JP3650872B2 - Crystalline oriented bismuth layered perovskite compound and method for producing the same - Google Patents

Crystalline oriented bismuth layered perovskite compound and method for producing the same Download PDF

Info

Publication number
JP3650872B2
JP3650872B2 JP20045198A JP20045198A JP3650872B2 JP 3650872 B2 JP3650872 B2 JP 3650872B2 JP 20045198 A JP20045198 A JP 20045198A JP 20045198 A JP20045198 A JP 20045198A JP 3650872 B2 JP3650872 B2 JP 3650872B2
Authority
JP
Japan
Prior art keywords
layered perovskite
bismuth layered
oriented
orientation
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20045198A
Other languages
Japanese (ja)
Other versions
JP2000034194A (en
Inventor
俊彦 谷
嗣人 竹内
康善 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP20045198A priority Critical patent/JP3650872B2/en
Publication of JP2000034194A publication Critical patent/JP2000034194A/en
Application granted granted Critical
Publication of JP3650872B2 publication Critical patent/JP3650872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【技術分野】
本発明は,非鉛系で高いキュリー温度,良好な温度特性を有する圧電材料として用いられる,結晶配向ビスマス層状ペロブスカイト型化合物及びその製造方法に関する。
【0002】
【従来技術】
従来より,高いキュリー温度,良好な温度特性を有する圧電材料として用いられるビスマス層状ペロブスカイト型化合物の結晶配向焼結体について,いくつかの提案がなされてきた。
以下に,その例を示す。
(1)いわゆるビスマス層状ペロブスカイト型の代表的な化合物であり,圧電性を有するPbBiTi15(PBT),SrBiTi15(SBT),Na0.5Bi4.5Ti15(NBT)を,通常の焼結法にて作製した焼結体の例が示されている(Japanese J.Appl.Phys.,Vol13,No.10,1572−77(1974))。
【0003】
上記焼結体は,上記PBT,SBT,NBTの焼結体であり,焼結体密度のX線密度に対する比である相対密度はそれぞれ,92.5%,91.3%,92.8%と低い密度にとどまっている。また,厚みモードの電気機械結合係数(K)はそれぞれ,0.072,0.22,0.15であった。
また,キュリー温度はそれぞれ570,550,670℃と高く,温度安定性に優れた圧電材料であることが示唆されている。
【0004】
(2)Mnを添加した,ビスマス層状ペロブスカイト型化合物であるNa0.5Bi4.5Ti15(NBT),Na0.475Ca0.05Bi4.475Ti15(NCBT)より,以下のごとく製造した結晶配向焼結体の例が示されている(Sensors and Materials,Vol.1,35−46(1988))。
即ち,上記化合物を固相反応法で合成した後,ホットフォージング法で緻密化する事により,該層状化合物の層の面(正方晶または擬正方晶と考えた場合のc面)が加圧軸に垂直に配向した配向焼結体を作製している
【0005】
上記ホットフォージング法とは,粉末成形体を通常の焼結温度で加熱しながら一軸加圧する方法をいう。
上記結晶配向焼結体の配向度はいずれも,90%以上に達している。上記結晶配向焼結体は,通常の固相反応法と焼結法で作製した同組成の無配向焼結体に比べ高い密度を示した。
【0006】
また,NBT,NCBTの縦効果の電気機械結合係数,K33は,従来の方法による焼結体でそれぞれ,0.147,0.161であったのに対し,ホットフォージング法で作製した配向焼結体(電界方向は擬正方晶c面に垂直)ではそれぞれ,0.325,0.356と大きく向上した。
【0007】
(3)BiTi12の板状粉末を合成し,これを配向するように成形し,焼結することによって,BiTi12の配向焼結体を作製した例が示されている(窯業協会誌,93巻,485(1985))。
【0008】
(4)板状BiTi12粒子とBiTi12微粒子とを板状粒子が微粒子の5〜10体積%となる割合で混合し,テープ成形で板状粒子を配向させ,このテープを積層して900〜1100℃で焼結することにより,配向度が0.95の結晶配向BiTi12焼結体を作成した例が示されている(Proceedings of ISAF‘96,P943〜946(1996))。
【0009】
【解決しようとする課題】
上記の従来技術(1)に示すように,Bi層状ペロブスカイト型圧電材料は高いキュリー温度を持つ圧電材料であり,(2)に示すようにホットフォージング法にて結晶を配向させると無配向焼結体よりも高い特性を発現する。
しかしながら,図5に示すごとく,ホットフォージング法では熱間にて加圧治具21,22を用い,試料9を一軸加圧することにより大きな変形を生じさせねばならない。そのため,大きな試料を作製することは困難であり,かつ生産性が低い。
【0010】
また,ホットフォージング中の試料9内部の応力分布は均一でないため,図5(B)に示すごとく,上記試料9の厚み方向にも径方向にも,大きな配向度のばらつきが生じる。即ち,上記試料9の表面では高配向度であるが内部は低配向度であり,径方向の分布は中心と周辺で低配向度となる。
これに加え,上記試料9周辺部は圧力がかかりにくいため低密度になりやすく,また,亀裂が生じやすい。
【0011】
従って,この方法ではロットゲーリング法による平均配向度が80%以上,かつ相対密度95%以上を有する結晶配向ビスマス層状ペロブスカイト型化合物を製造できない。
即ち,ホットフォージング法は,配向焼結体を得ることは可能であるが,高コストであり,また,製品の密度と配向度の観点からも歩留まりの高いプロセスではない。従って,量産には適さない方法である。
【0012】
また,(3)(4)は,フラックス中で合成した板状粉末を用いてこれをドクターブレード法や押し出し法で配向させ,常圧焼結にて徴密化させて配向焼結体を得ている。これはチタン酸ビスマス(BiTi12)のように金属元素を2種類しか含まない単純な複酸化物の配向焼結体を得るには有利な手法である。
しかし,上記SBT,NBT,NCBTのように金属元素を3種類以上含む複酸化物を,上記のごとき,フラックス法で得ようとすると元素比がずれやすく,所望の化学量論比の板状粉末を得ることが困難である。
【0013】
本発明は,かかる問題点に鑑み,密度と配向度の歩留まりが高く,圧電特性が大きく,かつ特性の再現性に優れた結晶配向ビスマス層状ペロブスカイト型化合物及びその製造方法を提供しようとするものである。
【0014】
【課題の解決手段】
請求項1の発明は,一般式が(Bi2+(Am−13m+12−で表され,上記Aは1〜3価の金属元素,Bは2〜6価の金属元素であり,BiとBiを除く2種以上の金属元素とを含む結晶配向ビスマス層状ペロブスカイト型化合物であって,
ロットゲーリング(Lotgering)法による平均配向度が80%以上であり,
かつ,平均相対密度が98.7%以上であることを特徴とする圧電性の結晶配向ビスマス層状ペロブスカイト型化合物にある。
また,請求項2の発明は,一般式が(Bi 2+ (A m−1 3m+1 2− で表され,上記Aは1〜3価の金属元素,Bは2〜6価の金属元素であり,BiとBiを除く2種以上の金属元素とを含み,Pbを含まない結晶配向ビスマス層状ペロブスカイト型化合物であって,
ロットゲーリング(Lotgering)法による平均配向度が80%以上であり,
かつ,平均相対密度が96.5%以上であることを特徴とする圧電性の結晶配向ビスマス層状ペロブスカイト型化合物にある。
【0015】
上記Aは,例えば,Na,K等のアルカリ金属,Ca,Sr,Ba等のアルカリ土類金属,Y,La,Gd,Nd等の希土類金属,Pb,Cd,Bi等の重金属から選ばれる1〜3価の金属元素である。
また,Bは,例えば,Ti,Zr,V,Nb,Ta,Mo,W,Mg,Zn,Mn,Fe,Co,Ni,Cr等の2〜6価の遷移金属元素である。
【0016】
本発明において最も注目すべき点は,上記ビスマス層状ペロブスカイト型化合物は,ロットゲーリング法による平均配向度が80%以上であり,かつ,平均相対密度(以下,適宜,単に「相対密度」という)が98.7%以上(請求項2では96.5%以上)である点である。
【0017】
上記ビスマス層状ペロブスカイト型化合物は,平均配向度が80%以上であるため,高い圧電特性を有する。また,平均相対密度が上記特定の値を占めているため,歩留まりが高い。
【0018】
上記平均配向度が80%未満の場合には,高い圧電特性を有するビスマス層状ペロブスカイト型化合物が得られない。
また,上記平均相対密度が上記特定の値未満の場合には,試料に亀裂等が発生しやすく歩留まりが低下する。
従って,本発明によれば密度と配向度の歩留まりが高く,圧電特性が大きく,かつ特性の再現性に優れたビスマス層状ペロブスカイト型化合物を得ることができる。
【0019】
また,上記ビスマス層状ペロブスカイト型化合物は,0.5cm以上の体積を有していることが好ましい。
これにより,例えば,大型形状の圧電素子を得ることができる。
【0020】
上記ロットゲーリング法につき,以下に説明する。
即ち,ロットゲーリング法により得られた結晶配向セラミックスの結晶配向度Q(HKL)は,以下の数1式により定義される。
【0021】
【数1】

Figure 0003650872
【0022】
ここに,I(HKL)は結晶配向セラミックスにおける結晶面(HKL)からのX線回折強度である。一方,I(HKL)は,上記結晶配向セラミックスと同一組成の同一化合物であり,かつ無配向の多結晶セラミックスにおける結晶面(HKL)からのX線回折強度である。
【0023】
また,Σ´I(HKL)はI(006),I(008),I(0010)等,擬正方晶表示した場合の結晶配向セラミックスにおける各結晶配向面からのX線回折強度の総和である。一方,ΣI(hkl)は,上記無配向の多結晶セラミックスにおける全ての結晶面(hkl)からのX線回折強度の総和である。
なお,Q(HKL)の値は無配向の場合に0%,全ての結晶粒子が配向している場合に100%となるよう規格化してある。
【0024】
一般に上記化学式で表される圧電性のビスマス層状ペロブスカイト型化合物は,ビスマス層状ペロブスカイトの単位セルがm個連なった層と酸素からなる層とが交互に重なり合った正方晶構造から僅かにひずんでいる。
上記ビスマス層状ペロブスカイト型化合物は,これを擬正方晶構造とみなした場合の{001}面が特有の面内に配向している結晶配向セラミックスを示す。
【0025】
本発明のビスマス層状ペロブスカイト型化合物も上記のごとく,擬正方晶表示におけるその{001}面が一方向に配向していることが好ましい。
なお,ここで,一方向に配向している状態には,円柱形状や円筒形状における半径方向と円周方向を含むものとする。
【0026】
圧電性のビスマス層状ペロブスカイト型化合物は,一般に擬正方{001}面内又は擬正方{001}面内から擬正方<001>方向に僅かに向きを変えた方位に分極軸を有している。
上記のような結晶配向した圧電性ビスマス層状ペロブスカイト型化合物は,擬正方<001>方向と垂直な方向に分極を行ない,同じ方向に電界を印加することにより無配向な同じ組成の圧電性ビスマス層状ペロブスカイト型化合物よりも優れた圧電性,特に圧電d33定数,圧電g33定数,電気機械結合k33係数を示す。
【0027】
なお,上記圧電性のビスマス層状ペロブスカイト型化合物のうち,特に金属元素Bとして,Ti,Nb,Taのうち少なくとも一種類を含むものであることが好ましい。
【0028】
上記化合物としては,例えば,SrBiNb,SrBiTa,BaBiNb,BaBiTa,PbBiNb,PbBiTa,BaBiTiNbO12,PbBiTi15,SrBiTi15,CaBiTi15,BaBiTi15,Na0.5Bi4.5Ti15,K0.5Bi4.5Ti15,SrBiTi18,BaBiTi18,PbBiTi18等が挙げられる。
この場合には,上記ビスマス層状ペロブスカイト型化合物は優れた圧電性を示すため,配向した場合の効果も大きくなる。
【0029】
また,本発明のビスマス層状ペロブスカイト型化合物は,配向度が低い焼結体と比較して,ノックセンサー等の加速度センサーに必要な圧電g定数が1.5〜2倍となる。
また,上記ビスマス層状ペロブスカイト型化合物のうちPbを含まないものは,環境面からも望ましい圧電材料となる。また,非鉛の圧電材料としては高いキュリー温度を有し,温度特性に優れている。
【0030】
次に,上記結晶配向ビスマス層状ペロブスカイト型化合物の製造方法としては,ホストとなる形状異方性を有する材料と,ゲストとなるビスマス層状ペロブスカイト型化合物の原料とを混合する第1工程と,この混合粉末を配向させる第2工程と,熱処理によって,上記ビスマス層状ペロブスカイト型の結晶を上記ホストの配向性を継承させながら成長させる第3工程とからなる製造方法がある。
【0031】
即ち,請求項の発明のように,BiとBiを除く2〜6価の金属元素Bを1種類含むビスマス層状ペロブスカイト型化合物の板状粉末と,1〜3価の金属元素のうち少なくとも1種類の金属元素Aおよび2〜6価の金属元素のうち少なくとも1種類の金属元素Bを含む原料とを混合する第1工程と,
BiとBiを除く2〜6価の金属元素Bを1種類含むビスマス層状ペロブスカイト型化合物の板状粉末を配向させる第2工程と,
熱処理によってBiとBiを除く2種以上の金属元素を含むビスマス層状ペロブスカイト型化合物(Bi2+(Am−13m+12−を合成する第3工程とよりなることを特徴とする,原料の上記板状粉末とは組成の異なる圧電性の結晶配向ビスマス層状ペロブスカイト型化合物の製造方法がある。
【0032】
そして,この方法によって作製された結晶配向セラミックスは,擬正方晶表示におけるその{001}面が一方向に配向しており,その平均配向度が,ロットゲーリング法で80%以上であり,かつ,配向度が80%以上で相対密度95%以上の体積が95%以上を占める。
また,このものは,高配向度の試料がわずかしか得られないホットフォージング法で焼結した焼結体と異なり,0.5cm以上の体積を有している焼結体である。そして,本製造方法によれば,かかる焼結体を容易に得ることができる。
【0033】
上記の第1工程で用いられるBiとBiを除く2〜6価の金属元素Bを1種類含むビスマス層状ペロブスカイト型化合物の板状粉末は,通常はフラックス法等で合成したチタン酸ビスマス(BiTi12)や,ニオブ酸ビスマス(BiNb15)を用いる。
【0034】
また,BiVO5.5,BiWOなどの利用も可能である。これらの板状粉末の形状異方性の程度は大きいほど良く,長手方向の寸法を幅または厚みで割った,いわゆるアスペクト比が5以上,好ましくは10以上でである事が望ましい。
これは,押し出しやドクターブレード,圧延などの成形法で配向しやすくするためである。
【0035】
また,長手方向の大きさが少なくとも0.5μm以上あることが好ましい。更に望ましくは,5μm以上であることにより,更に良好な結果が得られる。
これも,押し出しやドクターブレード,圧延などの成形法で剪断力が働く方向に配向しやすくするためである。
【0036】
このような粉末は,結晶異方性を有する物質を液相または気相中で合成する事によって容易に得られる。特にアスペクト比の大きな粉末を得る方法は,高温の融液中で合成するフラックス法,水熱法,または,過飽和溶液中で析出させる方法である。
【0037】
第2工程において配向を容易にするためには,板状粉末の形状異方性の程度は大きいほど好ましく,形状の長手方向の寸法を厚みで割った値,いわゆるアスペクト比が5以上ある事が望ましい。なお,配向を更に容易にするためには,上記アスペクト比は10以上である事が更に望ましい。
この板状粉末と反応して,目的とする組成の圧電性層状ペロブスカイト型化合物(Bi2+(Am−13m+12−が生成する化学量論比で,1〜3価の金属元素のうち少なくとも1種類の金属元素Aおよび2〜6価の金属元素のうち少なくとも1種類の金属元素Bを含む原料とを混合する。
【0038】
これら板状粉末と反応する原料は,単純酸化物の他,複酸化物,水酸化物,炭酸塩,硝酸塩,硫酸塩,有機酸塩,アルコキシドなど熱分解によって酸化物となり得る原料であれば何れであっても良い。また,これらは固体や液体として用いても,水や有機溶媒に溶解または懸濁している状態で使用しても良く,これらの液体中で錯体を作製して使用しても良い。
【0039】
また,気相の原料を用いて板状粉末の表面に付着させても良い。
例えば,目的とするビスマス層状ペロブスカイト型化合物がCaBiTi15である場合,チタン酸ビスマス板状粉末(BiTi12)1モルに対し,元素Aを含む原料である炭酸カルシウム(CaCO)と元素Bを含む原料である酸化チタン(TiO)を各1モルずつ混合する。
或いは,チタン酸カルシウム(CaTiO)のように元素Aと元素Bの両方を含む複合酸化物を用いても良い。
【0040】
或いは,チタン酸ビスマス板状粉末(BiTi12)1モルに対し,元素Aを含む原料である炭酸カルシウム(CaCO)2モルと酸化ビスマス(Bi)2モルと元素Bを含む原料である酸化チタン(TiO)5モル混合するように,板状粉末を除く原料として3種類以上の原料を用いても良い。
或いは,チタン酸カルシウム(CaTiO)のように元素Aと元素Bの両方を含む複合酸化物を原料として用いても良い。
【0041】
また例えば,目的とするのがSrBiNbの場合,二オブ酸ビスマス板状粉末(BiNb15)0.4モルに対して,炭酸ストロンチウム(SrCO)1モルと酸化ニオブ(Nb)0.4モルを混合する。
【0042】
或いはBaBiTiNbO12のようにTiとNbの2種類を含むような場合には,2種類の板状粉末(チタン酸ビスマスとニオブ酸ビスマス)を用いても良く,一般に2種以上の板状粉末を用いる事が可能である。また,第一工程で用いる板状粉末の量は,一般に目的とするビスマス層状ペロブスカイト型化合物中のBサイト元素の少なくとも5%が板状粉末中のBサイト元素として供給されるのが望ましい。
【0043】
混合は乾式で行っても良いが,望ましくは水または有機溶媒中でボールミルや攪拌機によって行う。必要に応じて分散剤を添加しても良い。この際,成形工程で必要な結合材や可塑剤をも同時に混合したり,混合の途中で添加するのが一般的であるが,湿式法で混合した後,スラリーを乾燥させ,しかる後に再び結合材や可塑剤を添加する事もある。
【0044】
次に第2工程では,BiとBiを除く2〜6価の金属元素Bを1種類含むビスマス層状ペロブスカイド型化合物の板状粉末を配向させる。この際,第1工程による混合粉末,あるいは結合材や可塑剤を含んだ混合粉末を,湿式または乾式の一軸加圧,押し出し成形,ドクターブレード等を用いたテープ成形,圧延,遠心成形,などから選ばれ,このうち一つ又は複数の組み合わせにより,板状粉末の面方向が配向した成形体を得る事ができる。
【0045】
このうち,最も好ましいのは,押し出し成形,テープ成形,圧延,およびこれらの2種以上を組み合わせた成形方法である。これらの方法でほぼ均一に近い剪断応力が板状粉末に加わる事により,板状粉末の面積の広い面,即ち擬正方晶表示{001}面をほぼ均一な配向度で配向させる事ができる。
【0046】
例えば,ドクターブレードや押し出し成形などの配向成形プロセスにさらに積層圧着や圧延を組み合わせる事によって,板状粉末を高配向度で配向させる事も困難ではない。水または有機溶媒を含む成形体は通常,成形途中又は成形後に,水または有機溶媒の乾燥を行う。
【0047】
次に第3工程では,熱処理によって成形体中でBiとBiを除く2種以上の金属元素を含む圧電性層状ペロブスカイト型化合物(Bi2+(Am−13m+12−を合成する事ができる。
この工程の前に,通常,成形体中の有機成分を燃焼除去する脱脂処理を行う。脱脂処理の後に静水圧加圧処理を行い,成形体の密度を高める処理を行う事が望ましい。
【0048】
脱脂の条件と,目的とする化合物の種類によって脱脂処理の際に合成反応の一部または総てが終了する事もある。圧電性層状ペロブスカイト型化合物(Bi2+(Am−13m+12−の合成処理は通常大気中など酸素を含む雰囲気,望ましくは酸素雰囲気にて行う。
【0049】
上記圧電性層状ペロブスカイト型化合物の合成は通常1000℃までの温度で完了するが,さらに緻密な焼結体とするため,これを越える温度までの熱処理を行う。その温度は化合物の種類によって熱分解が始まる温度が異なるため異なる。
例えば,SrBiTi15,或いはCaBiTi15であれば1100℃〜1250℃の温度で常圧焼結処理を行うか,1000℃〜1200℃の温度で加圧焼結処理を行うと良い。
SrBiTi15,或いはCaBiTi15を,1250℃を超える温度に加熱すると,試料の一部が溶融するおそれがある。
【0050】
ただし,ここで加圧は配向のために行うのではなく,緻密化を助けるために行うのであるから,いわゆるホットフォージング処理のように高い圧力を加える必要はなく,試料に重りを乗せて焼結する程度,即ち0.1MPa程度までの加圧で十分効果がある。
ホットフォージング処理のように10MPaを超えるような圧力での加圧は焼結体中の配向度のばらつきを大きくし,均一な特性を有する製品を作製する事ができない。
【0051】
この熱処理工程中に,原料として用いた板状粉末の面積の広い面,即ち擬正方晶表示{001}面と合成後のBiとBiを除く2種以上の金属元素を含む圧電性層状ペロブスカイト型化合物(Bi2+(Am−13m+12−の擬正方晶表示{001}面が平行になるように合成反応が生じる。加熱手段は,電気炉,ガス炉,イメージ炉など各種の炉が使用できるが,マイクロ波やミリ波等を用いて,板状粉末を優先的に加熱する手法は有力な加熱手法の一つである。
【0052】
なお,本手法を用いれば,圧電材料以外のビスマス層状ペロブスカイト型化合物も容易に配向させることができる。
例えば,高温超伝導材料として知られるBiとCuとこの他の金属元素を含むビスマス層状ペロブスカイト型化合物の配向焼結体を作製することができる。この場合は,銅とビスマスを含む層状酸化物の板状粉末を使用する。
【0053】
【発明の実施の形態】
実施形態例
本発明の実施形態例にかかるビスマス層状ペロブスカイト型化合物からなる結晶配向セラミックスにつき,表1,及び図1〜図4を用いて説明する。
本例にかかる結晶配向セラミックスは,BiとBiを除く2種以上の金属元素を含む圧電性ビスマス層状ペロブスカイト型化合物である。そして,一般式が(Bi2+(Am−13m+12−で表される。
【0054】
上記Aは1〜3価の金属元素のうち一種以上であってBi以外の少なくとも一種の1〜3価の金属元素を含んでいる。
一方,上記Bは2〜6価の金属元素のうち1種以上である。
そして,上記結晶配向セラミックスは,擬正方晶表示におけるその{001}面が一方向に配向しており,平均配向度がロットゲーリング法で80%以上であり,かつ,配向度が80%以上で相対密度95%以上の体積が95%以上を占めている。
なお,X線回折パターンの図におけるミラー指数はJCPDSカードと同じく,正斜晶表示で表してあるが,{00L}面が擬正方晶表示のC面にあたる。
更に,上記結晶配向セラミックスの体積は,0.5cm以上である。
【0055】
次に,本例にかかる結晶配向セラミックスの製造方法につき説明する。
上記製造方法においては,板状粉末の種類,板状粉末以外の原料,板状粉末の添加量(Bサイト原子のモル分率として表記),焼結条件を表1に記した。板状粉末はいずれもフラックス法にて合成した。
【0056】
【表1】
Figure 0003650872
【0057】
表1に示す比率の原料を有機溶媒中でボールミル混合し,結合剤と可塑剤を加えてさらに混合した後,ドクターブレード法によりテープ成形を行った。次いで,乾燥した上記テープを積層し,圧着した後,圧延処理をした。
圧延後の試料をさらに重ねて圧着し,約1cm角の立方体に近い形状の試料2個を作製した。この試料を大気中700℃×2hで熱処理後,約300MPaの圧力で静水圧成形処理を行った。
【0058】
この試料を酸素中で表1に示した条件で熱処理を行い焼結させた。この焼結体を,元のテープ成形体のテープ面と平行な方向にダイヤモンド刃で切断し,一つの試料から5枚の板状焼結体を得た。
この焼結体の相対密度をアルキメデス法で測定すると共に,X線回折法にて結晶相を調べた。その結果,総ての試料で目的とした圧電性ビスマス層状ペロブスカイト型化合物が得られており,総ての試料でその相対密度は95%以上である事がわかった。
【0059】
一方,板状焼結体の広い面の擬正方晶{001}面の配向度をロットゲーリング法で評価した。平均配向度はいずれのロットも85%以上であり,かつ,総ての試料で配向度は80%以上であった。
この結果,歩留まり(配向度が80%以上でありかつ相対密度95%以上の試料)は総ての試料で10/10であった。表1中のNo.1とNo.5の試料における,テープ面に平行な上記焼結体の切断面の代表的なX線回折パターンをそれぞれ図1及び図2に示す。
【0060】
図1,図2より,いずれの試料も正斜晶{00L}面に由来する回折ピークが著しく高く,これは,擬正方晶{001}面に由来する回折ピークが著しく高い事を示す。参考までに,同じ試料のテープ面に垂直に切断した焼結体切断面のX線回折パターンをそれぞれ図3及び図4に示す。こちらは逆に,擬正方{001}面からの回折ピークが小さくなっている。
【0061】
なお,試料No.1(Na0.5Bi4.5Ti15)の焼結体のテープ面に垂直な切断面を研摩し,銀電極を焼き付けて分極処理を行なった後,d33定数を測定したところ,36.2pC/N(ピコクーロン/ニュートン)であった。
一方,従来の方法で作製した,配向の殆どない焼結体のd33定数は17.3pC/Nであり,本製造方法による配向化で圧電特性が2倍以上に向上したことが分かった。
【0062】
【発明の効果】
上記のごとく,本発明によれば,密度と配向度の歩留まりが高く,圧電特性が大きく,かつ特性の再現性に優れた結晶配向ビスマス層状ペロブスカイト型化合物及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例における,No.1試料の結晶配向セラミックスの焼結体におけるテープ面に平行な切断面のX線回折パターンを表す線図。
【図2】実施形態例における,No.5試料の結晶配向セラミックスの焼結体におけるテープ面に平行な切断面のX線回折パターンを表す線図。
【図3】実施形態例における,No.1試料の結晶配向セラミックスの焼結体におけるテープ面に垂直な切断面のX線回折パターンを表す線図。
【図4】実施形態例における,No.5試料の結晶配向セラミックスの焼結体におけるテープ面に垂直な切断面のX線回折パターンを表す線図。
【図5】従来例における,ホットフォージング法により結晶配向焼結体を作製する際の,(A)試料を一軸加圧する前の状態,及び(B)一軸加圧した状態を示す説明図。
【符号の説明】
21,22...加圧治具,
9...試料,[0001]
【Technical field】
The present invention relates to a crystal-oriented bismuth layered perovskite type compound used as a piezoelectric material which is a lead-free and has a high Curie temperature and good temperature characteristics, and a method for producing the same.
[0002]
[Prior art]
Conventionally, several proposals have been made for crystal-oriented sintered bodies of bismuth layered perovskite type compounds used as piezoelectric materials having high Curie temperature and good temperature characteristics.
An example is shown below.
(1) PbBi which is a typical compound of so-called bismuth layered perovskite type and has piezoelectricity4Ti4O15(PBT), SrBi4Ti4O15(SBT), Na0.5Bi4.5Ti4O15The example of the sintered compact which produced (NBT) by the normal sintering method is shown (Japan J. Appl. Phys., Vol13, No. 10, 1572-77 (1974)).
[0003]
the aboveSintered bodyIs a sintered body of the above PBT, SBT, and NBT, and the relative density, which is the ratio of the sintered body density to the X-ray density, is as low as 92.5%, 91.3%, and 92.8%, respectively. It stays. The thickness mode electromechanical coupling coefficient (Kt) Were 0.072, 0.22, and 0.15, respectively.
Further, the Curie temperatures are as high as 570, 550, and 670 ° C., respectively, suggesting that the piezoelectric material is excellent in temperature stability.
[0004]
(2) Na, which is a bismuth layered perovskite compound with Mn added0.5Bi4.5Ti4O15(NBT), Na0.475Ca0.05Bi4.475Ti4O15(NCBT) shows an example of a crystal oriented sintered body produced as follows (Sensors and Materials, Vol. 1, 35-46 (1988)).
That is, by synthesizing the above compound by a solid phase reaction method and densifying it by a hot forging method, the layer surface of the layered compound (c-plane when considered to be tetragonal or pseudotetragonal) is pressurized. Oriented sintered body oriented perpendicular to the axisIs making.
[0005]
The hot forging method is a method in which a powder compact is uniaxially pressed while being heated at a normal sintering temperature.
The degree of orientation of the crystal oriented sintered body has reached 90% or more. The crystal-oriented sintered body showed a higher density than the non-oriented sintered body of the same composition prepared by the usual solid phase reaction method and sintering method.
[0006]
Also, the electromechanical coupling coefficient of the vertical effect of NBT and NCBT, K33Are 0.147 and 0.161 for the sintered body obtained by the conventional method, respectively, whereas for the oriented sintered body produced by the hot forging method (the electric field direction is perpendicular to the quasi-tetragonal c-plane). Remarkably improved to 0.325 and 0.356, respectively.
[0007]
(3) Bi4Ti3O12Bi is obtained by synthesizing a plate-like powder, molding it to be oriented, and sintering it.4Ti3O12The example which produced the oriented sintered compact of this is shown (Journal of Ceramic Industry Association, Volume 93, 485 (1985)).
[0008]
(4) Plate Bi4Ti3O12Particles and Bi4Ti3O12The degree of orientation is obtained by mixing the fine particles with the plate particles at a ratio of 5 to 10% by volume of the fine particles, orienting the plate particles by tape molding, laminating the tape and sintering at 900 to 1100 ° C With crystal orientation Bi of 0.954Ti3O12The example which produced the sintered compact is shown (Proceedings of ISAF'96, P943-946 (1996)).
[0009]
[Problems to be solved]
As shown in the above prior art (1), the Bi layered perovskite type piezoelectric material is a piezoelectric material having a high Curie temperature, and as shown in (2), when the crystal is oriented by the hot forging method, It expresses higher properties than union.
However, as shown in FIG. 5, in the hot forging method, a large deformation must be caused by uniaxially pressing the sample 9 using the pressurizing jigs 21 and 22 while being hot. Therefore, it is difficult to produce a large sample and productivity is low.
[0010]
Further, since the stress distribution inside the sample 9 during hot forging is not uniform, as shown in FIG. 5B, a large variation in the degree of orientation occurs both in the thickness direction and in the radial direction of the sample 9. That is, the surface of the sample 9 has a high degree of orientation, but the inside has a low degree of orientation, and the radial distribution has a low degree of orientation at the center and the periphery.
In addition to this, the periphery of the sample 9 is less likely to be subjected to pressure, so it tends to be low density and cracks are likely to occur.
[0011]
Therefore, this method cannot produce a crystal-oriented bismuth layered perovskite compound having an average degree of orientation of 80% or more and a relative density of 95% or more by the Lotgering method.
That is, the hot forging method can obtain an oriented sintered body, but is expensive and is not a process with a high yield in terms of product density and degree of orientation. Therefore, this method is not suitable for mass production.
[0012]
In (3) and (4), a plate-like powder synthesized in a flux is used to orient it by the doctor blade method or extrusion method, and it is densified by atmospheric pressure sintering to obtain an oriented sintered body. ing. This is bismuth titanate (Bi4Ti3O12This is an advantageous technique for obtaining a simple double oxide oriented sintered body containing only two kinds of metal elements as in (1).
However, if a double oxide containing three or more kinds of metal elements such as SBT, NBT, and NCBT is obtained by the flux method as described above, the element ratio tends to shift, and a plate-like powder having a desired stoichiometric ratio. Is difficult to get.
[0013]
In view of such problems, the present invention is to provide a crystal-oriented bismuth layered perovskite compound having high density and orientation yield, large piezoelectric properties, and excellent property reproducibility, and a method for producing the same. is there.
[0014]
[Means for solving problems]
  The invention of claim 1 has the general formula (Bi2O2)2+(Am-1BmO3m + 1)2-Where A is a 1-3 valent metal element, BIs a 2-6 valent metal elementYes, including Bi and two or more metal elements excluding BiA crystal-oriented bismuth layered perovskite compound,
  The average degree of orientation by the Lotgering method is 80% or more,
  And,averageRelative densityIs 98.7% or moreThe piezoelectric crystal-oriented bismuth layered perovskite type compound is characterized in that.
  The invention of claim 2The general formula is (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- A is a 1 to 3 valent metal element, B is a 2 to 6 valent metal element, contains Bi and two or more metal elements excluding Bi, and does not contain Pb. A perovskite compound,
The average degree of orientation by the Lotgering method is 80% or more,
In addition, the piezoelectric crystal-oriented bismuth layered perovskite compound has an average relative density of 96.5% or more.
[0015]
A is selected from, for example, alkali metals such as Na and K, alkaline earth metals such as Ca, Sr, and Ba, rare earth metals such as Y, La, Gd, and Nd, and heavy metals such as Pb, Cd, and Bi. It is a trivalent metal element.
B is a bivalent to hexavalent transition metal element such as Ti, Zr, V, Nb, Ta, Mo, W, Mg, Zn, Mn, Fe, Co, Ni, and Cr.
[0016]
  The most notable point in the present invention is that the bismuth layered perovskite type compound has an average degree of orientation by the Lotgering method of 80% or more, andaverageRelative density(Hereinafter, simply referred to as “relative density” as appropriate) is 98.7% or more (96.5% or more in claim 2).Is a point.
[0017]
  The bismuth layered perovskite type compound has a high degree of piezoelectric properties since the average degree of orientation is 80% or more. Also,averageRelative densityIs the above specific valueTherefore, the yield is high.
[0018]
  When the average degree of orientation is less than 80%, a bismuth layered perovskite compound having high piezoelectric properties cannot be obtained.
  Also, the aboveAverage relativedensityIs the above specific valueIf it is less, the sample is liable to crack and the yield decreases.
  Therefore, according to the present invention, it is possible to obtain a bismuth layered perovskite compound having a high density and orientation yield, large piezoelectric characteristics, and excellent characteristics reproducibility.
[0019]
The bismuth layered perovskite compound is 0.5 cm3It is preferable to have the above volume.
Thereby, for example, a large piezoelectric element can be obtained.
[0020]
The lotgering method will be described below.
That is, the crystal orientation degree Q (HKL) of the crystal oriented ceramic obtained by the Lotgering method is defined by the following equation (1).
[0021]
[Expression 1]
Figure 0003650872
[0022]
Here, I (HKL) is the X-ray diffraction intensity from the crystal plane (HKL) in the crystallographic ceramics. On the other hand, I0(HKL) is the X-ray diffraction intensity from the crystal plane (HKL) of the same compound having the same composition as the above-mentioned crystal-oriented ceramic and non-oriented polycrystalline ceramic.
[0023]
Further, Σ′I (HKL) is the sum of X-ray diffraction intensities from each crystal orientation plane in crystal orientation ceramics such as I (006), I (008), I (0010), etc. . On the other hand, ΣI0(Hkl) is the sum of X-ray diffraction intensities from all crystal planes (hkl) in the non-oriented polycrystalline ceramic.
The value of Q (HKL) is normalized so that it is 0% when not oriented and 100% when all crystal grains are oriented.
[0024]
In general, a piezoelectric bismuth layered perovskite compound represented by the above chemical formula is slightly distorted from a tetragonal structure in which m layers of bismuth layered perovskite unit cells and oxygen layers are alternately overlapped.
The bismuth layered perovskite type compound indicates a crystallographically-oriented ceramic in which the {001} plane is oriented in a specific plane when this is regarded as a pseudo-tetragonal structure.
[0025]
As described above, the bismuth layered perovskite compound of the present invention preferably has its {001} plane oriented in one direction in the pseudotetragonal display.
Here, the state of being oriented in one direction includes a radial direction and a circumferential direction in a columnar shape or a cylindrical shape.
[0026]
Piezoelectric bismuth layered perovskite compounds generally have a polarization axis in the quasi-square {001} plane or in a direction slightly changed from the quasi-square {001} plane to the quasi-square <001> direction.
The crystal-oriented piezoelectric bismuth layered perovskite compound as described above is polarized in the direction perpendicular to the quasi-tetragonal <001> direction and applied with an electric field in the same direction, and the piezoelectric bismuth layer structure of the same composition that is non-oriented Piezoelectricity superior to perovskite type compounds, especially piezoelectric d33Constant, piezoelectric g33Constant, electromechanical coupling k33Indicates the coefficient.
[0027]
Among the piezoelectric bismuth layered perovskite compounds, it is preferable that the metal element B contains at least one of Ti, Nb, and Ta.
[0028]
Examples of the compound include SrBi.2Nb2O9, SrBi2Ta2O9, BaBi2Nb2O9, BaBi2Ta2O9, PbBi2Nb2O9, PbBi2Ta2O9, BaBi3Ti2NbO12, PbBi4Ti4O15, SrBi4Ti4O15, CaBi4Ti4O15, BaBi4Ti4O15, Na0.5Bi4.5Ti4O15, K0.5Bi4.5Ti4O15, Sr2Bi4Ti5O18, Ba2Bi4Ti5O18, Pb2Bi4Ti5O18Etc.
In this case, since the bismuth layered perovskite type compound exhibits excellent piezoelectricity, the effect when oriented is also increased.
[0029]
Further, the bismuth layered perovskite compound of the present invention has a piezoelectric g constant 1.5 to 2 times that required for an acceleration sensor such as a knock sensor as compared with a sintered body having a low degree of orientation.
Of the above bismuth layered perovskite compounds, those not containing Pb are desirable piezoelectric materials from the viewpoint of environment. As a lead-free piezoelectric material, it has a high Curie temperature and excellent temperature characteristics.
[0030]
Next, as a method for producing the crystal-oriented bismuth layered perovskite type compound, a first step of mixing a material having shape anisotropy as a host and a raw material of a bismuth layered perovskite type compound as a guest, There is a manufacturing method comprising a second step of orienting the powder and a third step of growing the bismuth layered perovskite type crystal by heat treatment while inheriting the orientation of the host.
[0031]
  That is, the claim3As in the invention of the present invention, a plate-like powder of a bismuth layered perovskite type compound containing one type of bivalent to hexavalent metallic element B excluding Bi and Bi, and at least one type of metallic element A of 1 to 3 valent metallic elements And a first step of mixing a raw material containing at least one kind of metal element B among divalent to hexavalent metal elements,
  A second step of orienting a plate-like powder of a bismuth layered perovskite compound containing one kind of a bi- to hexavalent metal element B except Bi and Bi
  Bismuth layered perovskite compound (Bi) containing two or more metal elements excluding Bi and Bi by heat treatment2O2)2+(Am-1BmO3m + 1)2-What is the above-mentioned plate-like powder as a raw material, characterized by comprising the third step of synthesizingcompositionThere are methods for producing piezoelectric crystallographically oriented bismuth layered perovskite-type compounds with different.
[0032]
The crystallographically-oriented ceramic produced by this method has its {001} plane in the quasi-tetragonal display oriented in one direction, the average degree of orientation is 80% or more by the Lotgering method, and A volume having an orientation degree of 80% or more and a relative density of 95% or more occupies 95% or more.
In addition, this is different from a sintered body sintered by a hot forging method in which only a few samples with a high degree of orientation can be obtained.3This is a sintered body having the above volume. And according to this manufacturing method, this sintered compact can be obtained easily.
[0033]
A plate-like powder of a bismuth layered perovskite compound containing one kind of a bi- to hexavalent metal element B excluding Bi and Bi used in the first step is usually bismuth titanate (Bi4Ti3O12) And bismuth niobate (Bi)5Nb3O15) Is used.
[0034]
Bi2VO5.5, Bi2WO6Etc. are also possible. The degree of shape anisotropy of these plate-like powders is better, and the so-called aspect ratio obtained by dividing the longitudinal dimension by the width or thickness is 5 or more, preferably 10 or more.
This is to facilitate orientation by forming methods such as extrusion, doctor blade, and rolling.
[0035]
Further, the size in the longitudinal direction is preferably at least 0.5 μm or more. More desirably, when the thickness is 5 μm or more, a better result can be obtained.
This is also to facilitate orientation in the direction in which the shearing force is exerted by molding methods such as extrusion, doctor blade, and rolling.
[0036]
Such a powder can be easily obtained by synthesizing a substance having crystal anisotropy in a liquid phase or a gas phase. In particular, a method for obtaining a powder having a large aspect ratio is a flux method synthesized in a high-temperature melt, a hydrothermal method, or a method of precipitating in a supersaturated solution.
[0037]
In order to facilitate orientation in the second step, the degree of shape anisotropy of the plate-like powder is preferably as large as possible, and the value obtained by dividing the longitudinal dimension of the shape by the thickness, that is, the so-called aspect ratio is 5 or more. desirable. In order to further facilitate the orientation, the aspect ratio is more preferably 10 or more.
The piezoelectric layered perovskite compound (Bi) having a desired composition reacts with the plate-like powder.2O2)2+(Am-1BmO3m + 1)2-Are mixed with a raw material containing at least one metal element A of 1 to 3 metal elements and at least one metal element B of 2 to 6 metal elements.
[0038]
The raw material that reacts with these plate-like powders can be any raw material that can be converted into oxides by thermal decomposition, such as double oxides, hydroxides, carbonates, nitrates, sulfates, organic acid salts, and alkoxides in addition to simple oxides. It may be. These may be used as a solid or a liquid, or may be used in a state dissolved or suspended in water or an organic solvent, or a complex may be prepared and used in these liquids.
[0039]
Moreover, you may make it adhere to the surface of plate-shaped powder using the raw material of a gaseous phase.
For example, the target bismuth layered perovskite type compound is CaBi.4Ti4O15Bismuth titanate plate powder (Bi4Ti3O12) Calcium carbonate (CaCO) which is a raw material containing element A with respect to 1 mol3) And titanium oxide (TiO) which is a raw material containing element B2) Are mixed 1 mol each.
Alternatively, calcium titanate (CaTiO3A complex oxide containing both the element A and the element B as shown in FIG.
[0040]
Alternatively, bismuth titanate plate powder (Bi4Ti3O12) Calcium carbonate (CaCO) which is a raw material containing element A with respect to 1 mol32 moles and bismuth oxide (Bi)2O3) Titanium oxide (TiO) which is a raw material containing 2 mol and element B2) Three or more kinds of raw materials may be used as raw materials excluding the plate-like powder so that 5 moles are mixed.
Alternatively, calcium titanate (CaTiO3A composite oxide containing both element A and element B as shown in FIG.
[0041]
For example, the purpose is SrBi2Nb2O9In the case of bismuth diobate plate powder (Bi5Nb3O15) 0.4 mol, strontium carbonate (SrCO3) 1 mole and niobium oxide (Nb)2O5) Mix 0.4 mole.
[0042]
Or BaBi3Ti2NbO12When two types of Ti and Nb are included as described above, two types of plate-like powders (bismuth titanate and bismuth niobate) may be used, and generally two or more types of plate-like powders may be used. Is possible. The amount of the plate-like powder used in the first step is generally preferably such that at least 5% of the B-site element in the target bismuth layered perovskite type compound is supplied as the B-site element in the plate-like powder.
[0043]
Mixing may be carried out dry, but preferably in a water or organic solvent with a ball mill or a stirrer. You may add a dispersing agent as needed. At this time, it is common to mix binders and plasticizers required in the molding process at the same time, or add them in the middle of mixing, but after mixing by a wet method, the slurry is dried and then bonded again. Materials and plasticizers may be added.
[0044]
Next, in the second step, a plate-like powder of a bismuth layered perovskite type compound containing one type of bivalent to hexavalent metal element B excluding Bi and Bi is oriented. At this time, the mixed powder in the first step or the mixed powder containing a binder and a plasticizer is subjected to wet or dry uniaxial pressing, extrusion molding, tape molding using a doctor blade, rolling, centrifugal molding, etc. By selecting one or a combination of these, it is possible to obtain a molded body in which the plane direction of the plate-like powder is oriented.
[0045]
Of these, the most preferable are extrusion molding, tape molding, rolling, and a molding method combining two or more of these. By applying almost uniform shear stress to the plate-like powder by these methods, the surface of the plate-like powder having a large area, that is, the quasi-tetragonal {001} plane can be oriented with a substantially uniform degree of orientation.
[0046]
For example, it is not difficult to orient the plate-like powder with a high degree of orientation by further combining lamination pressing and rolling with an orientation molding process such as doctor blade or extrusion molding. A molded body containing water or an organic solvent is usually dried during or after molding.
[0047]
Next, in the third step, a piezoelectric layered perovskite compound (Bi) containing two or more metal elements excluding Bi and Bi in the compact by heat treatment.2O2)2+(Am-1BmO3m + 1)2-Can be synthesized.
Prior to this step, a degreasing treatment is usually performed to burn and remove organic components in the molded body. It is desirable to perform a hydrostatic pressure treatment after the degreasing treatment to increase the density of the molded body.
[0048]
Depending on the degreasing conditions and the type of target compound, part or all of the synthesis reaction may be completed during the degreasing process. Piezoelectric layered perovskite compound (Bi2O2)2+(Am-1BmO3m + 1)2-The synthesis process is usually performed in an atmosphere containing oxygen, such as in the air, preferably in an oxygen atmosphere.
[0049]
The synthesis of the piezoelectric layered perovskite type compound is usually completed at a temperature up to 1000 ° C., but in order to obtain a denser sintered body, heat treatment is performed up to a temperature exceeding this. The temperature differs depending on the type of compound because the temperature at which thermal decomposition begins differs.
For example, SrBi4Ti4O15Or CaBi4Ti4O15Then, it is good to perform a normal pressure sintering process at the temperature of 1100 degreeC-1250 degreeC, or to perform a pressure sintering process at the temperature of 1000 degreeC-1200 degreeC.
SrBi4Ti4O15Or CaBi4Ti4O15If the sample is heated to a temperature exceeding 1250 ° C., a part of the sample may be melted.
[0050]
However, since pressurization is not performed for orientation but to help densification, it is not necessary to apply high pressure as in the so-called hot forging process, and a sample is baked with a weight. A pressurization up to the degree of binding, that is, about 0.1 MPa is sufficiently effective.
Pressing at a pressure exceeding 10 MPa as in the hot forging treatment increases the variation in the degree of orientation in the sintered body, and a product having uniform characteristics cannot be produced.
[0051]
Piezoelectric layered perovskite type containing two or more kinds of metal elements excluding Bi and Bi after synthesizing a large area of the plate-like powder used as a raw material during this heat treatment process, that is, a pseudo-tetragonal {001} plane. Compound (Bi2O2)2+(Am-1BmO3m + 1)2-The synthetic reaction occurs so that the pseudo-tetragonal representation {001} plane of Various furnaces such as electric furnaces, gas furnaces, and image furnaces can be used as the heating means, but the method of preferentially heating plate powder using microwaves or millimeter waves is one of the most effective heating methods. is there.
[0052]
If this method is used, bismuth layered perovskite compounds other than piezoelectric materials can be easily oriented.
For example, an oriented sintered body of a bismuth layered perovskite type compound containing Bi, Cu and other metal elements known as high temperature superconducting materials can be produced. In this case, a layered oxide powder containing copper and bismuth is used.
[0053]
DETAILED DESCRIPTION OF THE INVENTION
Example embodiment
A crystallographically-oriented ceramic made of a bismuth layered perovskite type compound according to an embodiment of the present invention will be described with reference to Table 1 and FIGS.
The crystallographically-oriented ceramic according to this example is a piezoelectric bismuth layered perovskite type compound containing two or more metal elements excluding Bi and Bi. And the general formula is (Bi2O2)2+(Am-1BmO3m + 1)2-It is represented by
[0054]
The above A is one or more of 1 to 3 valent metal elements and contains at least one 1 to 3 valent metal element other than Bi.
On the other hand, B is one or more of divalent to hexavalent metal elements.
In the above-mentioned crystallographically-oriented ceramic, the {001} plane in the quasi-tetragonal display is oriented in one direction, the average degree of orientation is 80% or more by the Lotgering method, and the degree of orientation is 80% or more. A volume having a relative density of 95% or more occupies 95% or more.
Note that the Miller index in the X-ray diffraction pattern is represented by orthorhombic crystal display as in the JCPDS card, but the {00L} plane corresponds to the C plane of pseudotetragonal crystal display.
Furthermore, the volume of the crystal-oriented ceramic is 0.5 cm.3That's it.
[0055]
Next, a method for producing a crystallographically-oriented ceramic according to this example will be described.
Table 1 shows the types of the plate powder, the raw materials other than the plate powder, the addition amount of the plate powder (expressed as the mole fraction of B site atoms), and the sintering conditions in the above production method. All plate-like powders were synthesized by the flux method.
[0056]
[Table 1]
Figure 0003650872
[0057]
The raw materials in the ratios shown in Table 1 were mixed in a ball mill in an organic solvent, a binder and a plasticizer were added and further mixed, and then tape forming was performed by a doctor blade method. Next, the dried tapes were stacked, pressed, and then rolled.
The rolled samples were further stacked and pressure-bonded to produce two samples having a shape close to a cube of about 1 cm square. This sample was heat-treated at 700 ° C. for 2 hours in the atmosphere, and then subjected to an isostatic pressing process at a pressure of about 300 MPa.
[0058]
This sample was heat-treated in oxygen under the conditions shown in Table 1 and sintered. This sintered body was cut with a diamond blade in a direction parallel to the tape surface of the original tape molded body, and five plate-like sintered bodies were obtained from one sample.
The relative density of the sintered body was measured by Archimedes method, and the crystal phase was examined by X-ray diffraction method. As a result, the target piezoelectric bismuth layered perovskite type compound was obtained in all samples, and it was found that the relative density was 95% or more in all samples.
[0059]
On the other hand, the degree of orientation of the quasi-tetragonal {001} plane on the wide surface of the plate-like sintered body was evaluated by the Lotgering method. The average orientation degree was 85% or more for all lots, and the orientation degree was 80% or more for all samples.
As a result, the yield (sample with an orientation degree of 80% or more and a relative density of 95% or more) was 10/10 for all the samples. No. in Table 1 1 and No. Typical X-ray diffraction patterns of the cut surface of the sintered body parallel to the tape surface in the sample No. 5 are shown in FIGS. 1 and 2, respectively.
[0060]
1 and 2, each sample has a remarkably high diffraction peak derived from the orthorhombic {00L} plane, which indicates that the diffraction peak derived from the pseudotetragonal {001} plane is remarkably high. For reference, the X-ray diffraction patterns of the cut surface of the sintered body cut perpendicularly to the tape surface of the same sample are shown in FIGS. 3 and 4, respectively. On the contrary, the diffraction peak from the quasi-square {001} plane is smaller.
[0061]
Sample No. 1 (Na0.5Bi4.5Ti4O15After polishing the cut surface of the sintered body perpendicular to the tape surface, baking the silver electrode and performing polarization treatment, d33When the constant was measured, it was 36.2 pC / N (picocoulomb / Newton).
On the other hand, d of a sintered body produced by a conventional method and having almost no orientation.33The constant was 17.3 pC / N, and it was found that the orientation by this manufacturing method improved the piezoelectric characteristics more than twice.
[0062]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a crystal-oriented bismuth layered perovskite compound having a high density and orientation yield, large piezoelectric characteristics, and excellent characteristics reproducibility, and a method for producing the same.
[Brief description of the drawings]
FIG. 1 shows an example of No. in the embodiment. The diagram showing the X-ray-diffraction pattern of the cut surface parallel to the tape surface in the sintered compact of the crystal orientation ceramics of 1 sample.
FIG. 2 shows the No. in the embodiment example. The diagram showing the X-ray-diffraction pattern of the cut surface parallel to the tape surface in the sintered body of the crystal orientation ceramics of 5 samples.
FIG. 3 shows the No. in the embodiment example. The diagram showing the X-ray-diffraction pattern of the cut surface perpendicular | vertical to the tape surface in the sintered compact of the crystal orientation ceramics of 1 sample.
FIG. 4 shows the No. in the embodiment example. The diagram showing the X-ray-diffraction pattern of the cut surface perpendicular | vertical to the tape surface in the sintered compact of the crystal orientation ceramics of 5 samples.
FIGS. 5A and 5B are explanatory views showing (A) a state before uniaxially pressing a sample and (B) a uniaxially pressed state when a crystal oriented sintered body is manufactured by a hot forging method in a conventional example.
[Explanation of symbols]
21,22. . . Pressure jig,
9. . . sample,

Claims (3)

一般式が(Bi2+(Am−13m+12−で表され,上記Aは1〜3価の金属元素,Bは2〜6価の金属元素であり,BiとBiを除く2種以上の金属元素とを含む結晶配向ビスマス層状ペロブスカイト型化合物であって,
ロットゲーリング(Lotgering)法による平均配向度が80%以上であり,
かつ,平均相対密度が98.7%以上であることを特徴とする圧電性の結晶配向ビスマス層状ペロブスカイト型化合物。
The general formula is (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2-, where A is a 1-3 valent metal element , B is a 2-6 valent metal element , Bi And a crystal-oriented bismuth layered perovskite compound containing two or more metal elements excluding Bi ,
The average degree of orientation by the Lotgering method is 80% or more,
A piezoelectric crystal-oriented bismuth layered perovskite-type compound having an average relative density of 98.7% or more .
一般式が(BiThe general formula is (Bi 2 O 2 ) 2+2+ (A(A m−1m-1 B m O 3m+13m + 1 ) 2−2- で表され,上記Aは1〜3価の金属元素,Bは2〜6価の金属元素であり,BiとBiを除く2種以上の金属元素とを含み,Pbを含まない結晶配向ビスマス層状ペロブスカイト型化合物であって,A is a 1 to 3 valent metal element, B is a 2 to 6 valent metal element, contains Bi and two or more metal elements excluding Bi, and does not contain Pb. A perovskite compound,
ロットゲーリング(Lotgering)法による平均配向度が80%以上であり,  The average degree of orientation by the Lotgering method is 80% or more,
かつ,平均相対密度が96.5%以上であることを特徴とする圧電性の結晶配向ビスマス層状ペロブスカイト型化合物。  A piezoelectric crystal-oriented bismuth layered perovskite type compound having an average relative density of 96.5% or more.
BiとBiを除く2〜6価の金属元素Bを1種類含むビスマス層状ペロブスカイト型化合物の板状粉末と,1〜3価の金属元素のうち少なくとも1種類の金属元素Aおよび2〜6価の金属元素のうち少なくとも1種類の金属元素Bを含む原料とを混合する第1工程と,
BiとBiを除く2〜6価の金属元素Bを1種類含むビスマス層状ペロブスカイト型化合物の板状粉末を配向させる第2工程と,
熱処理によってBiとBiを除く2種以上の金属元素を含むビスマス層状ペロブスカイト型化合物(Bi2+(Am−13m+12−を合成する第3工程とよりなることを特徴とする,原料の上記板状粉末とは組成の異なる圧電性の結晶配向ビスマス層状ペロブスカイト型化合物の製造方法。
Bismuth layered perovskite-type compound plate powder containing one type of bi- to hexavalent metal element B excluding Bi and Bi, at least one type of metal element A and 1 to 6 types of metal elements A A first step of mixing a raw material containing at least one metal element B among metal elements;
A second step of orienting a plate-like powder of a bismuth layered perovskite-type compound containing one kind of a bi- to hexavalent metal element B excluding Bi and Bi;
And a third step of synthesizing a bismuth layered perovskite type compound (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- containing two or more metal elements excluding Bi and Bi by heat treatment. A method for producing a piezoelectric crystallographically oriented bismuth layered perovskite type compound having a composition different from that of the raw plate powder.
JP20045198A 1998-07-15 1998-07-15 Crystalline oriented bismuth layered perovskite compound and method for producing the same Expired - Fee Related JP3650872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20045198A JP3650872B2 (en) 1998-07-15 1998-07-15 Crystalline oriented bismuth layered perovskite compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20045198A JP3650872B2 (en) 1998-07-15 1998-07-15 Crystalline oriented bismuth layered perovskite compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000034194A JP2000034194A (en) 2000-02-02
JP3650872B2 true JP3650872B2 (en) 2005-05-25

Family

ID=16424530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20045198A Expired - Fee Related JP3650872B2 (en) 1998-07-15 1998-07-15 Crystalline oriented bismuth layered perovskite compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP3650872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151567A (en) * 1999-11-24 2001-06-05 Toyota Central Res & Dev Lab Inc Crystal oriented bismuth layered perovskite-type porcelain composition and method of producing the same
CN108947519A (en) * 2018-09-18 2018-12-07 铜仁学院 Piezoelectric ceramics and preparation method thereof, piezo-electric device and its application

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688271B2 (en) * 2000-10-10 2011-05-25 京セラ株式会社 Method for producing bismuth layered compound sintered body
JP4789328B2 (en) * 2001-01-31 2011-10-12 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric resonator
JP4737843B2 (en) * 2001-01-31 2011-08-03 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric resonator
JP4946128B2 (en) * 2006-03-28 2012-06-06 旭硝子株式会社 Method for producing bismuth niobate fine particles
JP5251976B2 (en) * 2008-05-23 2013-07-31 株式会社ニコン Fluoride crystal molded body manufacturing method, optical member manufactured thereby, optical device including optical member, and ultraviolet cleaning device
CN112108162B (en) * 2020-08-24 2023-06-20 天津理工大学 0D/2D composite nano material and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379387B2 (en) * 1996-08-30 2003-02-24 株式会社豊田中央研究所 Crystal oriented ceramics and method for producing the same
JP3640115B2 (en) * 1996-11-26 2005-04-20 株式会社豊田中央研究所 Manufacturing method of ceramic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151567A (en) * 1999-11-24 2001-06-05 Toyota Central Res & Dev Lab Inc Crystal oriented bismuth layered perovskite-type porcelain composition and method of producing the same
CN108947519A (en) * 2018-09-18 2018-12-07 铜仁学院 Piezoelectric ceramics and preparation method thereof, piezo-electric device and its application

Also Published As

Publication number Publication date
JP2000034194A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP3975518B2 (en) Piezoelectric ceramics
CN100443441C (en) Crystal oriented ceramics and production method of same
EP1253121B1 (en) Grain oriented ceramics and a production process thereof, as well as an anisotropically-shaped powder and a production process thereof
JP4529219B2 (en) Piezoelectric ceramics and manufacturing method thereof
US20060006360A1 (en) Grain oriented ceramics and production method thereof
JP2009256186A (en) Piezoelectric material
JP4326374B2 (en) Crystal-oriented ceramics and method for producing the same
Gio Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0. 5 (Na0. 4K0. 1) TiO3 lead-free ceramics
JP2010143788A (en) Oxynitride piezoelectric material and method for producing the same
JP3379387B2 (en) Crystal oriented ceramics and method for producing the same
US20090121374A1 (en) Method of manufacturing crystal oriented ceramics
JP4563957B2 (en) Method for producing crystal-oriented ceramics
JP3666182B2 (en) Method for producing crystal-oriented ceramics
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
EP2269965B1 (en) Piezoelectric ceramic and piezoelectric ceramic composition
JP4534531B2 (en) Method for producing anisotropic shaped powder
JP4756312B2 (en) Anisotropic shaped powder, method for producing the same, and method for producing crystal-oriented ceramics
JP2002193663A (en) Sintered body of crystal-oriented perovskite compound, its manufacturing method, compact of ceramic powder used for the compound and plate-like crystal-oriented perovskite compound
JP2010163313A (en) Method of manufacturing crystal-orientated ceramic
JP3557854B2 (en) Manufacturing method of crystal orientation material
JP5233778B2 (en) Method for producing anisotropically shaped powder and crystallographically oriented ceramics
JP4419232B2 (en) Crystalline oriented bismuth layered perovskite type porcelain composition and method for producing the same
JP4688271B2 (en) Method for producing bismuth layered compound sintered body
JP2009256147A (en) Anisotropically formed powder and method for manufacturing crystal oriented ceramic
JP3666179B2 (en) Crystalline oriented ceramics and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees