JP4789328B2 - Piezoelectric ceramic composition and piezoelectric resonator - Google Patents

Piezoelectric ceramic composition and piezoelectric resonator Download PDF

Info

Publication number
JP4789328B2
JP4789328B2 JP2001023412A JP2001023412A JP4789328B2 JP 4789328 B2 JP4789328 B2 JP 4789328B2 JP 2001023412 A JP2001023412 A JP 2001023412A JP 2001023412 A JP2001023412 A JP 2001023412A JP 4789328 B2 JP4789328 B2 JP 4789328B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
oscillation
frequency
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001023412A
Other languages
Japanese (ja)
Other versions
JP2002226265A (en
Inventor
修三 岩下
修一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001023412A priority Critical patent/JP4789328B2/en
Publication of JP2002226265A publication Critical patent/JP2002226265A/en
Application granted granted Critical
Publication of JP4789328B2 publication Critical patent/JP4789328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電磁器組成物および圧電共振子に関し、例えば、共振子、超音波振動子、超音波モータ、あるいは加速度センサ、ノッキングセンサ、およびAEセンサ等の圧電センサなどに適し、特に、厚み滑り振動の基本波振動を利用したエネルギ一閉じ込め型発振子の高周波発振子用として好適に用いられる圧電磁器および圧電共振子に関するものである。
【0002】
【従来技術】
従来から、圧電磁器を利用した製品としては、例えば、フィルタ、圧電共振子(以下、発振子を含む概念である)、超音波振動子、超音波モータ、圧電センサ等がある。
【0003】
ここで、発振子は、マイコンの基準信号発振用として、例えば、コルピッツ発振回路等の発振回路に組み込まれて利用される。図1はコルピッツ発振回路を基本とした回路構成においてインダクタLの部分を圧電発振子に置き換えたピアス発振回路を示すものである。このピアス発振回路は、コンデンサ11、12と、抵抗13と、インバータ14および発振子15により構成されている。そして、この発振回路において、発振信号を発生するには、以下の発振条件を満足する必要がある。
【0004】
即ち、インバータ14と抵抗13からなる増幅回路における増幅率をα、移相量をθ1とし、また、発振子15とコンデンサ11、12からなる帰還回路における帰還率をβ、移相量をθ2としたとき、ループゲインがα×β≧1であり、かつ、移相量がθ1+θ2=360゜×n(但しn=1,2,…)であることが必要となる。
【0005】
一般的に抵抗13およびインバータ14からなる増幅回路は、マイコンに内蔵されている。誤発振や不発振を起さない、安定した発振を得るためにはループゲインを大きくしなければならない。ループゲインを大きくするには、帰還率βのゲインを決定する、発振子のP/V、すなわち共振インピーダンスR0および反共振インピーダンスRaの差を大きくする事が必要となる。なお、P/Vは20×Log(Ra/R0)の値として定義される。
【0006】
また、移相量の条件を満足させるためには、共振周波数と反共振周波数の間およびその近傍の周波数で、移相が約−90゜から約+90゜まで移相反転し、且つ共振周波数と反共振周波数の間およびその近傍にスプリアス振動による移相歪みが発生しないことも重要となる。
【0007】
従来、圧電性が高く、例えば高いP/Vが得られるPZT、PT系材料が使用されていた。しかしながら、PZT、PT系材料には鉛が自重の約60%の割合で含有されているため、酸性雨により鉛の溶出が起こり環境汚染を招く危険性が指摘されている。そこで、鉛を含有しない圧電材料への高い期待が寄せられている。鉛を含有しないビスマス層状化合物を主体とする材料系においては、PZT、PT系材料と比較して機械的品質係数(Qm)が比較的高いという特徴があり、発振子用の非鉛圧電材料としての応用が可能である。
【0008】
【発明が解決しようとする課題】
しかしながら、従来の鉛を含有しないビスマス層状化合物を主体とする圧電磁器組成物では、共振子として用いる場合、充分なP/Vが得られないばかりか、加工性が悪くチッピング(共振子用磁器エッジの欠け)により共振周波数と反共振周波数の間にスプリアス振動に伴う移相歪みが発生し、移相の条件を満足しないことから不発振や安定した発振が得られない問題があった。
【0009】
また共振周波数の温度変化率が±5000ppmよりも大きく、電子機器から要求される温度特性に対する周波数の許容公差±5000ppm以内の精度には対応できないという問題があった。
【0010】
従って、本発明は、共振周波数と反共振周波数の間およびその近傍の周波数で移相歪みが発生せず、厚み滑り振動や厚み縦振動の基本波振動等のP/Vを大きくできるとともに、−20℃〜+80℃の温度範囲で発振周波数の温度安定性に優れた非鉛系の圧電磁器組成物および圧電共振子を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の圧電磁器組成物は、金属元素として少なくともBiおよびTiを含有するとともに、モル比による組成式を(A11−xA2BiTi18と表したとき、0.3≦x≦0.7、A1Sr、Ca、(Sr0.5Ca0.5)のうち1種、A2(Bi0.5Na0.5)、(Bi0.5Li0.5)および(Bi0.50.5)のうち1種、あるいは、A1がSr、A2がCaを満足する主成分と、該主成分100重量部に対してMnをMnO換算で0.4〜0.7重量部含有するものである。
【0012】
このような圧電磁器組成物からなる圧電磁器を用いて圧電共振子を作製した場合、共振周波数と反共振周波数の間およびその近傍の周波数で移相歪みが発生せず、特に厚み滑りや厚み縦の基本波および3次オーバートーン振動でのP/V値を大きくすることができる。例えば、厚み滑り基本波振動の−20〜80℃における共振周波数の温度変化率が±5000ppm以内となり、かつ共振インピーダンスR0と反共振インピーダンスRaとした時、20×Log(Ra/R0)で表されるP/Vが55dB以上とすることができる。また、キュリー温度を300℃以上に向上させることもできる。
【0013】
従来、SrBiTi18系のビスマス層状化合物は圧電特性が小さいことが知られていたが、本発明では、例えば、Srの一部をCaで所定量置換し、ビスマス層状化合物中に固溶させることにより優れた圧電特性を示すことを見いだし、本発明に至ったのである。特に、SrBiTi18系のビスマス層状化合物はキュリー温度が300以下と低く表面実装に対応する電子部品には使用できないという問題があったが、本発明では、(A11−xA2BiTi18と表したとき、0.3≦x≦0.7、A1Sr、Ca、(Sr0.5Ca0.5)のうち1種、A2(Bi0.5Na0.5)、(Bi0.5Li0.5)および(Bi0.50.5)のうち1種、あるいは、A1がSr、A2がCaを満足する主成分と、該主成分100重量部に対してMnをMnO換算で0.4〜0.7重量部含有することによりキュリー温度を向上させ、300℃以上のキュリー温度とすることもできることを見出し、本発明に至ったのである。
【0015】
本発明の圧電共振子は、上記圧電磁器組成物からなる圧電磁器の両主面に電極を形成してなるものである。このような圧電共振子では、上記したように、Bi層状化合物からなる非鉛圧電磁器を用いた圧電共振子、例えば、厚み滑り基本波振動を適用した発振子ではP/Vが大きくなることから発振余裕度が高まり、且つ共振周波数と反共振周波数の間およびその近傍の周波数で移相歪みが発生しないことから安定した発振が得られるとともに、発振周波数の温度安定性に優れた高精度な発振が得られ、2〜20MHzの周波数に適応できる発振子を得ることができる。さらに、例えば、筐体状ケース内に上記圧電共振子を内蔵した表面実装部品を基板上に半田等で表面実装する場合にも、圧電共振子の特性が劣化することもない。
【0016】
【発明の実施の形態】
本発明の圧電磁器組成物は、金属元素として少なくともBiおよびTiを含有するBi層状化合物であって、モル比による組成式を(A11−xA2BiTi18と表したとき、0.3≦x≦0.7、A1Sr、Ca、(Sr0.5Ca0.5)のうち1種A2(Bi0.5Na0.5)、(Bi0.5Li0.5)および(Bi0.50.5)のうち1種、あるいは、A1がSr、A2がCaを満足する主成分と、該主成分100重量部に対してMnをMnO換算で0.4〜0.7重量部含有するものである。
【0017】
上記構成であることによりP/Vを55dBより大きくすることができる。
【0019】
の値が大きくなれば、厚み滑り振動のP/Vが低くなる傾向があり、xが0のときには、加工時にチッピングが起こり易く共振周波数と反共振周波数の間で移相が約−90゜から約+90゜に移相反転した周波数帯域において、10゜を超える移相リップルが発生し易く、発振条件が満足しなくなり発振停止がおこり易くなる。
【0020】
(A11−xA2BiTi18と表したときのxは、厚み滑り振動のP/Vを大きくし、移相歪みの発生を抑制するという点から、0.3≦x≦0.7であることが望ましい。
【0021】
さらに、本発明では、上記主成分100重量部に対して、MnをMnO換算で0.0.7重量部含有することが望ましい。Mnを含有せしめることにより、P/Vを大きく向上できるが、MnO含有量が主成分l00重量部に対して0.7重量部よりも多くなると体積固有抵抗値が下がる傾向があり、分極時に電流が流れ充分な分極ができず厚み滑り振動のP/Vが低くなるおそれがあるからである。一方、0.重量部よりも少なくなると、P/Vが低下しやすく、移相歪みが出やすくなるからである。
【0023】
本発明では、主成分のモル比による組成式を(Sr1−xCaBiTi18と表わされるものが望ましい。即ち、上記した組成式においてA1がSrで、A2がCaの場合である
【0024】
これは、Caによる適量置換により、P/Vが60dBを超える大きな値を得ながら、特に発振周波数の温度変化率を±3000ppm以内に減少できるからである。また、キュリー温度を300℃以上とすることもできるからである。
【0027】
本発明の圧電磁器組成物からなる圧電磁器は、粉砕時のZrO2ボールからZr等が混入する場合もあるが、微量であれば特性上問題ない。
【0028】
本発明の圧電磁器組成物からなる圧電磁器は、組成式が(A11−xA2BiTi18で表わされ、0.3≦x≦0.7、A1Sr、Ca、(Sr0.5Ca0.5)のうち1種、A2(Bi0.5Na0.5)、(Bi0.5Li0.5)および(Bi0.50.5)のうち1種、あるいは、A1がSr、A2がCaであるBi層状化合物からなる結晶相で構成されており、Mnは前記Bi層状化合物に殆ど固溶するが、ごくわずかMn化合物の結晶として粒界に析出する場合がある。
【0029】
また、本発明の圧電磁器組成物は、Mnが固溶したBi層状化合物からなる結晶相で構成されることが望ましいが、その他に、パイロクロア相、ペロブスカイト相、構造の異なるBi層状化合物がごくわずか存在することもあるが、微量であれば特性上問題ない。
【0030】
本発明の圧電磁器組成物からなる圧電磁器は、例えば、原料として、SrCO3、CaCO3、Bi23、MnO2、TiO2、Na2CO3、K2CO3、Li2CO3からなる各種酸化物或いはその塩を用いることができる。原料はこれに限定されず、焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用いても良い。
【0031】
これらの原料を上記した組成となるように秤量し、混合後の平均粒度分布(D50)が0.2〜1μmの範囲になるように粉砕し、この混合物を750〜1050℃で仮焼し、所定の有機バインダを加え湿式混合し造粒する。このようにして得られた粉体を、公知のプレス成形等により所定形状に成形し、大気中等の酸化性雰囲気において1000〜1300℃の温度範囲で2〜5時間焼成し、圧電磁器が得られる。
【0032】
本発明の圧電磁器組成物からなる圧電磁器は、図1に示すようなピアス発振回路の発振子の圧電磁器として最適であるが、それ以外の圧電共振子、超音波振動子、超音波モータおよび加速度センサ、ノッキングセンサ、AEセンサ等の圧電センサなどに最適であり、特に厚み滑り振動の基本波振動を利用する高周波用として最適な圧電磁器である。
【0033】
図2に本発明の圧電共振子を用いた発振子を示す。この発振子は、上記した圧電磁器1の両面に電極2、3を形成して構成されている。このような圧電共振子では、厚み滑り振動における基本波のP/Vを高くでき、発振余裕度が高まり、共振周波数と反共振周波数の間及びその近傍の周波数で移相歪みが発生しないことから安定した発振が得られ、さらに発振周波数の温度安定性に優れた高精度な発振が得られ、特に2〜20MHzの周波数に適応できる圧電発振子を得ることができる。
【0034】
また、本発明の圧電磁器組成物はキュリー温度が高いため、例えば、筐体状ケース内に上記圧電共振子を内蔵した表面実装部品を基板上に半田等で表面実装する場合にも、圧電共振子の特性が劣化することもない。
【0035】
【実施例】
まず、出発原料として純度99.9%のSrCO3粉末、CaCO3粉末、Bi23粉末、MnO2粉末、TiO2粉末、Na2CO3粉末、K2CO3粉末、Li2CO3粉末を、モル比による組成式を(A11-xA2x2Bi4Ti518と表したとき、A1、A2、xが表1に示す元素、値の主成分と、該主成分100重量部に対してMnをMnO2換算で表1に示すような重量部となるように秤量混合し、純度99.9%のジルコニアボール、イソプロピルアルコール(IPA)と共に500mlポリポットに投入し、16時間回転ミルにて混合した。
【0036】
混合後のスラリ−を大気中にて乾燥し、#40メッシュを通し、その後、大気中950℃、3時間保持して仮焼し、この合成粉末を純度99.9%のZrO2ボールとイソプロピルアルコール(IPA)と共に500mlポリポットに投入し、20時間粉砕して評価粉末を得た。
【0037】
この粉末に適量の有機バインダーを添加して造粒し、金型プレスにて150MPaで長さ25mm、幅38mm、厚みl.0mmの板状に成形し、大気中において1160℃の温度で3時間本焼成し圧電磁器を得た。
【0038】
この圧電磁器について、x線回折測定を行って結晶相を確認したところ、本発明の組成の圧電磁器は、一般式が(A11-xA2x2Bi4Ti518で表わされ、Mnが固溶した結晶相から構成されていた。
【0039】
その後、長さ6mm、幅30mmに加工し、長さ方向に分極するための端面電極を形成し分極処理を施した。その後、分極用電極を除去し、厚み0.17mmに加工した。その後、長さ6mmと幅30mmからなる面の両面にCr−Agを蒸着し、電極と磁器との密着強度を高めるために200℃で12時間のアニール処理を施した。
【0040】
その後、図2に示す電極構造となるように、無電極に相当する部位の電極をエッチングで除去し、長さ4.45mm(L)、幅0.9mm(W)、厚み0.17mm(H)形状にダイシングソーやワイヤーソーを用いて加工し、8MHz発振に相当する厚み滑り振動の基本波振動用発振子を得た。
【0041】
発振子の特性は、インピーダンスアナライザによリインピーダンス波形を測定し、厚み滑り振動の基本波振動でのP/VをP/V=20×Log(Ra/R0)の式により算出した(但し、Ra:反共振インピーダンス、R0:共振インピーダンス)。
【0042】
さらにインピーダンス波形より、共振周波数と反共振周波数の間で移相が約−90゜から約+90゜に移相反転した後の約+90゜の移相からなる周波数帯域において、10゜を超える移相歪みが発生するか否かを調査した。移相歪みの評価は、移相歪み=|最大移相値−最大値から局所的に変化した移相値|により求め、共振子100個中5個以上において10゜を超える移相リップルが発生した場合においては×、それ以下の場合は○とした。
【0043】
さらに、発振周波数の温度変化率は、25℃の発振周波数を基準にして、−20℃もしくは+80℃での発振周波数の変化を以下の式により算出した。
【0044】
Fosc変化率(ppm)={(Fosc(drift)一Fosc(25))/Fosc(25)}×100、但し、Fosc(drift)は、−20℃もしくは+80℃での発振周波数であり、Fosc(25)は25℃での発振周波数である。これらの結果を表1に示す。
【0045】
【表1】

Figure 0004789328
【0046】
表1から明らかなように、本発明の範囲内の試料は、厚み滑り振動の基本波振動のP/V値を55dB以上と大きくでき、且つ移相歪みの発生が起こりにくいことから安定した発振を得ることができ、さらに、発振周波数の温度変化率が±5000ppm以内となり小さく、しかもキュリー温度を300℃以上とできることが判る。
【0047】
特に、試料No.3〜5,11,24〜26は、高いP/V値を維持した状態、特に60dB以上を維持し、発振周波数の温度変化率が±3000ppm以内と小さくでき、キュリー温度を350℃以上とできることが判る。
【0048】
また、Mnを含有しない比較例の試料No.8の場合には焼結体の密度が低く、P/V値が32dBと小さいことが判る。一方、Mn量が1.1重量部の場合にはP/V値が45dBと小さいことが判る。
【0049】
また、xの値が0の試料No.1の場合、試作した発振子100個中5個を上回る発振子において10゜を上回る移相歪みが発生したことから、安定した発振が得られないこと
が判る。
【0050】
また、SrとCaを複合化した試料No.4の場合、aの値が0.5でP/Vが75dBと大きな値を有しながら、−20〜80℃の発振周波数の温度変化率が±3000ppm以内と優れた温度特性を有し発振子として最も好ましい特性となる。
【0051】
このように、本発明の圧電磁器においては、特に、厚み滑り振動の基本波振動のP/Vを大きくするとともに、共振周波数と反共振周波数の間において、10゜を超える移相リップルの発生を著しく少なくでき、さらに、−20℃〜80℃での発振周波数の温度変化率を±5000ppm以内と小さくすることができ、安定した発振子として使用することができ、しかもキュリー温度を300℃以上とできることが判る。
【0052】
図3に試料No.4のインピーダンス特性を、図4に発振周波数の温度変化率を、図5に試料No.4のx線回折測定結果を示す。本発明の組成の圧電磁器は、図5に示すように、一般式が(Sr1-xCax2Bi4Ti518で表わされた結晶相からなり、Mnのピークが存在しないことにより、Mnが固溶した上記結晶相から構成されていることが判る。
【0053】
【発明の効果】
以上詳述したように、本発明の圧電磁器組成物では、厚み滑り振動の基本波振動のP/V値を大きくしながら、共振周波数と反共振周波数の間で10゜を超える移相歪みが発生せず、共振周波数の温度変化率が小さく、しかもキュリー温度が高く、これにより、発振子を構成した場合、発振余裕度が高まり安定した発振と、発振周波数の温度安定性に優れた高精度な発振特性が得られ、厚み滑り振動の基本波振動を用いた2〜20MHz発振子用素子として好適な発振子を得ることができる。
【図面の簡単な説明】
【図1】コルピッツ型発振回路を原型としたピアス発振回路を示した概略図である。
【図2】8MHz用発振子の概略図である。
【図3】試料No.4のインピーダンス特性を示すグラフである。
【図4】試料No.4の発振周波数の温度変化率を示すグラフである。
【図5】試料No.4のx線回折測定結果を示す図である。
【符号の説明】
l・・・圧電磁器
2、3・・・電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric ceramic composition and a piezoelectric resonator. For example, the present invention is suitable for a resonator, an ultrasonic vibrator, an ultrasonic motor, or a piezoelectric sensor such as an acceleration sensor, a knocking sensor, and an AE sensor. The present invention relates to a piezoelectric ceramic and a piezoelectric resonator that are suitably used for a high-frequency oscillator of an energy-confined oscillator using fundamental vibration of vibration.
[0002]
[Prior art]
Conventionally, products using a piezoelectric ceramic include, for example, a filter, a piezoelectric resonator (hereinafter, a concept including an oscillator), an ultrasonic vibrator, an ultrasonic motor, a piezoelectric sensor, and the like.
[0003]
Here, the oscillator is used by being incorporated in an oscillation circuit such as a Colpitts oscillation circuit, for example, for oscillation of a reference signal of the microcomputer. FIG. 1 shows a Pierce oscillation circuit in which the inductor L is replaced with a piezoelectric oscillator in a circuit configuration based on a Colpitts oscillation circuit. This Pierce oscillation circuit includes capacitors 11 and 12, a resistor 13, an inverter 14 and an oscillator 15. In order to generate an oscillation signal in this oscillation circuit, it is necessary to satisfy the following oscillation conditions.
[0004]
That is, the amplification factor in the amplifier circuit composed of the inverter 14 and the resistor 13 is α, the phase shift amount is θ 1 , the feedback factor in the feedback circuit composed of the oscillator 15 and the capacitors 11 and 12 is β, and the phase shift amount is θ When 2 , it is necessary that the loop gain is α × β ≧ 1, and the phase shift amount is θ 1 + θ 2 = 360 ° × n (where n = 1, 2,...).
[0005]
In general, an amplifier circuit including a resistor 13 and an inverter 14 is built in a microcomputer. In order to obtain stable oscillation that does not cause erroneous oscillation or non-oscillation, the loop gain must be increased. To increase the loop gain determines the gain of the feedback factor beta, resonator of P / V, that is, necessary to increase the difference in resonance impedance R 0 and anti-resonance impedance R a. P / V is defined as a value of 20 × Log (R a / R 0 ).
[0006]
In order to satisfy the condition of the phase shift amount, the phase shift is reversed from about −90 ° to about + 90 ° between the resonance frequency and the anti-resonance frequency and in the vicinity thereof, and the resonance frequency is It is also important that no phase shift distortion due to spurious vibration occurs between and in the vicinity of the antiresonance frequency.
[0007]
Conventionally, PZT and PT-based materials that have high piezoelectricity and can obtain high P / V, for example, have been used. However, since PZT and PT-based materials contain lead in a proportion of about 60% of their own weight, it has been pointed out that lead may be eluted by acid rain and cause environmental pollution. Therefore, high expectations are placed on piezoelectric materials that do not contain lead. A material system mainly composed of a bismuth layered compound not containing lead has a characteristic that the mechanical quality factor (Qm) is relatively high as compared with PZT and PT materials, and is a non-lead piezoelectric material for an oscillator. Can be applied.
[0008]
[Problems to be solved by the invention]
However, the piezoelectric ceramic composition mainly comprising a bismuth layered compound containing no conventional lead, when used as resonators, sufficient P / V Do give et Lena Ibakari, processability is poor chipping (for resonator Due to the lack of porcelain edges, phase shift distortion caused by spurious vibration occurs between the resonance frequency and the antiresonance frequency, and the phase shift condition is not satisfied, so there is a problem that no oscillation or stable oscillation cannot be obtained.
[0009]
In addition, the temperature change rate of the resonance frequency is larger than ± 5000 ppm, and there is a problem that it is not possible to cope with accuracy within a frequency tolerance of ± 5000 ppm with respect to temperature characteristics required from electronic equipment.
[0010]
Therefore, the present invention does not cause phase shift distortion between the resonance frequency and the anti-resonance frequency and in the vicinity thereof, and can increase the P / V of the fundamental wave vibration such as the thickness shear vibration or the thickness longitudinal vibration. An object of the present invention is to provide a lead-free piezoelectric ceramic composition and a piezoelectric resonator that are excellent in temperature stability of oscillation frequency in a temperature range of 20 ° C. to + 80 ° C.
[0011]
[Means for Solving the Problems]
The piezoelectric ceramic composition of the present invention contains at least Bi and Ti as metal elements, and when the composition formula by molar ratio is expressed as (A1 1-x A2 x ) 2 Bi 4 Ti 5 O 18 , 0.3 ≦ x ≦ 0.7, A1 is Sr, Ca, one of (Sr 0.5 Ca 0.5 ), A2 is (Bi 0.5 Na 0.5 ), (Bi 0.5 Li 0.5 ) And (Bi 0.5 K 0.5 ), or A1 is Sr and A2 is Ca and the main component satisfies Ca, and Mn is 0.1% in terms of MnO 2 with respect to 100 parts by weight of the main component. It contains 4 to 0.7 parts by weight.
[0012]
When a piezoelectric resonator is manufactured using a piezoelectric ceramic composed of such a piezoelectric ceramic composition, phase shift distortion does not occur between the resonance frequency and the anti-resonance frequency and in the vicinity thereof. The P / V value at the fundamental wave and the third-order overtone vibration can be increased. For example, when the temperature change rate of the resonance frequency at −20 to 80 ° C. of the thickness-slip fundamental wave vibration is within ± 5000 ppm, and the resonance impedance R 0 and the anti-resonance impedance Ra are 20 × Log (R a / R 0 P / V represented by) can be 55 dB or more. In addition, the Curie temperature can be increased to 300 ° C. or higher.
[0013]
Conventionally, it has been known that SrBi 4 Ti 5 O 18- based bismuth layered compounds have low piezoelectric properties. However, in the present invention, for example, a part of Sr is replaced with a predetermined amount of Ca, and solidified in the bismuth layered compound. It has been found that excellent piezoelectric properties are exhibited by melting, and the present invention has been achieved. In particular, the SrBi 4 Ti 5 O 18- based bismuth layered compound has a problem that the Curie temperature is as low as 300 or less and cannot be used for electronic components corresponding to surface mounting. In the present invention, (A1 1-x A2 x ) When expressed as 2 Bi 4 Ti 5 O 18 , 0.3 ≦ x ≦ 0.7, A1 is Sr, Ca, (Sr 0.5 Ca 0.5 ), A2 is (Bi 0. 5 Na 0.5 ), (Bi 0.5 Li 0.5 ) and (Bi 0.5 K 0.5 ), or a main component satisfying Sr and A2 satisfying Ca, It has been found that by containing 0.4 to 0.7 parts by weight of Mn in terms of MnO 2 with respect to 100 parts by weight of the main component, the Curie temperature can be improved to a Curie temperature of 300 ° C. or higher. It has come.
[0015]
The piezoelectric resonator of the present invention is formed by forming electrodes on both main surfaces of a piezoelectric ceramic made of the above piezoelectric ceramic composition. In such a piezoelectric resonator, as described above, P / V is large in a piezoelectric resonator using a lead-free piezoelectric ceramic made of a Bi layered compound, for example, an oscillator to which a thickness shear fundamental wave vibration is applied. Stable oscillation is obtained because the oscillation margin is increased and phase shift distortion does not occur between and near the resonance frequency and antiresonance frequency, and high-precision oscillation with excellent temperature stability of the oscillation frequency Thus, an oscillator that can adapt to a frequency of 2 to 20 MHz can be obtained. Furthermore, for example, even when a surface-mounted component in which the piezoelectric resonator is built in a housing-like case is surface-mounted on a substrate with solder or the like, the characteristics of the piezoelectric resonator are not deteriorated.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The piezoelectric ceramic composition of the present invention is a Bi layered compound containing at least Bi and Ti as metal elements, and the composition formula according to the molar ratio is represented as (A1 1-x A2 x ) 2 Bi 4 Ti 5 O 18 . When 0.3 ≦ x ≦ 0.7, A1 is one of Sr, Ca, (Sr 0.5 Ca 0.5 ) , A2 is (Bi 0.5 Na 0.5 ), (Bi 0. 5 Li 0.5 ) and (Bi 0.5 K 0.5 ), or a main component satisfying Sr of A1 and Ca of A2 and MnMnO with respect to 100 parts by weight of the main component It contains 0.4 to 0.7 parts by weight in terms of 2 .
[0017]
Ru can be greater than 55dB the P / V by a said structure.
[0019]
The larger the value of x, be prone P / V of the thickness shear vibration is low, x sometimes is zero phase shift between the likely resonant frequency and the antiresonant frequency occur chipping during machining about -90 at about +90 DEG phase reversal frequency bands from DEG liable phase ripple more than 10 ° it is generated, that a easily occurs is the oscillation stop no oscillation condition is satisfied.
[0020]
(A1 1-x A2 x) x when expressed as 2 Bi 4 Ti 5 O 18 is to increase the P / V of the thickness shear vibration, from the viewpoint of suppressing the occurrence of the phase distortion, 0. It is desirable that 3 ≦ x ≦ 0.7.
[0021]
0 Furthermore, in the present invention, with respect to the main component as 100 parts by weight, the Mn in MnO 2 basis. It is desirable to contain 4 to 0.7 parts by weight. By incorporating the Mn, can greatly improve the P / V, MnO 2 content often happens when the volume resistivity than 0.7 parts by weight be prone underlying that with respect to the main component of l00 parts by weight , P / V of the thickness shear vibration can not sufficiently polarized current flows during polarization, there is a fear to be low. On the other hand, 0. When less than 4 parts by weight, P / V is liable to be lowered, because the phase distortion is readily released.
[0023]
In the present invention, it is desirable that the composition formula according to the molar ratio of the main components is represented as (Sr 1-x Ca x ) 2 Bi 4 Ti 5 O 18 . That, A1 is at Sr in the composition formula described above, and when A2 is Ca.
[0024]
This is because the temperature change rate of the oscillation frequency can be reduced to within ± 3000 ppm while obtaining a large value of P / V exceeding 60 dB by substituting an appropriate amount with Ca. Moreover, it is because Curie temperature can also be 300 degreeC or more.
[0027]
The piezoelectric ceramic composed of the piezoelectric ceramic composition of the present invention may contain Zr or the like from ZrO 2 balls at the time of pulverization, but there is no problem in characteristics if the amount is small.
[0028]
The piezoelectric ceramic composed of the piezoelectric ceramic composition of the present invention has a composition formula represented by (A1 1-x A2 x ) 2 Bi 4 Ti 5 O 18 , 0.3 ≦ x ≦ 0.7, A1 is Sr, One of Ca and (Sr 0.5 Ca 0.5 ), A2 is (Bi 0.5 Na 0.5 ), (Bi 0.5 Li 0.5 ) and (Bi 0.5 K 0.5 ) Or a crystalline phase composed of a Bi layered compound in which A1 is Sr and A2 is Ca, and Mn is almost solid-solved in the Bi layered compound. It may precipitate at the grain boundary.
[0029]
The piezoelectric ceramic composition of the present invention, although M n are desirably composed of crystal phase comprising a layered Bi compound dissolved, the other, the pyrochlore phase, perovskite phase, different Bi layered compound of structure very There may be a slight amount, but there is no problem in characteristics if the amount is small.
[0030]
The piezoelectric ceramic composed of the piezoelectric ceramic composition of the present invention includes, for example, SrCO 3 , CaCO 3 , Bi 2 O 3 , MnO 2 , TiO 2 , Na 2 CO 3 , K 2 CO 3 , and Li 2 CO 3 as raw materials. Various oxides or salts thereof can be used. A raw material is not limited to this, You may use metal salts, such as carbonate and nitrate which produce | generate an oxide by baking.
[0031]
These raw materials are weighed so as to have the above-mentioned composition, pulverized so that the average particle size distribution (D 50 ) after mixing is in the range of 0.2 to 1 μm, and this mixture is calcined at 750 to 1050 ° C. Then, a predetermined organic binder is added and wet-mixed and granulated. The powder thus obtained is molded into a predetermined shape by known press molding or the like, and baked in a temperature range of 1000 to 1300 ° C. for 2 to 5 hours in an oxidizing atmosphere such as in the air to obtain a piezoelectric ceramic. .
[0032]
A piezoelectric ceramic comprising the piezoelectric ceramic composition of the present invention is optimal as a piezoelectric ceramic for an oscillator of a Pierce oscillation circuit as shown in FIG. 1, but other piezoelectric resonators, ultrasonic vibrators, ultrasonic motors, and The piezoelectric ceramic is optimal for piezoelectric sensors such as acceleration sensors, knocking sensors, and AE sensors, and is particularly suitable for high-frequency applications using the fundamental wave vibration of thickness shear vibration.
[0033]
FIG. 2 shows an oscillator using the piezoelectric resonator of the present invention. This oscillator is configured by forming electrodes 2 and 3 on both surfaces of the piezoelectric ceramic 1 described above. In such a piezoelectric resonator, the P / V of the fundamental wave in thickness-shear vibration can be increased, the oscillation margin is increased, and phase-shift distortion does not occur at frequencies between and near the resonance frequency and the anti-resonance frequency. Stable oscillation can be obtained, high-precision oscillation excellent in temperature stability of the oscillation frequency can be obtained, and in particular, a piezoelectric oscillator that can be adapted to a frequency of 2 to 20 MHz can be obtained.
[0034]
In addition, since the piezoelectric ceramic composition of the present invention has a high Curie temperature, for example, even when a surface-mounted component in which the above-described piezoelectric resonator is incorporated in a casing-like case is surface-mounted on a substrate with solder or the like, the piezoelectric resonance The characteristics of the child do not deteriorate.
[0035]
【Example】
First, SrCO 3 powder with a purity of 99.9%, CaCO 3 powder, Bi 2 O 3 powder, MnO 2 powder, TiO 2 powder, Na 2 CO 3 powder, K 2 CO 3 powder, Li 2 CO 3 powder as starting materials Is expressed as (A1 1-x A2 x ) 2 Bi 4 Ti 5 O 18 in terms of the molar ratio, A1, A2, and x are the elements shown in Table 1, principal components of values, and the principal component 100 Mn is weighed and mixed so that the weight part is as shown in Table 1 in terms of MnO 2 with respect to parts by weight, and is put into a 500 ml polypot together with zirconia balls having a purity of 99.9% and isopropyl alcohol (IPA) for 16 hours. Mix in a rotary mill.
[0036]
The slurry after mixing was dried in the atmosphere, passed through a # 40 mesh, and then calcined by holding at 950 ° C. for 3 hours in the atmosphere, and this synthetic powder was made into 99.9% pure ZrO 2 balls and isopropyl. An alcohol (IPA) was added to a 500 ml polypot and ground for 20 hours to obtain an evaluation powder.
[0037]
An appropriate amount of an organic binder was added to the powder and granulated, and the mold was pressed at 150 MPa at a length of 25 mm, a width of 38 mm, and a thickness of l. The piezoelectric ceramic was molded into a 0 mm plate shape and subjected to main firing at a temperature of 1160 ° C. for 3 hours in the air to obtain a piezoelectric ceramic.
[0038]
When the crystal phase was confirmed by performing x-ray diffraction measurement on this piezoelectric ceramic, the general formula of the piezoelectric ceramic having the composition of the present invention was represented by (A1 1-x A2 x ) 2 Bi 4 Ti 5 O 18. , And was composed of a crystal phase in which Mn was dissolved.
[0039]
Then, it processed into length 6mm and width 30mm, the end surface electrode for polarizing in a length direction was formed, and the polarization process was performed. Then, the electrode for polarization was removed and processed into a thickness of 0.17 mm. Thereafter, Cr—Ag was vapor-deposited on both sides of the surface having a length of 6 mm and a width of 30 mm, and an annealing treatment was performed at 200 ° C. for 12 hours in order to increase the adhesion strength between the electrode and the porcelain.
[0040]
Thereafter, the electrode corresponding to the non-electrode is removed by etching so that the electrode structure shown in FIG. 2 is obtained, and the length is 4.45 mm (L), the width is 0.9 mm (W), and the thickness is 0.17 mm (H ) The shape was processed using a dicing saw or wire saw to obtain an oscillator for fundamental wave vibration of thickness shear vibration corresponding to 8 MHz oscillation.
[0041]
The characteristics of the oscillator were obtained by measuring the reimpedance waveform with an impedance analyzer and calculating the P / V at the fundamental wave vibration of the thickness-shear vibration by the equation P / V = 20 × Log (R a / R 0 ) ( Where R a is anti-resonance impedance and R 0 is resonance impedance).
[0042]
Furthermore, from the impedance waveform, a phase shift exceeding 10 ° is achieved in a frequency band consisting of a phase shift of about + 90 ° after the phase shift is reversed from about −90 ° to about + 90 ° between the resonance frequency and the anti-resonance frequency. It was investigated whether or not distortion occurred. Phase shift distortion is evaluated by phase shift distortion = | maximum phase shift value−phase shift value locally changed from the maximum value |, and phase shift ripple exceeding 10 ° is generated in 5 or more of 100 resonators. In the case where it was done, it was marked as x, and in the case where it was less than that, it was marked as ○.
[0043]
Furthermore, the temperature change rate of the oscillation frequency was calculated by the following equation with respect to the oscillation frequency change at −20 ° C. or + 80 ° C. with reference to the oscillation frequency of 25 ° C.
[0044]
Fosc change rate (ppm) = {(Fosc (drift) -Fosc (25)) / Fosc (25)} × 100, where Fosc (drift) is an oscillation frequency at −20 ° C. or + 80 ° C. (25) is the oscillation frequency at 25 ° C. These results are shown in Table 1.
[0045]
[Table 1]
Figure 0004789328
[0046]
As can be seen from Table 1, the samples within the scope of the present invention can increase the P / V value of the fundamental vibration of the thickness-shear vibration to 55 dB or more, and are less likely to cause phase-shifting distortion. can be obtained, further, small temperature coefficient of the oscillation frequency becomes within ± 5000 ppm, yet it is found and Turkey can Curie temperature and 300 ° C. or higher.
[0047]
In particular, sample no. 3 to 5 , 11 , 24 to 26 can maintain a high P / V value, particularly 60 dB or more, the temperature change rate of oscillation frequency can be as small as ± 3000 ppm , and the Curie temperature can be 350 ° C. or more. I understand that
[0048]
Moreover, sample No. of the comparative example which does not contain Mn. In the case of 8, it can be seen that the density of the sintered body is low and the P / V value is as small as 32 dB. On the other hand, when the amount of Mn is 1.1 parts by weight, it can be seen that the P / V value is as small as 45 dB.
[0049]
Sample No. with x value of 0 was used. For 1, since the phase distortion of more than 10 ° in oscillator over five hundred in oscillator the prototype has occurred, stable oscillation is seen resulting et Lena Ikoto.
[0050]
In addition, sample Nos. Obtained by combining Sr and Ca In the case of 4, the value of a is 0.5 and P / V is as large as 75 dB, and the temperature change rate of the oscillation frequency of -20 to 80 ° C. is within ± 3000 ppm and has excellent temperature characteristics. This is the most preferable characteristic as a child.
[0051]
As described above, in the piezoelectric ceramic of the present invention, in particular, the P / V of the fundamental wave vibration of the thickness shear vibration is increased, and a phase shift ripple exceeding 10 ° is generated between the resonance frequency and the anti-resonance frequency. The temperature change rate of the oscillation frequency at −20 ° C. to 80 ° C. can be reduced to within ± 5000 ppm, and it can be used as a stable oscillator, and the Curie temperature is 300 ° C. or higher. I understand that I can do it.
[0052]
In FIG. 4 shows the impedance characteristics, FIG. 4 shows the temperature change rate of the oscillation frequency, and FIG. 4 shows x-ray diffraction measurement results. As shown in FIG. 5, the piezoelectric ceramic of the composition of the present invention is composed of a crystal phase whose general formula is represented by (Sr 1-x Ca x ) 2 Bi 4 Ti 5 O 18 and has no Mn peak. Thus, it can be seen that it is composed of the crystal phase in which Mn is dissolved.
[0053]
【The invention's effect】
As described in detail above, the piezoelectric ceramic composition of the present invention has a phase shift distortion exceeding 10 ° between the resonance frequency and the anti-resonance frequency while increasing the P / V value of the fundamental wave vibration of the thickness shear vibration. It does not occur, the rate of change in temperature of the resonance frequency is small, and the Curie temperature is high. As a result, when an oscillator is configured, the oscillation margin increases and stable oscillation, and high accuracy with excellent temperature stability of the oscillation frequency Thus, an oscillator suitable for a 2 to 20 MHz oscillator element using the fundamental wave vibration of thickness shear vibration can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a Pierce oscillation circuit based on a Colpitts oscillation circuit.
FIG. 2 is a schematic diagram of an oscillator for 8 MHz.
FIG. 4 is a graph showing impedance characteristics of FIG.
FIG. 4 is a graph showing a temperature change rate of an oscillation frequency of 4;
FIG. FIG. 4 is a diagram showing the result of x-ray diffraction measurement of 4;
[Explanation of symbols]
l ... Piezoelectric ceramics 2, 3 ... Electrodes

Claims (3)

金属元素として少なくともBiおよびTiを含有するとともに、モル比による組成式を
(A11−xA2BiTi18
と表したとき、
0.3≦x≦0.7
A1Sr、Ca、(Sr0.5Ca0.5)のうち1種
A2(Bi0.5Na0.5)、(Bi0.5Li0.5)および(Bi0.50.5)のうち1種、
あるいは、
A1がSr、A2がCa
を満足する主成分と、該主成分100重量部に対してMnをMnO換算で0.4〜0.7重量部含有することを特徴とする圧電磁器組成物。
While containing at least Bi and Ti as metal elements, the composition formula by molar ratio is (A1 1-x A2 x ) 2 Bi 4 Ti 5 O 18.
When
0.3 ≦ x ≦ 0.7 ,
A1 is Sr, Ca, one of (Sr 0.5 Ca 0.5 ) ,
A2 is one of (Bi 0.5 Na 0.5 ), (Bi 0.5 Li 0.5 ) and (Bi 0.5 K 0.5 ),
Or
A1 is Sr, A2 is Ca
A piezoelectric ceramic composition comprising 0.4 to 0.7 parts by weight of Mn in terms of MnO 2 with respect to 100 parts by weight of the main component satisfying
厚み滑り振動の基本波振動のP/V値が60dB以上であり、−20℃および+80℃における温度変化率が3000ppm以下であり、キュリー温度が350℃以上であることを特徴とする請求項1記載の圧電磁器組成物。  The P / V value of the fundamental wave vibration of thickness shear vibration is 60 dB or more, the temperature change rate at -20 ° C and + 80 ° C is 3000 ppm or less, and the Curie temperature is 350 ° C or more. The piezoelectric ceramic composition as described. 請求項1または2記載の圧電磁器組成物からなる圧電磁器の両主面に、電極を形成してなることを特徴とする圧電共振子。  3. A piezoelectric resonator comprising electrodes formed on both principal surfaces of a piezoelectric ceramic comprising the piezoelectric ceramic composition according to claim 1.
JP2001023412A 2001-01-31 2001-01-31 Piezoelectric ceramic composition and piezoelectric resonator Expired - Fee Related JP4789328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023412A JP4789328B2 (en) 2001-01-31 2001-01-31 Piezoelectric ceramic composition and piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023412A JP4789328B2 (en) 2001-01-31 2001-01-31 Piezoelectric ceramic composition and piezoelectric resonator

Publications (2)

Publication Number Publication Date
JP2002226265A JP2002226265A (en) 2002-08-14
JP4789328B2 true JP4789328B2 (en) 2011-10-12

Family

ID=18888705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023412A Expired - Fee Related JP4789328B2 (en) 2001-01-31 2001-01-31 Piezoelectric ceramic composition and piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP4789328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219421B2 (en) * 2007-07-27 2013-06-26 京セラ株式会社 Piezoelectric ceramic and piezoelectric element
JP4903683B2 (en) * 2006-12-26 2012-03-28 京セラ株式会社 Piezoelectric ceramic and piezoelectric element
CN108727013B (en) * 2018-06-26 2020-05-29 陕西科技大学 Ceramic dielectric material with ultralow dielectric loss and high dielectric constant and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648825A (en) * 1992-07-31 1994-02-22 Toyota Motor Corp Bismuth laminar compound
JP3650872B2 (en) * 1998-07-15 2005-05-25 株式会社豊田中央研究所 Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP2001158662A (en) * 1999-11-29 2001-06-12 Tokin Corp Piezoelectric ceramic composition
JP3961175B2 (en) * 1999-11-30 2007-08-22 京セラ株式会社 Oscillator
JP3367929B2 (en) * 2000-02-08 2003-01-20 ティーディーケイ株式会社 Piezoelectric ceramics
JP2001302343A (en) * 2000-04-19 2001-10-31 Tokin Corp Piezoelectric ceramic composition

Also Published As

Publication number Publication date
JP2002226265A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP4234902B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4234898B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4471542B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP3961175B2 (en) Oscillator
JP4789328B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP3732967B2 (en) Porcelain composition
JPS6021941B2 (en) Piezoelectric porcelain composition
JP4737843B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
US20080258100A1 (en) Piezoelectric ceramic composition and resonator
JP4544712B2 (en) Piezoelectric ceramic and piezoelectric element
JP4231202B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP2001342061A (en) Piezoelectric ceramic and piezoelectric resonator
JP3618040B2 (en) Piezoelectric ceramic composition
JP3389477B2 (en) Piezoelectric ceramic composition
JP4355115B2 (en) Piezoelectric ceramic and piezoelectric element
JP3554202B2 (en) Piezoelectric ceramic for vibrator
JP3805103B2 (en) Manufacturing method of third overtone oscillator
JP5094284B2 (en) Piezoelectric ceramic and piezoelectric element
JP3389485B2 (en) Piezoelectric ceramic composition
JP3860684B2 (en) Piezoelectric ceramic composition
JP2009242175A (en) Piezoelectric ceramic composition, piezoelectric element and resonator
JP3347602B2 (en) Piezoelectric ceramic composition
JP3420458B2 (en) Piezoelectric ceramic composition
JP4983538B2 (en) Piezoelectric ceramic composition and oscillator
JP2009051718A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees