
Biペロブスカイトは、発音体、センサ、アクチュエータなど変位を利用する圧電セラミック部品としては圧電定数が低く、トランス、超音波モータなどパワー利用の圧電セラミック部品では、機械的品質係数Qmが低い。また、Biペロブスカイトは、成形後、焼成時に結晶粒が異常粒成長し、100μmを越えるような結晶粒と、数μmの細かい結晶粒が混在した不均一な組織(Duplex Structure)になり易く、組織を制御することが難しい。
【0007】
圧電磁器組成物を数μm〜数10μmの厚みでシート成形後、電極材料介して積層し同時焼成することで作成する圧電セラミック部品としては、結晶粒のサイズがシート厚みを越えてしまう磁器組成物は使用できない。したがって、PZTの代替で使用するには、材料特性の改善が不可欠である。
【0008】
従来技術のうち、特開平11−217262、特開2000−22235、特開2000−272962では、これらのBiペロブスカイトに、Fe、Cr、MnO、Co、La、BaCO、Sb、Nbなどの酸化物を添加することで圧電特性が改善できることを提示している。
【0009】
しかし、実際には、従来技術のように合成する際にBiペロブスカイトにこれらの酸化物を添加した組成系では、反応合成時、焼結工程などの熱処理過程で、BiなどのBiペロブスカイトの構成元素と添加した酸化物が反応し、Biペロブスカイト以外の二次相が生成される。そのため、二次相により圧電特性が下がる効果と、添加した酸化物による特性向上作用が反駁し、示されているような改善は、安定して得られない。さらに、焼結体の微細組織は、二次相の生成が抑制できないことから、効果については触れられていない。
【0010】
この発明は、鉛を含まない化合物からなる、圧電特性の良い圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明に係る圧電磁器組成物は、一般式ABOで表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が3価又は5価の元素M(III)(V)によって置換されていることを特徴とするものである。
【0012】
この発明に係る圧電磁器組成物の製造方法は、原料化合物を仮焼する仮焼工程と、該仮焼工程で得られた仮焼粉を成形する成形工程と、該成形工程で得られた成形体を焼成する焼成工程とを備え、前記原料化合物が、一般式ABOで表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が3価又は5価の元素M(III)(V)によって置換されていることを特徴とするものである。
【0013】
この発明に係る圧電セラミック部品は、1又は2以上の圧電体と該圧電体を挟持する2以上の電極とを備え、該圧電体が、一般式ABOで表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が3価又は5価の元素M(III)(V)によって置換されていることを特徴とするものである。
【0014】
ここで、前記一般式中のB(=Ti)の一部が3価又は5価の元素M(III)(V)によって置換されている置換の割合は0.005≦x≦0.040が好ましい。置換の割合xの範囲を0.005≦x≦0.040としたのは、xが0.005未満になると粒径分布が不均一で、ポアが残り、xが0.040を越えると二次相が多くなり、分極不可になるが、0.005≦x≦0.040の範囲ではこのような不都合がなく、圧電特性(Qm,kr,d31)の良い、緻密な組成物が得られるからである。
【0015】
また、前記一般式ABOを下式(1)又は(2)で表わされるペロブスカイト型の複合酸化物とすることができる。この場合、Mとしては3価の元素M(III)を使用することができる。
【0016】
Bi0.5(Na1−αα0.5Ti1−x……………(1)
【0017】
(Bi0.5Na0.51−βBaβTi1−x……………(2)
【0018】
ここで、αの範囲は0≦α≦1が、βの範囲は0<β<1が好ましい。
【0019】
また、前記一般式ABOを下式(3)又は(4)で表わされるペロブスカイト型の複合酸化物とすることができる。この場合、Mとしては5価の元素M(V)を使用することができる。
【0020】
Bi0.5(Na1−αα0.5−xTi1−x………………(3)
【0021】
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−x………(4)
【0022】
ここで、αの範囲は0≦α≦1が、βの範囲は0<β<1が、xの範囲は0.005≦x≦0.020が好ましい。
【0023】
また、前記3価の元素M(III)としては、例えばMn、Cr、Fe又はCo、前記5価の元素M(V)としては、例えばNb、Sb、V又はTaとすることができる。
【0024】
また、上記説明においてペロブスカイト型の複合酸化物を主成分とするとは、上記圧電磁器組成物の特性を害しない範囲で他の成分を含んでいても良いという趣旨である。
【0025】
また、圧電磁器組成物の製造方法において、仮焼粉の成形には、仮焼粉をプレスして成形する場合だけでなく、仮焼粉のスラリーを用いてシートを成形する場合や、仮焼粉のスラリーの塗布と電極の塗布を交互に行って積層体を形成する場合も含む。
【0026】
また、前記圧電セラミック部品は、例えば圧電発音体、圧電センサ、圧電アクチュエータ、圧電トランス又は圧電超音波モータを挙げることができるが、圧電磁器組成物を使用できる電気部品であればこれら以外のものに適用してもよい。
【0027】
【実施例】
実施例その1: まず、原料化合物としてBi、NaCO、KCO、TiOを式(1)(2)の複合酸化物が構成される割合で秤量した。
【0028】
Bi0.5(Na1−αα0.5Ti1−xM(III)……………(1)
【0029】
Bi0.5(Na1−αα0.5−xTi1−xM(V)……………(2)
【0030】
また、これらの式(1)(2)中、α=0〜1、M(III)は、MnO、Cr、Fe、Coを、M(V)は、Nb、Sb、V、Taを表1、表2のx欄に示す割合で各々秤量した。
【0031】
次に、表1、表2の各試料条件で上記各原料化合物及び添加成分をエタノールとともにボールミルに入れ、湿式混合し、得られたスラリーを乾燥させ、これを750℃、3hで仮焼した。この仮焼によって各試料条件でのペロブスカイト型の複合酸化物が合成される。
【0032】
次に、この仮焼物をエタノールとともにボールミルに入れ、湿式粉砕し、得られたスラリーを乾燥させ、有機バインダ(PVA)を加えて乾式造粒した。
【0033】
次に、この造粒物を1軸プレスで10mmφ×0.5mmtの円板に成型し、これを1000〜1300℃、1〜4時間で焼成し、試料を作製した。
【0034】
次に、この試料について、X線回折装置(XRD)により生成相を同定し、走査型電子顕微鏡(SEM)により微細組織を観察・評価した。結果は、表1、表2に示す通りであった。
【0035】
また、シリコンオイルなどの絶縁油中で50〜150℃で2〜5kV/mmで分極させ、LCRメータにより1kHzでの誘電特性を測定し、インピーダンスで共振反共振法により圧電特性を測定した。結果は、表1、表2に示す通りであった。
【0036】
この実施例では、3価の元素M(III)をx=0.005〜0.04の範囲で置換させた場合、5価の元素M(V)をx=0.005〜0.02の範囲で置換させた場合、二次相の生成が抑制され、微細構造の均一な焼結体が形成された。圧電特性も良好で、後述する比較例のものと比較して、微細組織、圧電特性の良好な圧電磁器が得られた。典型的な特性として組成変態相境界(morphotoropic phase boundary)付近で圧電特性が高くなるα=0.07の場合の結果を表1、表2に示す。
【0037】
【表1】

Figure 0004177615
【0038】
【表2】
Figure 0004177615
【0039】
比較例: Bi、NaCO、KCO、TiO、を式(5)の複合酸化物が構成される割合で秤量した。
【0040】
(Bi0.5Na1−αα)TiO+添加物…………(5)
【0041】
また、式(5)中の添加成分として、Fe、Cr、MnO、Co、Sb、Nbを表3のx欄に示す割合で各々秤量した。
【0042】
これらの化合物を用い、実施例その1と同様にして試料を作成し、実施例その1と同様にしてXRDとSEMにより生成相の同定と微細組織を評価したところ、全ての試料について、添加物が構成元素と反応して形成された二次相が確認されるとともに、添加物の添加量の増加にともない、二次相の存在が顕著になった。微細組織は、二次相が局所的に偏析し、不均一であった。
【0043】
また、実施例その1と同様にして圧電特性を測定した。典型的な結果としてα=0.07の場合の結果を表1に示す。この例(比較例)によると、圧電特性は、添加物とBiペロブスカイトとの反応による二次相の影響で、わずかに向上する程度であった。
【0044】
【表3】
Figure 0004177615
【0045】
実施例その2: まず、原料化合物としてBi、NaCO、BaCO、TiOを式(3)(4)の複合酸化物が構成される割合で秤量した。
【0046】
(Bi0.5Na0.51−βBaβTi1−xM(III)……………(3)
【0047】
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−xM(V)………(4)
【0048】
また、これらの式(3)(4)中、0<β<1、M(III)は、MnO、Cr、Fe、Co、M(V)は、Nb、Sb、V、Taを表4、表5のx欄に示す割合で各々秤量した。
【0049】
これらの化合物を用い、実施例1と同様の方法で試料円板を作製し、特性を評価した。作製した円板は、3価の元素M(III)をx=0.005〜0.04の範囲で置換させた場合、5価の元素M(V)をx=0.005〜0.02の範囲で置換させた場合、二次相の生成が抑制され、微細構造の均一な焼結体が形成された。圧電特性も良好で、従来技術に比較して、微細組織、圧電特性の良好な圧電磁器が得られた。典型的な特性として組成変態相境界(morphotoropic phase boundary)付近で圧電特性が高くなるβ=0.06の結果を表4、表5示す。
【0050】
x=0.00では、図1に示す通り、異常粒成長が認められ、結晶粒の大きさが、1μm〜数100μmと極めて不均質であった。Qm=310、d31=37pm/V、kr=27%と圧電特性がハードとソフトの中間で実用化するには不十分であった。
【0051】
これに対し、3価の元素M(III)、x=0.01は、図2に示す通り、結晶粒が揃い均質であった。圧電特性は、Qm=〜1500、kr=〜30%とハード化。トランスなどへの応用が可能なレベルに圧電特性が向上した。
【0052】
5価の元素M(V)、x=0.01は、図3に示す通り、結晶粒が均質であった。圧電特性は、Qm=88、d31=70pm/Vと向上した。発音体、アクチュエータなどへの応用が可能なレベルに圧電特性が向上した。
【0053】
【表4】
Figure 0004177615
【0054】
【表5】
Figure 0004177615
【0055】
実施例その3: 実施例その2で評価した材料のうち、式(3)で、x=0.01、α=0.06、M(III)=Mn、の圧電磁器組成物を、エタノールなどの有機溶剤に分散し、PVBなどの有機バインダーを加えてスラリー化し、シート成形後、Ptなどの電極を介して積層し、400〜500℃で脱バインダーの熱処理を施し、前記と同様に焼成して図4のような圧電セラミックトランスを作製した。同図において、10は圧電体磁器、12は電極、14は入力側、16は出力側である。また、矢印は圧電体磁器10の分極方向である。
【0056】
そして、この圧電セラミックトランスの昇圧比、変換効率を評価したところ、表6に示す通りであった。比較のために、PZT系の代表的な、トランスの特性も表6中に挿入した。
【0057】
表6に見られる通り、代表的なPZTと同等の特性をもつトランスが得られた。したがって、この発明にかかる磁器組成物は、圧電セラミック部品として有用であることが検証できた。
【0058】
【表6】
Figure 0004177615
【0059】
実施例その4: x=0.01、α=0.06、M(V)=Nbの圧電磁器組成物を、エタノールなどの有機溶剤に分散し、PVBなどの有機バインダーを加えてスラリー化、シート成形後、Ptなどの電極を介して積層し、400〜500℃で脱バインダーの熱処理を施し、前記と同様に焼成して圧電セラミック積層焼結体を形成し、図5のような発音体を作成した。同図において、10は圧電体磁器、12は電極、18は振動板である。
【0060】
そして、この発音体の音響特性を評価したところ、音圧レベルの周波数依存性は図6に示す通りであった。比較のために、PZT系の代表的な、音響特性の結果も図6中に挿入した。
【0061】
図6に見られる通り、代表的なPZTと同等の音圧特性をもつ発音体が得られた。したがって、この発明にかかる磁器組成物は、圧電セラミック部品として有用であることが検証できた。
【0062】
【発明の効果】
この発明にかかる磁器組成物は、Tiを置換した、M(III)=Mn、Cr、Fe、Coから選ばれる少なくとも1種の元素がアクセプタとして作用し、Tiを置換した、M(V)=Nb、Sb、V、Taから選ばれる少なくとも1種の元素がドナーとして作用する。また、かかる磁器組成物は、一般式で表されるとおり、化学量論組成であるので、従来技術のように二次相を誘発しない。さらに、前述の磁器組成物は、Tiのモル比が減るため、焼成時に、Tiリッチの低融点の液相生成が抑制される作用が生じる。
【0063】
この発明にかかる磁器組成物は、上記の作用により、二次相による圧電特性の低下が抑制される。その上で、M(III)=Mn、Cr、Fe、Coから選ばれる少なくとも1種の元素でTiを置換した場合、M(III)のアクセプタ作用により欠陥双極子が生じ、ドメインをピンニングしQmを向上させ、M(V)=Nb、Sb、V、Taから選ばれる少なくとも1種の元素でTiを置換した場合、M(V)のドナー作用により、Aサイトのアルカリ金属元素の欠陥が生じ格子が歪みやすくなり、圧電定数が向上する。さらに、Tiリッチの低融点相の生成しなくなる作用で異常粒成長が抑制され、M(III)で置換した場合は、結晶粒のサイズが10〜20μm、特に、M(V)で置換した場合では、結晶粒のサイズが10μm以下というように微細組織が均一化する。
【0064】
上記の結果として、圧電セラミック部品に有用な無鉛圧電磁器組成物が得られる。
【図面の簡単な説明】
【図1】実施例その2で形成した比較試料(x=0.00)の微細組織を示す説明図である。
【図2】実施例その2で形成した試料(M(III)、x=0.01)の微細組織を示す説明図である。
【図3】実施例その2で形成した試料(M(V)、x=0.01)の微細組織を示す説明図である。
【図4】実施例その3で制作された圧電セラミックトランスの説明図である。
【図5】実施例その4で制作された圧電発音体の説明図である。
【図6】周波数と音圧との関係を示すグラフである。
【符号の説明】
10 圧電体磁器
12 電極
14 入力側
16 出力側
18 振動板[0001]
[Technical field to which the invention belongs]
The present invention relates to a piezoelectric ceramic composition, a method of manufacturing a piezoelectric ceramic composition, and a piezoelectric ceramic component, and in particular, a material such as a piezoelectric ceramic component such as a piezoelectric sounding body, a piezoelectric sensor, a piezoelectric actuator, a piezoelectric transformer, and a piezoelectric ultrasonic motor. The present invention relates to a lead-free piezoelectric ceramic composition, a method for producing a lead-free piezoelectric ceramic composition, and a piezoelectric ceramic component using the lead-free piezoelectric ceramic composition.
[0002]
[Prior art]
As a piezoelectric ceramic composition, PCM composed configured PZT (PbTiO 3 -PbZrO 3) based porcelain or ternary with two-component [PbTiO 3 -PbZrO 3 -Pb (Mg 0.5 Nb 0.5 ) TiO 3 ] based porcelain has been mainly used.
[0003]
However, these porcelain compositions are all composed mainly of lead, and there is a problem of environmental influences caused by lead components such as lead oxide that volatilizes during firing.
[0004]
Conventionally, as an alternative to this, among the materials having the perovskite structure of ABO 3 , (Bi 0.5 Na 0.5 ) TiO 3 , (Bi 0.5 K 0.5 ) TiO 3 and (Bi, Na, K ) TiO 3 , (Bi, Na, Ba) Materials having a composite perovskite structure including Bi (Bi perovskite) such as TiO 3 , these solid solutions, and (Bi, Na, K) TiO 3 with Fe 2 O 3 , Cr Lead-free piezoelectric ceramic composition to which 2 O 3 , MnO 2 , NiO, Co 2 O 3 , La 2 O 3 , In 2 O 3 , Al 2 O 3 , BaCO 3 , Sb 2 O 3 , Nb 2 O 5 and the like are added Has been proposed.
[0005]
For example, Japanese Patent Laid-Open Nos. 11-171463, 04-60073, 2001-151656, 2001-48642, 11-217262, 2000-22235, 2000-272926 disclose various lead-free piezoelectric ceramics. Compositions have been proposed.
[0006]
[Problems to be solved by the invention]
Bi perovskite has a low piezoelectric constant as a piezoelectric ceramic component using displacement such as a sounding body, a sensor, and an actuator, and a mechanical quality factor Qm is low in a piezoelectric ceramic component using power such as a transformer and an ultrasonic motor. In addition, Bi perovskite tends to have an abnormal grain structure (Duplex Structure) in which crystal grains grow abnormally during molding and after firing, and a mixture of crystal grains exceeding 100 μm and fine crystal grains of several μm. Difficult to control.
[0007]
Piezoelectric ceramic components made by forming a piezoelectric ceramic composition with a thickness of several μm to several tens of μm, then laminating them through electrode materials and firing them simultaneously, a ceramic composition in which the size of crystal grains exceeds the sheet thickness Cannot be used. Therefore, improvement of material properties is essential for use as an alternative to PZT.
[0008]
Among the prior arts, JP-A-11-217262, JP-A-2000-22235, and JP-A-2000-272926 include these Bi perovskites with Fe 2 O 3 , Cr 2 O 3 , MnO 2 , Co 2 O 3 , La 2. It is suggested that the piezoelectric characteristics can be improved by adding oxides such as O 3 , BaCO 3 , Sb 2 O 3 , and Nb 2 O 3 .
[0009]
However, in actuality, in the composition system in which these oxides are added to Bi perovskite when synthesized as in the prior art, the constituent elements of Bi perovskite such as Bi during reaction synthesis, heat treatment process such as sintering process, etc. And the added oxide react to form a secondary phase other than Bi perovskite. Therefore, the effect of lowering the piezoelectric characteristics due to the secondary phase and the effect of improving the characteristics due to the added oxide are contradictory, and the improvement as shown cannot be obtained stably. Furthermore, since the microstructure of the sintered body cannot suppress the generation of the secondary phase, the effect is not mentioned.
[0010]
An object of the present invention is to provide a piezoelectric ceramic composition having a good piezoelectric characteristic, a method for producing a piezoelectric ceramic composition, and a piezoelectric ceramic component, which are made of a lead-free compound.
[0011]
[Means for Solving the Problems]
The piezoelectric ceramic composition according to the present invention is mainly composed of a perovskite-type composite oxide represented by the general formula ABO 3 , and A in the general formula is selected from Bi, Na, K and Ba It consists of more than seed elements, B in the general formula consists of Ti, and a part of B (= Ti) in the general formula is substituted by a trivalent or pentavalent element M (III) (V) It is characterized by being.
[0012]
The method for producing a piezoelectric ceramic composition according to the present invention includes a calcining step of calcining a raw material compound, a molding step of molding a calcined powder obtained in the calcining step, and a molding obtained in the molding step. The raw material compound is mainly composed of a perovskite-type composite oxide represented by the general formula ABO 3 , and A in the general formula is selected from Bi, Na, K, and Ba. 1 or 2 or more elements, B in the general formula is Ti, and a part of B (= Ti) in the general formula is a trivalent or pentavalent element M (III) (V ) Is substituted.
[0013]
The piezoelectric ceramic component according to the present invention includes one or more piezoelectric bodies and two or more electrodes sandwiching the piezoelectric bodies, and the piezoelectric bodies are made of a perovskite type complex oxide represented by the general formula ABO 3. And A in the general formula consists of one or more elements selected from Bi, Na, K and Ba, B in the general formula consists of Ti, and B in the general formula A part of (= Ti) is substituted with a trivalent or pentavalent element M (III) (V).
[0014]
Here, the ratio of substitution in which part of B (= Ti) in the general formula is substituted with a trivalent or pentavalent element M (III) (V) is 0.005 ≦ x ≦ 0.040. preferable. The range of the substitution ratio x is set to 0.005 ≦ x ≦ 0.040 because when x is less than 0.005, the particle size distribution is non-uniform and pores remain, and when x exceeds 0.040, Although the number of next phases increases and polarization becomes impossible, there is no such inconvenience in the range of 0.005 ≦ x ≦ 0.040, and a dense composition with good piezoelectric characteristics (Qm, kr, d31) can be obtained. Because.
[0015]
The general formula ABO 3 may be a perovskite complex oxide represented by the following formula (1) or (2). In this case, a trivalent element M (III) can be used as M.
[0016]
Bi 0.5 (Na 1-α K α ) 0.5 Ti 1-x M x O 3 (1)
[0017]
(Bi 0.5 Na 0.5 ) 1-β Ba β Ti 1-x M x O 3 (2)
[0018]
Here, the range of α is preferably 0 ≦ α ≦ 1, and the range of β is preferably 0 <β <1.
[0019]
The general formula ABO 3 may be a perovskite complex oxide represented by the following formula (3) or (4). In this case, pentavalent element M (V) can be used as M.
[0020]
Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M x O 3 (3)
[0021]
(Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M x O 3 (4)
[0022]
Here, the range of α is preferably 0 ≦ α ≦ 1, the range of β is preferably 0 <β <1, and the range of x is preferably 0.005 ≦ x ≦ 0.020.
[0023]
The trivalent element M (III) can be, for example, Mn, Cr, Fe or Co, and the pentavalent element M (V) can be, for example, Nb, Sb, V or Ta.
[0024]
In the above description, the phrase “perovskite complex oxide as a main component” means that other components may be included as long as the characteristics of the piezoelectric ceramic composition are not impaired.
[0025]
In the method for producing a piezoelectric ceramic composition, the calcined powder is formed not only when the calcined powder is pressed and molded, but also when a sheet is formed using a calcined powder slurry, This includes the case where a powdery slurry and electrodes are alternately applied to form a laminate.
[0026]
Examples of the piezoelectric ceramic component include a piezoelectric sounding body, a piezoelectric sensor, a piezoelectric actuator, a piezoelectric transformer, and a piezoelectric ultrasonic motor. However, any other electrical component that can use a piezoelectric ceramic composition may be used. You may apply.
[0027]
【Example】
Example 1 First, Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 , and TiO 2 were weighed as raw material compounds in the proportion of the composite oxides of formulas (1) and (2).
[0028]
Bi 0.5 (Na 1-α K α ) 0.5 Ti 1-x M (III) x O 3 (1)
[0029]
Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M (V) x O 3 (2)
[0030]
In these formulas (1) and (2), α = 0 to 1, M (III) is MnO 2 , Cr 2 O 3 , Fe 2 O 3 , Co 2 O 3 , and M (V) is Nb 2 O 5 , Sb 2 O 3 , V 2 O 5 and Ta 2 O 5 were weighed at the ratios shown in the x columns of Tables 1 and 2, respectively.
[0031]
Next, the respective raw material compounds and additive components were placed in a ball mill together with ethanol under the sample conditions shown in Tables 1 and 2 and wet-mixed. The resulting slurry was dried and calcined at 750 ° C. for 3 hours. By this calcination, a perovskite complex oxide is synthesized under each sample condition.
[0032]
Next, this calcined product was put into a ball mill together with ethanol, wet pulverized, the resulting slurry was dried, and an organic binder (PVA) was added to dry granulate.
[0033]
Next, this granulated material was molded into a 10 mmφ × 0.5 mmt disc with a uniaxial press and fired at 1000 to 1300 ° C. for 1 to 4 hours to prepare a sample.
[0034]
Next, for this sample, the generated phase was identified by an X-ray diffractometer (XRD), and the microstructure was observed and evaluated by a scanning electron microscope (SEM). The results were as shown in Tables 1 and 2.
[0035]
Moreover, it polarized at 2-5 kV / mm at 50-150 degreeC in insulating oils, such as a silicone oil, the dielectric property at 1 kHz was measured with the LCR meter, and the piezoelectric property was measured by the resonance antiresonance method with the impedance. The results were as shown in Tables 1 and 2.
[0036]
In this example, when the trivalent element M (III) is substituted in the range of x = 0.005 to 0.04, the pentavalent element M (V) is changed to x = 0.005 to 0.02. When substituted in the range, the formation of the secondary phase was suppressed, and a sintered body having a uniform microstructure was formed. Piezoelectric ceramics with good piezoelectric characteristics and good microstructure and piezoelectric characteristics were obtained as compared with the comparative examples described later. As typical characteristics, Tables 1 and 2 show the results when α = 0.07 in which the piezoelectric characteristics increase in the vicinity of the morphotropic phase boundary (morphotropic phase boundary).
[0037]
[Table 1]
Figure 0004177615
[0038]
[Table 2]
Figure 0004177615
[0039]
Comparative Example: Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 , and TiO 2 were weighed in such a ratio that the composite oxide of formula (5) was formed.
[0040]
(Bi 0.5 Na 1-α K α ) TiO 3 + additive ………… (5)
[0041]
Further, as additive components in the formula (5), Fe 2 O 3 , Cr 2 O 3 , MnO 2 , Co 2 O 3 , Sb 2 O 3 , and Nb 2 O 5 were respectively used in proportions shown in the column x in Table 3. Weighed.
[0042]
Using these compounds, samples were prepared in the same manner as in Example 1, and the formation phase was identified and the microstructure was evaluated by XRD and SEM in the same manner as in Example 1. The secondary phase formed by reacting with the constituent elements was confirmed, and the presence of the secondary phase became remarkable as the amount of the additive added increased. The microstructure was non-uniform because the secondary phase segregated locally.
[0043]
The piezoelectric characteristics were measured in the same manner as in Example 1. Table 1 shows the result of α = 0.07 as a typical result. According to this example (comparative example), the piezoelectric characteristics were only slightly improved due to the influence of the secondary phase caused by the reaction between the additive and Bi perovskite.
[0044]
[Table 3]
Figure 0004177615
[0045]
Example 2: First, Bi 2 O 3 , Na 2 CO 3 , BaCO 3 , and TiO 2 were weighed as raw material compounds at a ratio of the composite oxides of formulas (3) and (4).
[0046]
(Bi 0.5 Na 0.5 ) 1-β Ba β Ti 1-x M (III) x O 3 (3)
[0047]
(Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M (V) x O 3 (4)
[0048]
In these formulas (3) and (4), 0 <β <1, M (III) is MnO 2 , Cr 2 O 3 , Fe 2 O 3 , Co 2 O 3 , and M (V) is Nb 2 O 5 , Sb 2 O 3 , V 2 O 5 , and Ta 2 O 5 were weighed in the ratios shown in the x columns of Tables 4 and 5, respectively.
[0049]
Using these compounds, sample disks were prepared in the same manner as in Example 1, and the characteristics were evaluated. When the produced disc is substituted with the trivalent element M (III) in the range of x = 0.005 to 0.04, the pentavalent element M (V) is replaced with x = 0.005 to 0.02. When substituted in the range, the generation of the secondary phase was suppressed, and a sintered body having a uniform microstructure was formed. Piezoelectric ceramics with good piezoelectric properties and fine structure and good piezoelectric properties compared to the prior art were obtained. As typical characteristics, Tables 4 and 5 show the results of β = 0.06 in which the piezoelectric characteristics increase in the vicinity of the morphotropic phase boundary (morphotropic phase boundary).
[0050]
When x = 0.00, abnormal grain growth was observed as shown in FIG. 1, and the size of the crystal grains was extremely inhomogeneous, 1 μm to several 100 μm. Qm = 310, d31 = 37 pm / V, kr = 27%, and the piezoelectric characteristics were insufficient for practical use between hardware and software.
[0051]
In contrast, the trivalent element M (III), x = 0.01, was uniform with crystal grains as shown in FIG. The piezoelectric characteristics are hardened with Qm = ˜1500 and kr = ˜30%. Piezoelectric characteristics have been improved to a level that can be applied to transformers.
[0052]
The pentavalent element M (V), x = 0.01, had uniform crystal grains as shown in FIG. The piezoelectric characteristics were improved to Qm = 88 and d31 = 70 pm / V. Piezoelectric properties have been improved to a level that can be applied to sounding bodies and actuators.
[0053]
[Table 4]
Figure 0004177615
[0054]
[Table 5]
Figure 0004177615
[0055]
Example 3: Of the materials evaluated in Example 2, the piezoelectric ceramic composition of formula (3), x = 0.01, α = 0.06, M (III) = Mn, ethanol, etc. It is dispersed in an organic solvent, and an organic binder such as PVB is added to form a slurry. After forming a sheet, it is laminated via an electrode such as Pt, subjected to heat treatment for removing the binder at 400 to 500 ° C., and fired in the same manner as described above. Thus, a piezoelectric ceramic transformer as shown in FIG. 4 was produced. In the figure, 10 is a piezoelectric ceramic, 12 is an electrode, 14 is an input side, and 16 is an output side. An arrow indicates the polarization direction of the piezoelectric ceramic 10.
[0056]
When the step-up ratio and conversion efficiency of this piezoelectric ceramic transformer were evaluated, the results were as shown in Table 6. For comparison, typical transformer characteristics of the PZT system are also inserted in Table 6.
[0057]
As can be seen in Table 6, a transformer having the same characteristics as a typical PZT was obtained. Therefore, it was verified that the porcelain composition according to the present invention is useful as a piezoelectric ceramic part.
[0058]
[Table 6]
Figure 0004177615
[0059]
Example 4: A piezoelectric ceramic composition of x = 0.01, α = 0.06, M (V) = Nb is dispersed in an organic solvent such as ethanol, and an organic binder such as PVB is added to form a slurry. After forming the sheet, it is laminated via an electrode such as Pt, subjected to heat treatment for removing the binder at 400 to 500 ° C., and fired in the same manner as above to form a piezoelectric ceramic laminated sintered body, and a sounding body as shown in FIG. It was created. In the figure, 10 is a piezoelectric ceramic, 12 is an electrode, and 18 is a diaphragm.
[0060]
Then, when the acoustic characteristics of the sounding body were evaluated, the frequency dependence of the sound pressure level was as shown in FIG. For comparison, a typical acoustic characteristic result of the PZT system was also inserted in FIG.
[0061]
As seen in FIG. 6, a sounding body having a sound pressure characteristic equivalent to that of a typical PZT was obtained. Therefore, it was verified that the porcelain composition according to the present invention is useful as a piezoelectric ceramic part.
[0062]
【The invention's effect】
In the porcelain composition according to the present invention, at least one element selected from M (III) = Mn, Cr, Fe, and Co substituted for Ti acts as an acceptor, and M (V) = At least one element selected from Nb, Sb, V, and Ta acts as a donor. Moreover, since such a porcelain composition has a stoichiometric composition as represented by a general formula, it does not induce a secondary phase unlike the prior art. Furthermore, since the above-mentioned porcelain composition has a reduced molar ratio of Ti, an effect of suppressing the formation of a Ti-rich low-melting liquid phase during firing occurs.
[0063]
In the porcelain composition according to the present invention, deterioration of the piezoelectric characteristics due to the secondary phase is suppressed by the above action. In addition, when Ti is substituted with at least one element selected from M (III) = Mn, Cr, Fe, and Co, a defect dipole is generated by the acceptor action of M (III), and the domain is pinned and Qm When Ti is substituted with at least one element selected from M (V) = Nb, Sb, V, and Ta, the donor metal action of M (V) causes alkali metal element defects at the A site. The lattice is easily distorted and the piezoelectric constant is improved. Furthermore, abnormal grain growth is suppressed by the action of no Ti-rich low-melting-point phase being generated. When M (III) is substituted, the crystal grain size is 10 to 20 μm, especially when M (V) is substituted. Then, the microstructure becomes uniform so that the size of the crystal grains is 10 μm or less.
[0064]
As a result of the above, a lead-free piezoelectric ceramic composition useful for piezoelectric ceramic parts is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a microstructure of a comparative sample (x = 0.00) formed in Example 2;
FIG. 2 is an explanatory view showing a microstructure of a sample (M (III), x = 0.01) formed in Example 2;
FIG. 3 is an explanatory view showing a microstructure of a sample (M (V), x = 0.01) formed in Example 2;
FIG. 4 is an explanatory diagram of a piezoelectric ceramic transformer produced in Example 3;
FIG. 5 is an explanatory diagram of a piezoelectric sounding body produced in Example 4;
FIG. 6 is a graph showing the relationship between frequency and sound pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Piezoelectric porcelain 12 Electrode 14 Input side 16 Output side 18 Diaphragm

Claims (3)

一般式ABOで表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が3価の元素M (III)によって置換され、前記一般式ABO が下式(1)又は(2)で表わされるペロブスカイト型の複合酸化物からなり、
Bi 0.5 (Na 1−α α 0.5 Ti 1−x ………………(1)
(Bi 0.5 Na 0.5 1−β Ba β Ti 1−x ……………(2)
該式(1)(2)中、αの範囲が0≦α≦1、βの範囲が0<β<1、xの範囲が0.005≦x≦0.040、該3価の元素M (III) がMn、Cr、Fe又はCoであることを特徴とする圧電磁器組成物。
A perovskite-type composite oxide represented by the general formula ABO 3 is a main component, and A in the general formula is composed of one or more elements selected from Bi, Na, K and Ba, and the general formula And B in the general formula is partially substituted by the trivalent element M (III) , and the general formula ABO 3 is represented by the following formula (1) or (2): Consisting of a perovskite type complex oxide represented,
Bi 0.5 (Na 1-α K α ) 0.5 Ti 1-x M x O 3 (1)
(Bi 0.5 Na 0.5 ) 1-β Ba β Ti 1-x M x O 3 (2)
In the formulas (1) and (2), the range of α is 0 ≦ α ≦ 1, the range of β is 0 <β <1, the range of x is 0.005 ≦ x ≦ 0.040, the trivalent element M A piezoelectric ceramic composition characterized in that (III) is Mn, Cr, Fe or Co.
原料化合物を仮焼する仮焼工程と、該仮焼工程で得られた仮焼粉を成形する成形工程と、該成形工程で得られた成形体を焼成する焼成工程とを備え、前記原料化合物が、一般式ABOA calcining step of calcining the raw material compound; a molding step of molding the calcined powder obtained in the calcining step; and a firing step of firing the molded body obtained in the molding step. Is the general formula ABO 3 で表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が3価の元素MAnd A in the general formula is composed of one or more elements selected from Bi, Na, K and Ba, and B in the general formula is A part of B (= Ti) in the general formula is trivalent element M. (III)(III) によって置換され、前記一般式ABOSubstituted by the general formula ABO 3 が下式(1)又は(2)で表わされるペロブスカイト型の複合酸化物からなり、Consists of a perovskite type complex oxide represented by the following formula (1) or (2):
BiBi 0.50.5 (Na(Na 1−α1-α K αα ) 0.50.5 TiTi 1−x1-x M x O 3 ………………(1)……………… (1)
(Bi(Bi 0.50.5 NaNa 0.50.5 ) 1−β1-β BaBa ββ TiTi 1−x1-x M x O 3 ……………(2)…………… (2)
該式(1)(2)中、αの範囲が0≦α≦1、βの範囲が0<β<1、xの範囲が0.005≦x≦0.040、該3価の元素MIn the formulas (1) and (2), the range of α is 0 ≦ α ≦ 1, the range of β is 0 <β <1, the range of x is 0.005 ≦ x ≦ 0.040, the trivalent element M (III)(III) がMn、Cr、Fe又はCoであることを特徴とする圧電磁器組成物の製造方法。Is Mn, Cr, Fe, or Co. The manufacturing method of the piezoelectric ceramic composition characterized by the above-mentioned.
1又は2以上の圧電体と該圧電体を挟持する2以上の電極とを備え、該圧電体が、一般式ABO1 or 2 or more piezoelectric bodies, and 2 or more electrodes sandwiching the piezoelectric bodies, the piezoelectric body having a general formula ABO 3 で表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が3価の元素MAnd A in the general formula is composed of one or more elements selected from Bi, Na, K and Ba, and B in the general formula is A part of B (= Ti) in the general formula is trivalent element M. (III)(III) によって置換され、前記一般式ABOSubstituted by the general formula ABO 3 が下式(1)又は(2)で表わされるペロブスカイト型の複合酸化物からなり、Consists of a perovskite type complex oxide represented by the following formula (1) or (2):
BiBi 0.50.5 (Na(Na 1−α1-α K αα ) 0.50.5 TiTi 1−x1-x M x O 3 ………………(1)……………… (1)
(Bi(Bi 0.50.5 NaNa 0.50.5 ) 1−β1-β BaBa ββ TiTi 1−x1-x M x O 3 ……………(2)…………… (2)
該式(1)(2)中、αの範囲が0≦α≦1、βの範囲が0<β<1、xの範囲が0.005≦x≦0.040、該3価の元素MIn the formulas (1) and (2), the range of α is 0 ≦ α ≦ 1, the range of β is 0 <β <1, the range of x is 0.005 ≦ x ≦ 0.040, the trivalent element M (III)(III) がMn、Cr、Fe又はCoであることを特徴とする圧電セラミック部品。Is a Mn, Cr, Fe or Co piezoelectric ceramic part.
JP2002236996A 2002-08-15 2002-08-15 Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component Expired - Fee Related JP4177615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236996A JP4177615B2 (en) 2002-08-15 2002-08-15 Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236996A JP4177615B2 (en) 2002-08-15 2002-08-15 Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008115974A Division JP4828570B2 (en) 2008-04-25 2008-04-25 Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component

Publications (2)

Publication Number Publication Date
JP2004075449A JP2004075449A (en) 2004-03-11
JP4177615B2 true JP4177615B2 (en) 2008-11-05

Family

ID=32020951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236996A Expired - Fee Related JP4177615B2 (en) 2002-08-15 2002-08-15 Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component

Country Status (1)

Country Link
JP (1) JP4177615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623481A1 (en) 2012-01-31 2013-08-07 TDK Corporation Piezoelectric composition and piezoelectric element
US9537083B2 (en) 2013-03-29 2017-01-03 Tdk Corporation Piezoelectric composition and piezoelectric device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525239B2 (en) * 2006-09-15 2009-04-28 Canon Kabushiki Kaisha Piezoelectric element, and liquid jet head and ultrasonic motor using the piezoelectric element
JP5538670B2 (en) * 2006-09-15 2014-07-02 キヤノン株式会社 Piezoelectric element, liquid discharge head and ultrasonic motor using the same
JP4800989B2 (en) * 2006-11-15 2011-10-26 日本碍子株式会社 Piezoelectric / electrostrictive material, piezoelectric / electrostrictive body, and piezoelectric / electrostrictive element
JP5116584B2 (en) * 2008-07-01 2013-01-09 京セラ株式会社 Piezoelectric ceramic and piezoelectric element using the same
JP5214373B2 (en) 2008-08-29 2013-06-19 太陽誘電株式会社 Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
JP2010080813A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Piezoelectric film and method of manufacturing the same, piezoelectric device, and liquid discharge apparatus
WO2010128647A1 (en) 2009-05-08 2010-11-11 太陽誘電株式会社 Piezoelectric ceramic, method for producing same, and piezoelectric device
EP2622662A4 (en) 2010-09-30 2014-05-07 Hewlett Packard Development Co Lead-free piezoelectric materials with enhanced fatigue resistance
JP5914081B2 (en) * 2012-03-23 2016-05-11 Fdk株式会社 Piezoelectric material and method for manufacturing piezoelectric material
US9780295B2 (en) 2013-01-28 2017-10-03 Oregon State University Office Of Technology Transfer Lead-free piezoelectric material
DE102014211465A1 (en) 2013-08-07 2015-02-12 Pi Ceramic Gmbh Keramische Technologien Und Bauelemente Lead-free piezoceramic material based on bismuth sodium titanate (BNT)
JP6601151B2 (en) * 2015-10-27 2019-11-06 Tdk株式会社 Piezoelectric composition and piezoelectric element
CN106554202B (en) * 2016-11-14 2019-09-27 山东大学 A kind of bismuth laminated bismuth-sodium titanate high temperature piezoceramics and preparation method thereof
JP6919237B2 (en) * 2017-03-09 2021-08-18 Tdk株式会社 Piezoelectric composition and piezoelectric element
JP6919236B2 (en) * 2017-03-09 2021-08-18 Tdk株式会社 Piezoelectric composition and piezoelectric element
JP7239350B2 (en) * 2019-03-05 2023-03-14 太陽誘電株式会社 Piezoelectric ceramics, manufacturing method thereof, and piezoelectric element
JP7406952B2 (en) * 2019-10-17 2023-12-28 太陽誘電株式会社 Piezoelectric ceramics and their manufacturing method, and piezoelectric elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623481A1 (en) 2012-01-31 2013-08-07 TDK Corporation Piezoelectric composition and piezoelectric element
US9537083B2 (en) 2013-03-29 2017-01-03 Tdk Corporation Piezoelectric composition and piezoelectric device

Also Published As

Publication number Publication date
JP2004075449A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4177615B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component
JP5576365B2 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
KR101158444B1 (en) Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device
US10505101B2 (en) Ceramic material, method for producing the ceramic material, and electroceramic component comprising the ceramic material
WO2006117952A1 (en) Piezoelectric porcelain composition and piezoelectric ceramic electronic component
JP5150101B2 (en) Ceramic material
JP2010053028A (en) Metal oxide and piezoelectric material
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
JP5782457B2 (en) Piezoelectric ceramics, piezoelectric ceramic component, and piezoelectric device using the piezoelectric ceramic component
JP5337513B2 (en) Piezoelectric / electrostrictive porcelain composition
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
US6825143B2 (en) Method of making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
JP2008207999A (en) Method for manufacturing piezoelectric ceramic composition
JP5815404B2 (en) Piezoelectric body / electrostrictive body, piezoelectric / electrostrictive ceramic composition, piezoelectric element / electrostrictive element, and piezoelectric motor
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
JP2011032157A (en) Piezo-electric/electrostrictive ceramics sintered body
JP2009102221A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive device
JP4828570B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component
JP4202657B2 (en) Piezoelectric ceramic composition and piezoelectric device
JPH08293635A (en) Piezoelectric ceramic
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP5662731B2 (en) Piezoelectric ceramic composition
WO2024070849A1 (en) Lead-free piezoelectric composition and piezoelectric element
JP2005162556A (en) Piezoelectric ceramic and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4177615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees