JP2002121069A - Sintered compact of bismuth layered compound and method of producing the same - Google Patents

Sintered compact of bismuth layered compound and method of producing the same

Info

Publication number
JP2002121069A
JP2002121069A JP2000309785A JP2000309785A JP2002121069A JP 2002121069 A JP2002121069 A JP 2002121069A JP 2000309785 A JP2000309785 A JP 2000309785A JP 2000309785 A JP2000309785 A JP 2000309785A JP 2002121069 A JP2002121069 A JP 2002121069A
Authority
JP
Japan
Prior art keywords
layered compound
bismuth layered
sintered body
crystal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000309785A
Other languages
Japanese (ja)
Other versions
JP4688271B2 (en
Inventor
Kenichi Tajima
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000309785A priority Critical patent/JP4688271B2/en
Publication of JP2002121069A publication Critical patent/JP2002121069A/en
Application granted granted Critical
Publication of JP4688271B2 publication Critical patent/JP4688271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered compact of a bismuth layered compound, which has large piezoelectric characteristics and low dispersion in the piezoelectric characteristics. SOLUTION: The sintered compact 1 of the bismuth layered compound, containing, as main crystal 2, flat grains 2 of the bismuth layered compound, expressed by general formula: (Bi2O2)2+(Am-1BmO3m+1)2- (where, A is at least one selected from the group of alkali metals, alkaline earth metals and lead and B is at least one selected from the group of metals of groups 4a and 5a) and having a face A perpendicular to the orientation direction oriented to crystal face perpendicular to face c, is produced. In the sintered compact 1 of the bismuth layered compound, the ratio of grains of the crystal 2, present at the face A perpendicular to the orientation direction and each having a major diameter d satisfying formula: 0.5d<=d<=2d (d is an average major diameter of the main crystal 2), is >=80%, based on the grains of the main crystal 2 present at the face A perpendicular to the orientation direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高いキュリー温
度、優れた圧電特性、良好な温度特性を有し、例えば、
発振子、超音波振動子、超音波モータ、あるいは加速度
センサ、ノッキングセンサおよびAEセンサ等の圧電セ
ンサなどに適し、特に、高周波レゾネータの共振子用圧
電材料として好適に用いられるビスマス層状化合物焼結
体およびその製造方法に関する。
[0001] The present invention has a high Curie temperature, excellent piezoelectric characteristics, and good temperature characteristics.
Bismuth layered compound sintered body suitable for oscillators, ultrasonic transducers, ultrasonic motors, or piezoelectric sensors such as acceleration sensors, knocking sensors, and AE sensors, and particularly suitable for use as a piezoelectric material for resonators of high-frequency resonators And its manufacturing method.

【0002】[0002]

【従来技術】従来から、例えばフィルタ、共振子、発振
子、超音波振動子、超音波モータ、圧電センサ等に使用
される圧電磁器組成物として、PbTiO3やPb(Z
r,Ti)O3、Pb(Mn1/3Nb2/3)O3やPb(N
1/3Nb2/3)O3などの多量の鉛を含む圧電セラミッ
クス材料が幅広く利用されている。
2. Description of the Related Art Conventionally, as piezoelectric ceramic compositions used for filters, resonators, oscillators, ultrasonic oscillators, ultrasonic motors, piezoelectric sensors and the like, PbTiO 3 and Pb (Z
r, Ti) O 3 , Pb (Mn 1/3 Nb 2/3 ) O 3 or Pb (N
Piezoelectric ceramic materials containing a large amount of lead such as i 1/3 Nb 2/3 ) O 3 are widely used.

【0003】これら多量の鉛を含む圧電セラミックス材
料は生態系に有害であることから、環境保護の観点で鉛
の含有量が少ない圧電セラミックス材料の開発が強く求
められている。
[0003] Since piezoelectric ceramic materials containing a large amount of lead are harmful to ecosystems, there is a strong demand for the development of piezoelectric ceramic materials having a low lead content from the viewpoint of environmental protection.

【0004】このような鉛の含有量が少ない圧電セラミ
ック材料として、キュリー温度が高く、電気機械結合係
数k33、機械的品質係数Qmが大きいビスマス層状化合
物が挙げられ、特に発振子用への応用が期待されている
が、現状では上記鉛系圧電セラミックス材料に比べて圧
電特性が低く、圧電特性の向上が望まれている。
[0004] As such a piezoelectric ceramic material having a low lead content, a bismuth layered compound having a high Curie temperature, a large electromechanical coupling coefficient k 33 and a large mechanical quality coefficient Q m can be mentioned. Although application is expected, at present, the piezoelectric characteristics are lower than those of the lead-based piezoelectric ceramic materials, and improvement of the piezoelectric characteristics is desired.

【0005】一方、かかるビスマス層状化合物は、c軸
と垂直な方向に容易に分極する(分極容易軸が存在す
る)ために、圧電特性の異方性が大きく、結晶を特定面
に対して配向させることによって、c軸に垂直な方向で
上述の鉛系圧電セラミックス材料に匹敵する大きなk値
が得られることが知られている。
On the other hand, such a bismuth layered compound easily polarizes in the direction perpendicular to the c-axis (there is an easy polarization axis), so that the anisotropy of the piezoelectric characteristics is large and the crystal is oriented with respect to a specific plane. By doing so, it is known that a large k value comparable to the above-mentioned lead-based piezoelectric ceramic material can be obtained in a direction perpendicular to the c-axis.

【0006】例えば、特開昭52−86198号公報に
は、ホットプレス焼成によってビスマス層状化合物焼結
体中の主結晶をc軸配向させて圧電特性を向上できるこ
とが記載されている。また、特開平6−107448号
公報には、ビスマス層状化合物仮焼粉末を金型内に供給
し200MPa以上の高い成形圧にて一軸成形(プレス
成形)することによって、加圧軸方向に対してc軸が平
行に揃うように、すなわち主平面がc面配向するように
主結晶が配向した成形体および焼結体中を作製し、圧電
性の感度を高めることができることが記載されている。
さらに、特開2000−34192号公報では、板状の
Bi4Ti312等の種結晶粉末とCaCO3、TiO2
のセラミック原料粉末を混合し、板状に成形した後、焼
成することによって、ホットプレス等を用いることなく
相対密度およびc軸方向の配向度を高めたCaBi4
415等のビスマス層状化合物焼結体を作製できるこ
とが記載されている。
For example, Japanese Patent Application Laid-Open No. 52-86198 describes that the piezoelectric characteristics can be improved by hot-press firing to orient a main crystal in a bismuth layered compound sintered body along the c-axis. Also, Japanese Patent Application Laid-Open No. 6-107448 discloses that a bismuth layered compound calcined powder is supplied into a mold and uniaxially molded (press molded) at a high molding pressure of 200 MPa or more, so that the powder is oriented in the pressing axial direction. It describes that the sensitivity of piezoelectricity can be increased by preparing a molded body and a sintered body in which main crystals are oriented so that c-axes are aligned in parallel, that is, the main plane is c-plane oriented.
Further, in Japanese Patent Application Laid-Open No. 2000-34192, a plate-like seed crystal powder such as Bi 4 Ti 3 O 12 and a ceramic raw material powder such as CaCO 3 and TiO 2 are mixed, formed into a plate, and then fired. CaBi 4 T with increased relative density and degree of orientation in the c-axis direction without using hot pressing or the like
It describes that a bismuth layered compound sintered body such as i 4 O 15 can be produced.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開昭
52−86198号公報のホットプレスを用いた方法で
は、配向度は高められるものの、生産性が悪く、ダイス
等との反応によって相対密度の高い焼結体を得ることが
難しく、また、焼結体中に大きな残留応力が残存し割れ
や欠けが生じて生産歩留まりが悪く、さらに、焼成時に
主結晶の粒成長度合いを制御できないことから焼結体中
の主結晶の粒径を揃えることができず圧電特性にばらつ
きが発生するという問題があった。
However, in the method using a hot press disclosed in Japanese Patent Application Laid-Open No. 52-86198, although the degree of orientation is increased, the productivity is poor and the relative density is high due to the reaction with a die or the like. It is difficult to obtain a sintered body, and a large residual stress remains in the sintered body, resulting in cracking or chipping, resulting in poor production yield. There has been a problem that the grain size of the main crystal in the body cannot be made uniform and the piezoelectric characteristics vary.

【0008】また、特開平6−107448号公報の一
軸加圧によって仮焼粉末を配向させる方法では、200
MPa以上という非常に高い圧力を発生させるための特
殊な装置が必要な上に、成形体表面(金型との接触面)
付近のみしか配向度を充分に高めることができず、ま
た、成形体表面と内部との密度および配向度が不均一で
あるために、焼結体の圧電特性は充分とはいえず、ま
た、ばらつきが大きいものであった。
In the method of Japanese Patent Application Laid-Open No. 6-107448, in which the calcined powder is oriented by uniaxial pressing, 200
A special device for generating a very high pressure of MPa or higher is required, and the surface of the molded product (contact surface with the mold)
Only in the vicinity, the degree of orientation can be sufficiently increased, and since the density and the degree of orientation between the surface and the inside of the molded body are not uniform, the piezoelectric properties of the sintered body cannot be said to be sufficient, The variation was large.

【0009】さらに、特開2000−34192号公報
の板状の種結晶を用いる方法では、該種結晶以外にCa
CO3、TiO2等の他の原料粉末が存在するために、ス
ラリー中に板状の種結晶を均一に分散させることが困難
であるために部分的に種結晶の配向度にばらつきが生
じ、また、種結晶と焼結助剤成分とが充分に反応するよ
うに高温で焼成する必要があるために焼成中に生じるB
iの揮発等によって部分的に組成ずれを生じる恐れがあ
ることから、焼結体の圧電特性にもばらつきが生じると
いう問題があった。
Further, in the method using a plate-like seed crystal disclosed in Japanese Patent Application Laid-Open No. 2000-34192,
Due to the presence of other raw material powders such as CO 3 and TiO 2 , it is difficult to uniformly disperse the plate-like seed crystal in the slurry, so that the degree of orientation of the seed crystal partially varies, Further, since it is necessary to fire at a high temperature so that the seed crystal and the sintering aid component react sufficiently, B
Since there is a possibility that the composition may partially deviate due to volatilization of i, there is a problem that the piezoelectric characteristics of the sintered body also vary.

【0010】本発明は、上記課題を解決するためになさ
れたもので、その目的は、大きな圧電特性を有するとと
もに、圧電特性のばらつきの小さいビスマス層状化合物
焼結体を得ることにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a bismuth layered compound sintered body having large piezoelectric characteristics and small variations in piezoelectric characteristics.

【0011】[0011]

【課題を解決するための手段】本発明者は、前記課題に
対して検討を重ねた結果、ビスマス層状化合物を90重
量%以上含む粉末に溶媒を加えたスラリーに対して特定
方向に高い磁場を印加することによって、非磁性材料に
属するビスマス層状化合物結晶を磁場の印加方向に垂直
にc軸が向くように特定の方向に配向させることがで
き、これを焼成して、結晶成長の異方性により粒径の揃
った扁平な主結晶が特定の向きに配向したビスマス層状
化合物焼結体を作製でき、高く、かつばらつきの小さい
圧電特性を達成できることを知見した。
Means for Solving the Problems As a result of studying the above problem, the present inventor has found that a high magnetic field is applied in a specific direction to a slurry obtained by adding a solvent to a powder containing at least 90% by weight of a bismuth layered compound. By applying the bismuth, the bismuth layered compound crystal belonging to the nonmagnetic material can be oriented in a specific direction so that the c-axis is perpendicular to the direction of the application of the magnetic field. As a result, the present inventors have found that a bismuth layered compound sintered body in which flat main crystals having a uniform particle size are oriented in a specific direction can be produced, and high and low-variation piezoelectric characteristics can be achieved.

【0012】すなわち、本発明のビスマス層状化合物焼
結体は、一般式が(Bi222+(Am-1m3m+12-
(但し、A:アルカリ金属、アルカリ土類金属および鉛
の群から選ばれる少なくとも1種、B:4a金属または
5a金属の群から選ばれる少なくとも1種、m>1)で
表されるビスマス層状化合物からなる扁平粒子を主結晶
とし、c面と垂直な結晶面方向に配向した配向方向と垂
直な面を有する焼結体であり、該配向方向と垂直な面に
おける主結晶のうち、長径dが0.5da≦d≦2d
a(daは主結晶の平均長径)を満たす結晶の割合が全主
結晶の80%以上であることを特徴とするものである。
That is, the bismuth layered compound sintered body of the present invention has a general formula of (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2-
(However, A: at least one selected from the group consisting of alkali metals, alkaline earth metals and lead, B: at least one selected from the group consisting of 4a metals or 5a metals, m> 1) Is a sintered body having a plane perpendicular to the orientation direction oriented in a crystal plane direction perpendicular to the c-plane as a main crystal composed of flat particles consisting of: 0.5d a ≦ d ≦ 2d
a (d a mean major diameter of the main crystal) is characterized in that the percentage of crystals satisfying is not less than 80% of the total primary crystals.

【0013】ここで、前記配向方向と垂直な面のX線回
折強度において、(I(020)+I(22 0))/(I(020)
(220)+I(006)+I(008)+I(0010))で示される配
向度fが、0.75以上であること、前記配向方向と垂
直な面の表面での配向度f1と、該配向方向と垂直な面
の表面を0.1mm研磨した研磨面における配向度f2
との比(f2/f1)が0.8以上であること、相対密度
が95%以上であることが望ましい。
Here, in the X-ray diffraction intensity of the plane perpendicular to the orientation direction, (I (020) + I (220 ) ) / (I (020) +
I (220) + I (006) + I (008) + I (0010) ) is not less than 0.75, the orientation f 1 on the surface perpendicular to the orientation direction, The degree of orientation f 2 on the polished surface obtained by polishing the surface perpendicular to the orientation direction by 0.1 mm.
The ratio of (f 2 / f 1) is 0.8 or more, it is desirable that the relative density is 95% or more.

【0014】また、前記主結晶の長径が20μm以下で
ある割合が80%以上であることが望ましく、前記主結
晶の平均アスペクト比が3〜10であることが望まし
い。
It is preferable that the ratio of the major crystal having a major axis of 20 μm or less be 80% or more, and the average aspect ratio of the main crystal be 3 to 10.

【0015】さらに、本発明のビスマス層状化合物焼結
体の製造方法は、セラミック原料粉末としてビスマス層
状化合物を90重量%以上含む粉末に溶媒を添加したス
ラリーを作製し、該スラリーに対して一方向に1T以上
の磁場を印加して前記ビスマス層状化合物粉末をc面と
垂直な結晶面に配向させつつ前記スラリーを固化した
後、焼成することを特徴とするものである。
Further, in the method for producing a bismuth layered compound sintered body of the present invention, a slurry is prepared by adding a solvent to a powder containing at least 90% by weight of a bismuth layered compound as a ceramic raw material powder, and the slurry is unidirectionally mixed with the slurry. And applying a magnetic field of 1T or more to the slurry to solidify the slurry while orienting the bismuth layered compound powder in a crystal plane perpendicular to the c-plane, and then firing.

【0016】ここで、前記ビスマス層状化合物粉末の平
均粒径が0.5〜2.0μmであることが望ましい。
Here, it is desirable that the bismuth layered compound powder has an average particle size of 0.5 to 2.0 μm.

【0017】[0017]

【発明の実施の形態】本発明のビスマス層状化合物焼結
体は、一般式が(Bi222+(Am-1m 3m+1
2-(但し、A:アルカリ金属、アルカリ土類金属および
鉛の群から選ばれる少なくとも1種、B:4a金属また
は5a金属の群から選ばれる少なくとも1種)で表され
るビスマス層状化合物からなる扁平粒子を主結晶とする
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Sintered bismuth layer compound of the present invention
The body has the general formula (BiTwoOTwo)2+(Am-1BmO 3m + 1)
2-(However, A: alkali metal, alkaline earth metal and
At least one selected from the group consisting of lead, B: 4a metal or
Is at least one selected from the group of 5a metals)
Flat particles composed of a bismuth layered compound
Things.

【0018】ビスマス層状化合物としては、例えば、P
bBi4Ti415(PBT)、SrBi4Ti415(S
BT)、BaBiTi415(BBT)、Na0.5Bi
4.5Ti415(NBT)、Na0.475Ca0.05Bi4.475
Ti415(NCBT)、Bi 2Sr1Ca1Cu2y
(Bi,Pb)2Sr2Ca2Cu3y等が挙げられ、特
に、鉛を含有せず、かつ圧電特性が大きい、SrBi4
Ti415(SBT)、BaBiTi415(BBT)、
Na0.5Bi4.5Ti415(NBT)、Na0.475Ca
0.05Bi4.475Ti415(NCBT)を主成分とするこ
と、またはこれらの複合化合物が望ましい。さらに、こ
れら化合物の一部を希土類元素、Mn、アルカリ金属元
素によって置換させておくことが温度特性などを高める
上で好ましい。
Examples of the bismuth layer compound include, for example, P
bBiFourTiFourOFifteen(PBT), SrBiFourTiFourOFifteen(S
BT), BaBiTiFourOFifteen(BBT), Na0.5Bi
4.5TiFourOFifteen(NBT), Na0.475Ca0.05Bi4.475
TiFourOFifteen(NCBT), Bi TwoSr1Ca1CuTwoOy,
(Bi, Pb)TwoSrTwoCaTwoCuThreeOyEtc.
SrBi containing no lead and having large piezoelectric propertiesFour
TiFourOFifteen(SBT), BaBiTiFourOFifteen(BBT),
Na0.5Bi4.5TiFourOFifteen(NBT), Na0.475Ca
0.05Bi4.475TiFourOFifteen(NCBT) as the main component
Or a composite compound thereof is desirable. In addition,
Some of these compounds are rare earth elements, Mn, and alkali metal elements.
Replacement with element enhances temperature characteristics, etc.
Preferred above.

【0019】本発明によれば、図1の本発明のビスマス
層状化合物焼結体の模式図に示すように、ビスマス層状
化合物焼結体1が、c面と垂直な結晶面(図1ではA
面)に配向した配向方向と垂直な面(以下、単に配向方
向と垂直な面と略す。)を有するものであり、配向方向
と垂直な面Aにおける主結晶2のうち、平均長径da
対して、長径dが0.5da≦d≦2daを満たす結晶の
割合が全主結晶の80%以上、特に90%以上からなる
ことが大きな特徴であり、これによって、圧電特性が高
く、かつ特性のばらつきが小さい焼結体となる。なお、
本発明における配向方向と垂直な面とは、焼結体に対し
て特定の方向からX線回折測定を行い各ピークのピーク
強度比を比較した場合に、特定結晶面のピーク強度比が
最大となる面の意である。
According to the present invention, as shown in the schematic diagram of the bismuth layered compound sintered body of the present invention in FIG. 1, the bismuth layered compound sintered body 1 has a crystal plane perpendicular to the c-plane (A in FIG. 1).
Alignment direction perpendicular to a plane oriented in the plane) (hereinafter, merely having abbreviated.) And the alignment perpendicular plane of the main crystal 2 in the alignment direction perpendicular to the plane A, the average long diameter d a On the other hand, a major feature is that the proportion of crystals whose major axis d satisfies 0.5d a ≦ d ≦ 2d a is at least 80%, particularly at least 90%, of all main crystals. In addition, a sintered body having small variations in characteristics is obtained. In addition,
The plane perpendicular to the orientation direction in the present invention, the peak intensity ratio of the specific crystal plane is the maximum when X-ray diffraction measurement is performed on the sintered body from a specific direction and the peak intensity ratio of each peak is compared. This is what it means.

【0020】すなわち、長径dの分布が上記範囲を逸脱
し、特に、長径dが0.5daよりも小さい主結晶2の
割合が増加すると圧電性が低下し、長径dが2daより
も大きい主結晶2の割合が増加すると圧電性のばらつき
が大きくなるとともに焼結体の強度が低下する。
[0020] That is, the distribution of the major diameter d is outside the above range, in particular, the piezoelectric property is lowered when the diameter d is the ratio of the small main crystal 2 is increased than 0.5d a, diameter d is greater than 2d a When the proportion of the main crystal 2 increases, the variation in piezoelectricity increases and the strength of the sintered body decreases.

【0021】また、圧電性を高めるためには、配向方向
と垂直な面AのX線回折強度において、例えば、具体的
には(020)面および(220)面の配向度fが0.
75以上、特に0.80以上、さらには0.90以上で
あることが望ましい。なお、本発明の配向度fとは、X
線回折により得られるビスマス層状化合物の配向方向と
垂直な面A(c面と垂直な結晶面)である(020)、
(220)面の回折強度とc面である(006)、(0
08)、(0010)面における回折強度比(I(020)
+I(220))/(I(020)+I(220)+I(006)+I(008)
+I(0010))から求められる値である。
Further, in order to enhance the piezoelectricity, the X-ray diffraction intensity of the plane A perpendicular to the orientation direction is, for example, specifically, the degree of orientation f of the (020) plane and the (220) plane is 0.1 mm.
It is desirably 75 or more, especially 0.80 or more, and more preferably 0.90 or more. The degree of orientation f of the present invention is X
A plane A (crystal plane perpendicular to the c-plane) perpendicular to the orientation direction of the bismuth layered compound obtained by line diffraction (020);
(220) plane diffraction intensity and c-plane (006), (0)
08), diffraction intensity ratio on the (0010) plane (I (020)
+ I (220) ) / (I (020) + I (220) + I (006) + I (008)
+ I (0010) ).

【0022】すなわち、本発明によれば、配向方向と垂
直な面Aにおけるc面の配向度f’(f’=1−f)が
0.25以下、特に0.20以下、さらに0.10以下
となる。逆に、配向方向と垂直な面Aと垂直な面におい
てはc面配向度が相対的に高くなり、配向方向と垂直な
面Aと垂直な面における圧電特性が向上する。なお、配
向方向と垂直な面Aは後述する磁場を印加する方向と垂
直な面をなす。
That is, according to the present invention, the degree of orientation f ′ (f ′ = 1−f) of the c-plane on the plane A perpendicular to the orientation direction is 0.25 or less, particularly 0.20 or less, and more preferably 0.10 or less. It is as follows. Conversely, the degree of c-plane orientation is relatively high in the plane perpendicular to the plane A perpendicular to the orientation direction, and the piezoelectric characteristics in the plane perpendicular to the plane A perpendicular to the orientation direction are improved. The plane A perpendicular to the orientation direction is a plane perpendicular to the direction in which a magnetic field described later is applied.

【0023】さらに、圧電性を高め、かつばらつきを小
さくするためには、配向方向と垂直な面Aの表面の配向
度f1と、該配向方向と垂直な面Aの表面を0.1mm
研磨した研磨面における配向度f2との比(f2/f1
が0.8以上、特に0.9以上、さらに0.95以上で
あることが望ましい。
Further, in order to enhance the piezoelectricity and reduce the variation, the degree of orientation f 1 of the surface of the surface A perpendicular to the orientation direction and the surface of the surface A perpendicular to the orientation direction are set to 0.1 mm.
Ratio (f 2 / f 1 ) to the degree of orientation f 2 on the polished surface
Is preferably 0.8 or more, particularly 0.9 or more, and more preferably 0.95 or more.

【0024】さらにまた、圧電性を高めるとともに、焼
結体の強度を高めるためには、焼結体の相対密度が95
%以上、特に97%以上であることが望ましく、前記主
結晶の長径が20μm以下である割合が80%以上、特
に90%以上であること、さらに、主結晶の平均長径が
3〜10μm、特に4〜7μmであること、前記主結晶
の平均アスペクト比が3〜10であることが望ましい。
なお、上記長径は配向方向と垂直な面Aについて鏡面加
工を行い、SEMあるいは金属顕微鏡で組織観察した写
真における各主結晶の最大径(長径)dであり、最大径
dとその厚み(最大径dと垂直方向の長さ)tから、そ
の比であるアスペクト比(d/t)を求めることができ
る。
Further, in order to increase the piezoelectricity and the strength of the sintered body, the relative density of the sintered body must be 95%.
% Or more, particularly 97% or more, and the proportion of the main crystal having a major axis of 20 μm or less is 80% or more, particularly 90% or more, and the average major axis of the main crystal is 3 to 10 μm, particularly It is preferable that the average aspect ratio of the main crystal is 3 to 10 μm.
The major axis is the maximum diameter (major axis) d of each main crystal in a photograph obtained by mirror-processing the surface A perpendicular to the orientation direction and observing the structure with a SEM or a metallographic microscope. The aspect ratio (d / t), which is the ratio, can be obtained from d and the length in the vertical direction) t.

【0025】また、上記態様の焼結体は、配向方向と垂
直な面A、すなわち主結晶のc面と垂直な配向方向と垂
直な面のk33値としては30%以上、特に40%以上、
さらに50%以上有し、また、前記k33値のばらつきが
5%以下、好ましくは3%以下、より好ましくは1%以
下の優れた圧電特性を有するものである。
Further, the sintered body of the above embodiment, the alignment direction perpendicular to the plane A, i.e. 30% or more as k 33 value of c plane perpendicular alignment direction perpendicular to the plane of the main crystal, in particular more than 40% ,
A further 50% or higher, the k 33 value of the variation 5% or less, preferably 3% or less, more preferably having an excellent piezoelectric characteristic of less than 1%.

【0026】さらに、この焼結体を、例えばレゾネータ
等の電子部品として用いる場合には、特に厚み3mm以
下、特に1mm以下の板状体とし、その主平面において
主結晶がc面と垂直な結晶面に配向する、すなわち主平
面が配向方向と垂直な面Aをなすように形成されること
が望ましく、これによって、特に、両面に電極を形成し
て励起させる厚み縦振動k33が大きくなる。
Furthermore, when this sintered body is used as an electronic component such as a resonator, for example, it is made into a plate-like body having a thickness of 3 mm or less, especially 1 mm or less, and a crystal whose main crystal is perpendicular to the c-plane in the main plane. oriented in the plane, i.e. that the main plane is formed so as to form the alignment direction perpendicular to the plane a desirable, whereby, in particular, thickness longitudinal vibration k 33 for exciting electrodes are formed on both surfaces becomes large.

【0027】(製造方法)次に、本発明のビスマス層状
化合物焼結体の製造方法について説明する。まず、例え
ば、ビスマス層状化合物粉末を形成するためのセラミッ
ク原料を準備する。セラミック原料としては、各金属の
酸化物、硝酸塩、酢酸塩、炭酸塩等の粉末が使用可能で
あり、その他にも金属アルコキシド等の溶液を用いても
よい。
(Production Method) Next, a method for producing the bismuth layered compound sintered body of the present invention will be described. First, for example, a ceramic raw material for forming a bismuth layered compound powder is prepared. As the ceramic raw material, powders such as oxides, nitrates, acetates, and carbonates of the respective metals can be used, and other solutions such as metal alkoxides may be used.

【0028】これらセラミック原料を調合、混合して、
800〜1300℃、特に850〜1200℃、さらに
900〜1000℃にて1〜8時間、特に1〜5時間、
さらに1〜2時間熱処理することによって、90重量%
以上、特に95重量%以上、さらに99重量%以上がビ
スマス層状化合物をなすビスマス層状化合物の仮焼粉末
を作製する。また、仮焼粉末の作製方法としては、上記
以外に、公知の共沈法、ゾルゲル法、水熱合成法等を採
用することもできる。
Mixing and mixing these ceramic raw materials,
800 to 1300 ° C, especially 850 to 1200 ° C, further 900 to 1000 ° C for 1 to 8 hours, especially 1 to 5 hours,
90% by weight by further heat treatment for 1-2 hours
As described above, a calcined powder of a bismuth layered compound in which 95% by weight or more, particularly 99% by weight or more forms a bismuth layered compound is prepared. In addition, as a method for producing the calcined powder, a known coprecipitation method, a sol-gel method, a hydrothermal synthesis method, or the like can be employed in addition to the above.

【0029】ここで、前記仮焼粉末中のビスマス層状化
合物の含有量が90重量%より少ないと、焼結体中の主
結晶の粒径(長径)を揃えることができず、焼結体の圧
電特性が低下するとともに、特性のばらつきが大きくな
る。なお、前記仮焼粉末中のビスマス層状化合物の含有
量は、仮焼粉末のX線回折チャートからリートベルト法
によって求められる。なお、仮焼粉末中には少量の未反
応物または中間生成物が10重量%以下、特に5重量%
以下、さらに1重量%以下残存するが、これらは後述す
る焼成中に焼結助剤として機能し、焼結温度を低めた
り、焼成時間を短縮したりする働きをなす。
Here, if the content of the bismuth layered compound in the calcined powder is less than 90% by weight, the grain size (major axis) of the main crystal in the sintered body cannot be uniformed, and As the piezoelectric characteristics decrease, the dispersion of the characteristics increases. The content of the bismuth layered compound in the calcined powder is determined from the X-ray diffraction chart of the calcined powder by the Rietveld method. In the calcined powder, a small amount of unreacted substances or intermediate products is 10% by weight or less, particularly 5% by weight.
Hereinafter, 1% by weight or less remains, but these function as sintering aids during sintering, which will be described later, and serve to lower the sintering temperature or shorten the sintering time.

【0030】得られた仮焼体を解砕して仮焼粉末とした
後、所定量の溶媒を添加して、これらの混合物を、例え
ば、ボールミル等にて混合してスラリーを作製する。溶
媒としては、水、イソプロピルアルコール(IPA)等
のアルコール類、アセトン等が使用可能であり、特に安
全性、対環境面では水が望ましい。また、溶媒とともに
ポリビニルアルコール(PVA)等の有機バインダや可
塑剤、分散剤を加えてもよく、PVAは分散剤としての
機能をも有し、後述する仮焼粉末の配向性を高める働き
をなす。
After the obtained calcined body is crushed to obtain a calcined powder, a predetermined amount of a solvent is added, and the mixture is mixed with, for example, a ball mill to prepare a slurry. As the solvent, water, alcohols such as isopropyl alcohol (IPA), acetone, and the like can be used, and water is particularly desirable in terms of safety and environment. In addition, an organic binder such as polyvinyl alcohol (PVA), a plasticizer, and a dispersant may be added together with the solvent. PVA also has a function as a dispersant, and functions to enhance the orientation of a calcined powder described later. .

【0031】さらに、仮焼粉末の凝集を抑制するととも
に、仮焼粉末のスラリー中の分散性を高め、かつ仮焼粉
末を後述する磁場中で容易に変位させるために、仮焼粉
末の平均粒径は0.5〜2μm、特に0.5〜1.5μ
m、さらに0.5〜1.0μmであることが望ましい。
なお、仮焼粉末の平均粒径とはマイクロトラック法によ
って求められるd50値の意である。
Further, in order to suppress the aggregation of the calcined powder, enhance the dispersibility of the calcined powder in the slurry, and easily displace the calcined powder in a magnetic field described later, the average particle size of the calcined powder is adjusted. Diameter 0.5-2μm, especially 0.5-1.5μ
m, more preferably 0.5 to 1.0 μm.
Note that the average particle diameter of the calcined powder which is the meaning of the d 50 value obtained by the micro track method.

【0032】次に、上記スラリーに一方向から特定の平
行磁場Hを印加しつつ成形を行う。ここで、印加する磁
場Hの強さは、仮焼粉末を所望の向きに配向させるため
には、1T以上、特に9T以上、さらに11T以上であ
ることが重要である。かかる磁場を発生させる装置とし
ては、例えば高磁場を発生できる超伝導磁石を備えた磁
場発生装置を使用することが望ましい。印加する磁場が
1Tより小さいと仮焼粉末が所定の方向に配向しない。
また、成形方法は、鋳込成形法、射出成形法、押出成形
法やドクターブレード法、カレンダーロール法等のテー
プ成形法が採用できる。
Next, the slurry is molded while applying a specific parallel magnetic field H from one direction. Here, it is important that the strength of the applied magnetic field H is 1 T or more, particularly 9 T or more, and further 11 T or more in order to orient the calcined powder in a desired direction. As a device for generating such a magnetic field, for example, it is desirable to use a magnetic field generator provided with a superconducting magnet capable of generating a high magnetic field. If the applied magnetic field is smaller than 1T, the calcined powder will not be oriented in a predetermined direction.
In addition, as a molding method, a tape molding method such as a cast molding method, an injection molding method, an extrusion molding method, a doctor blade method, and a calendar roll method can be adopted.

【0033】このとき得られる成形体は、磁場の印加方
向に対してc軸が垂直となるように配向する、すなわち
磁場の印加方向にc面と垂直な結晶面が配向する。な
お、磁場による粒子配向機構は明確にはわからないが、
ビスマス層状化合物結晶においてa,b軸方向の磁化率
に比べてc軸のそれが小さいことに起因するためと考え
られる。
The compact obtained at this time is oriented so that the c-axis is perpendicular to the direction in which the magnetic field is applied, that is, the crystal plane perpendicular to the c-plane in the direction in which the magnetic field is applied. In addition, although the particle orientation mechanism by the magnetic field is not clearly understood,
This is considered to be because the c-axis susceptibility of the bismuth layered compound crystal is smaller than that of the c-axis in the a and b-axis directions.

【0034】そのため、レゾネータ等の圧電部品用の板
状体を成形する場合、磁場を印加する方向は板状の成形
体の厚み方向、平面方向のいずれであってもよいが、特
に厚み方向に印加することが望ましい。
Therefore, when forming a plate-like body for a piezoelectric component such as a resonator, the direction in which the magnetic field is applied may be either the thickness direction or the plane direction of the plate-like body, but is particularly preferably in the thickness direction. It is desirable to apply.

【0035】なお、上記磁場中では、仮焼粉末中に、例
えば、ビスマス層状化合物以外の副生成物が所定の比率
で生成してもよく、またはBi4Ti312等を仮焼粉末
に対して別途添加することもできるが、これら副成分は
結晶の焼結性を促進する働きをなす。
In the above-mentioned magnetic field, for example, by-products other than the bismuth layered compound may be formed at a predetermined ratio in the calcined powder, or Bi 4 Ti 3 O 12 or the like may be added to the calcined powder. On the other hand, they can be added separately, but these sub-components serve to promote the sinterability of the crystal.

【0036】また、磁場中における粒子の配向は極めて
短時間で完了するが、成形体中のビスマス層状化合物粉
末の配向度を維持するためには、スラリー中の溶媒が揮
発してスラリーが固化する、あるいは鋳込成形等にて成
形する場合には、石膏等の多孔質体からなる成形型を用
いてスラリー中の溶媒が成形型の細孔を通して除去され
ることにより着肉し、粉末が流動せず固定される硬さま
で磁場を印加することが望ましい。このために、成形体
をなすスラリーの固化を早めるために、スラリー中に紫
外線硬化性樹脂を含有して磁場を印加してから紫外線を
照射させることによりスラリーの固化を早めたり、熱硬
化性樹脂や熱可塑性樹脂を添加して磁場を印加してから
温度を変化させることでスラリーの固化を早めることが
できる。
The orientation of the particles in the magnetic field is completed in a very short time, but in order to maintain the orientation of the bismuth layered compound powder in the compact, the solvent in the slurry volatilizes and the slurry solidifies. In the case of molding by cast molding or the like, the solvent in the slurry is removed through the pores of the molding die using a molding die made of a porous body such as gypsum, and the powder is flown. It is desirable to apply a magnetic field to a fixed hardness without being fixed. For this reason, in order to accelerate the solidification of the slurry that forms the molded body, the solidification of the slurry is accelerated by applying ultraviolet rays after applying a magnetic field by including an ultraviolet curable resin in the slurry, The solidification of the slurry can be accelerated by changing the temperature after adding a magnetic field by adding a magnetic field or a thermoplastic resin.

【0037】さらに、上述した結晶配向法では、表面の
みならず成形体の内部にまでわたって容易に主結晶の配
向度を高めることができ、主結晶のc軸が磁場の印加方
向に垂直に揃うように特定面に配向した成形体を作製す
ることができる。
Further, in the above-mentioned crystal orientation method, the degree of orientation of the main crystal can be easily increased not only on the surface but also inside the compact, and the c-axis of the main crystal is perpendicular to the direction of application of the magnetic field. It is possible to produce a formed body oriented on a specific surface so as to be aligned.

【0038】その後、得られた成形体を、所望により所
定形状に加工して脱バインダー処理した後、大気中など
の酸化性雰囲気中、1000〜1300℃、特に110
0〜1250℃の温度で、特に1〜6時間焼成すること
によりビスマス層状化合物焼結体を作製することができ
る。
Thereafter, the obtained molded body is processed into a predetermined shape as required and subjected to a binder removal treatment, and then, in an oxidizing atmosphere such as the air, at 1000 to 1300 ° C., particularly 110 ° C.
By firing at a temperature of 0 to 1250 ° C., particularly for 1 to 6 hours, a bismuth layered compound sintered body can be produced.

【0039】本発明によれば、上述した結晶配向法によ
って、仮焼粉末が特定面に配向しているために、焼成に
よっても結晶の粒成長速度が速いc面が優先的に成長し
て、主結晶の特定面への配向度をさらに高めることがで
きる。また、本発明の方法によれば、ホットプレス等に
比べて任意の形状の成形体および焼結体を作製すること
ができ、また、焼結体中の主結晶の大きさおよび向きを
揃えて、高く、かつばらつきの少ない圧電特性を得るこ
とができる。
According to the present invention, since the calcined powder is oriented on a specific surface by the above-described crystal orientation method, the c-plane, which has a high crystal grain growth rate even by firing, preferentially grows, The degree of orientation of the main crystal on a specific plane can be further increased. Further, according to the method of the present invention, it is possible to produce a molded body and a sintered body having an arbitrary shape as compared with a hot press or the like, and the sizes and directions of the main crystals in the sintered body are aligned. It is possible to obtain high piezoelectric characteristics with little variation.

【0040】さらに、本発明によれば、さらに焼結体の
密度を高めて機械的強度を高めるために、上記焼成後H
IP(熱間静水圧プレス)等の高温、高圧下での熱処理
を行うこともできる。
Further, according to the present invention, in order to further increase the density of the sintered body and to increase the mechanical strength, H
Heat treatment under high temperature and high pressure such as IP (hot isostatic press) can also be performed.

【0041】[0041]

【実施例】(実施例)純度99.9%のSrCO3
末、BaCO3粉末、Bi23粉末、TiO2粉末、Na
2CO3粉末、CaCO3粉末をそれぞれ表1に示すビス
マス層状化合物であるSrBi4Ti415(SBT)、
BaBiTi415(BBT)、Na0.5Bi4.5Ti4
15(NBT)、Na0.475Ca0.05Bi4.475Ti415
(NCBT)となる比率で秤量し、これにMnO2粉末
を上記粉末の総量100重量部に対して0.2重量%添
加した。これら混合粉末を回転ミルにて16時間混合
し、大気中にて表1に示す温度で3時間仮焼し、表1の
平均粒径となるように解砕した。得られた仮焼粉末につ
いてX線回折測定を行い、リートベルト法によってビス
マス層状化合物の比率(結晶化度、表中、比率と記載)
を算出した。
(Examples) SrCO 3 powder, BaCO 3 powder, Bi 2 O 3 powder, TiO 2 powder, Na powder having a purity of 99.9%
The 2 CO 3 powder and the CaCO 3 powder were each used as a bismuth layered compound shown in Table 1 as SrBi 4 Ti 4 O 15 (SBT),
BaBiTi 4 O 15 (BBT), Na 0.5 Bi 4.5 Ti 4 O
15 (NBT), Na 0.475 Ca 0.05 Bi 4.475 Ti 4 O 15
(NCBT), and MnO 2 powder was added thereto at 0.2% by weight based on 100 parts by weight of the total amount of the powder. These mixed powders were mixed in a rotary mill for 16 hours, calcined in the air at the temperature shown in Table 1 for 3 hours, and pulverized so as to have the average particle size shown in Table 1. X-ray diffraction measurement is performed on the calcined powder obtained, and the ratio of the bismuth layered compound (crystallinity, described in the table as ratio) by the Rietveld method.
Was calculated.

【0042】次に、得られた仮焼粉末に対して、固体
(仮焼粉末)含有率が40体積%となるように、アクリ
ル系樹脂を1.5重量%、溶媒として水を添加し、ボー
ルミルにて混合してスラリーを調製した。スラリーの粘
度は100sec-1において0.4〜0.6Pa・sで
あった。
Next, 1.5% by weight of an acrylic resin and water as a solvent were added to the obtained calcined powder so that the solid (calcined powder) content was 40% by volume. A slurry was prepared by mixing with a ball mill. The viscosity of the slurry was 0.4 to 0.6 Pa · s at 100 sec −1 .

【0043】このスラリーを内径50mmの多孔質の石
膏型に10cc(厚み5mm)注ぎ、ボア径100m
m、10Tの磁場が発生可能な冷凍機型磁場装置中に入
れて、スラリーの厚み方向が磁場の印加方向に対して平
行となるように表1に示す磁場を印加した状態でスラリ
ー中の溶媒を除去して鋳込み成形を行った。磁場の大き
さは超伝導磁石に通電させる電流値を変化させることに
より変化させた。得られた成形体は石膏から脱型し、大
気中、500℃で脱バインダーし、大気中、表1に示す
条件で焼成した(表中、PLSと記載)。
The slurry was poured into a porous gypsum mold having an inner diameter of 50 mm and 10 cc (5 mm in thickness), and the bore diameter was 100 m.
m in a refrigerator type magnetic field device capable of generating a magnetic field of 10T, and the solvent in the slurry is applied in a state where the magnetic field shown in Table 1 is applied so that the thickness direction of the slurry is parallel to the application direction of the magnetic field. Was removed and casting was performed. The magnitude of the magnetic field was changed by changing the value of the current supplied to the superconducting magnet. The obtained molded body was demolded from the gypsum, debindered at 500 ° C. in the air, and fired in the air under the conditions shown in Table 1 (described as PLS in the table).

【0044】得られた焼結体に対して、アルキメデス法
により焼結体の相対密度を測定した。また、焼結体表面
(主平面)の任意の5カ所にてX線回折測定を行い、そ
のチャートの(020)、(220)、(006)、
(008)、(0010)ピーク強度から配向度f1
(I(020)+I(220))/(I(020)+I(220)+I(006)
+I(008)+I(0010))を求め、その平均値を配向度と
した。
The relative density of the obtained sintered body was measured by the Archimedes method. Further, X-ray diffraction measurement was performed at any five points on the surface (main plane) of the sintered body, and (020), (220), (006),
From the (008) and (0010) peak intensities, the degree of orientation f 1 =
(I (020) + I (220) ) / (I (020) + I (220) + I (006)
+ I (008) + I (0010) ), and the average value was taken as the degree of orientation.

【0045】さらに、得られた試料を上記X線回折を測
定した面が主平面となるように2mm×3mm×厚み1
mmに切り出し、また、それとは別に上記X線回折を測
定した面が側面となるように2mm×3mm×厚み1m
mに切り出し、それらの両主面に銀電極を形成し、15
0℃のオイルバス中で3〜5kV/mmを1時間印加し
分極処理を行った。そして、試料5つづつのk33値をイ
ンピーダンスアナライザーを用いて共振・反共振法によ
って求め、磁場に垂直な面については最大と最小の差を
ばらつきとして算出した。
Further, the obtained sample was measured to be 2 mm × 3 mm × thickness 1 such that the surface on which the X-ray diffraction was measured was the main plane.
2 mm x 3 mm x 1 m in thickness so that the surface on which the X-ray diffraction was measured is a side surface.
m, silver electrodes are formed on both main surfaces thereof, and
Polarization was performed by applying 3 to 5 kV / mm for 1 hour in an oil bath at 0 ° C. Then, determined by the sample 5 by one of the k 33 value resonant-antiresonance method using an impedance analyzer was calculated as the variation of the difference between maximum and minimum for a plane perpendicular to the magnetic field.

【0046】また、焼結体のX線回折測定面にて鏡面加
工を行い、サーマルエッチングした後、SEM観察を行
い、粒子300個の板状結晶に対して各結晶の長径dの
長さとその厚みtを画像解析装置にて測定し、平均長径
aを求めて、(0.5da≦d≦2daを満たす結晶の
個数/300個)×100(%)の値(表中、K1と記
載)、粒径20μm以下の長径の主結晶の比率(表中、
2と記載)を算出した。さらに、JISR−1601
に準じてX線回折測定面が引っ張り面となるように3点
曲げ強度を測定した。結果は表1に示した。
The sintered body was mirror-finished on the X-ray diffraction measurement surface, subjected to thermal etching, and then subjected to SEM observation to determine the length of the major axis d of each crystal with respect to a plate-like crystal of 300 particles. measuring the thickness t by the image analyzer, and obtain the average long diameter d a, (0.5d a ≦ d ≦ 2d / number 300 of a that satisfies crystals) × 100 the value of (%) (in Table, K 1 ), the ratio of the main crystal having a long diameter of 20 μm or less (in the table,
K 2 and described) was calculated. Furthermore, JISR-1601
The three-point bending strength was measured in such a manner that the X-ray diffraction measurement surface became a tensile surface in accordance with the above. The results are shown in Table 1.

【0047】(比較例1)実施例の試料No.1〜7の
仮焼粉末を用いて、磁場を印加することなく40MPa
の荷重を加えながら1150℃で2時間ホットプレス焼
成を行って焼結体を作製し、同様に評価した(試料N
o.19)。結果は表1に示した。
(Comparative Example 1) Using the calcined powder of 1 to 7, 40MPa without applying a magnetic field
The sample was subjected to hot press firing at 1150 ° C. for 2 hours while applying a load to produce a sintered body, which was similarly evaluated (sample N
o. 19). The results are shown in Table 1.

【0048】(比較例2)実施例の試料No.1〜7の
仮焼粉末を用いて、磁場を印加することなく200MP
aの圧力にて一軸プレス成形した後、大気中表1に示す
条件で焼成する以外は実施例と同様に焼結体を作製し、
同様に評価した(試料No.20)。結果は表1に示し
た。
(Comparative Example 2) 200MPa without applying a magnetic field
After performing uniaxial press molding under the pressure of a, a sintered body was prepared in the same manner as in the example except that the sintered body was fired in the atmosphere under the conditions shown in Table 1.
Evaluation was performed in the same manner (Sample No. 20). The results are shown in Table 1.

【0049】(比較例3)Bi4Ti312粉末、SrC
3粉末およびTiO2粉末とをSrBi4Ti4 15とな
る比率で混合した粉末を用いてスラリーを調製し、ドク
ターブレード法により厚み300μmのテープ成形を行
った後、該テープを積層して1225℃で10時間焼成
する以外は実施例と同様に焼結体を作製し、同様に評価
した(試料No.21)。結果は表1に示した。
(Comparative Example 3) BiFourTiThreeO12Powder, SrC
OThreePowder and TiOTwoPowder and SrBiFourTiFourO FifteenTona
A slurry is prepared using the powder mixed in
Forming tape of 300μm thickness by tar blade method
Then, the tape is laminated and baked at 1225 ° C for 10 hours.
A sintered body was prepared and evaluated in the same manner as in the example except that
(Sample No. 21). The results are shown in Table 1.

【0050】[0050]

【表1】 [Table 1]

【0051】表1から明らかなように、成形時に1T以
上の磁場を印加しない試料No.1、2では、焼結体中
の主結晶が配向せず、k33値が小さいものであった。ま
た、スラリー中のセラミック原料粉末としてビスマス層
状化合物の含有量が90重量%より少ない試料No.1
3では、焼結体中における主結晶の長径のばらつきが大
きく、試料間でk33値のばらつきが大きくなった。
As is clear from Table 1, Sample No. 1 to which no magnetic field of 1 T or more was applied during molding. In 1,2, the main crystals are not oriented in the sintered body were those k 33 value is small. In addition, as the ceramic raw material powder in the slurry, the sample No. having a bismuth layered compound content of less than 90% by weight was used. 1
In 3, large diameter variations in the primary crystals in the sintered body, variations in the k 33 value between samples is increased.

【0052】さらに、磁場を印加することなくホットプ
レス焼成を行った試料No.19およびビスマス層状化
合物以外の粉末を用いてテープ成形した試料No.21
では、主結晶の長径のばらつきが大きく、圧電特性のば
らつきが大きかった。また、高い成形圧力にてプレス成
形を行った試料No.20では、不均一な組織であり、
33値が小さく、ばらつきも大きかった。
Further, Sample No. 2 was subjected to hot press firing without applying a magnetic field. No. 19 and Sample No. 19 tape-formed using powders other than the bismuth layered compound. 21
In Example 2, the variation in the major diameter of the main crystal was large, and the variation in the piezoelectric characteristics was large. Further, the sample No. which was press-formed at a high forming pressure was used. In 20, it is a heterogeneous tissue,
k 33 value is small, the variation was large.

【0053】これに対して、本発明に基づき、ビスマス
層状化合物を90重量%以上含む粉末を含有するスラリ
ーに1T以上の磁場を印加して成形した試料No.3〜
12、14〜18では、いずれの試料でも主結晶の長径
が均一で配向度が高く、板状体の主面のk33値が30%
よりも大きくばらつきが5%以下と小さい優れた圧電特
性を有するものであった。
On the other hand, according to the present invention, sample No. 1 was formed by applying a magnetic field of 1 T or more to a slurry containing a powder containing 90% by weight or more of a bismuth layered compound. 3 ~
In 12,14~18, any high major axis orientation degree in uniform even main crystal sample, k 33 value of the main surface of the plate is 30%
It had excellent piezoelectric characteristics, which was larger than that and had a small variation of 5% or less.

【0054】また、上記試料について、配向度f1を測
定した面からそれぞれ0.1mmずつ研磨した面につい
てf1と同様に配向度f2を測定し、その比(f2/f1
を算出したところ、試料No.1、2および3〜18で
はいずれも0.95〜1.05であったのに対して、試
料No.19では0.9、試料No.20では0.7
0、試料No.21では0.75であった。
[0054] Further, for the sample, measuring the same degree of orientation f 2 and f 1 the surface which is polished by 0.1mm respectively from the surface of the measurement of the degree of orientation f 1, the ratio (f 2 / f 1)
Was calculated, the sample No. Sample Nos. 1, 2 and 3 to 18 all had values of 0.95 to 1.05. 19, 0.9, sample no. 0.7 for 20
0, sample no. 21 was 0.75.

【0055】[0055]

【発明の効果】以上詳述したとおり、本発明のビスマス
層状化合物焼結体によれば、ビスマス層状化合物粉末に
溶媒を加えたスラリーに対して特定方向に高い磁場を印
加することによって、ビスマス層状化合物結晶のc軸が
磁場の印加方向と垂直な向きになるように配向させるこ
とができ、さらにこれを焼成することによって、結晶成
長の異方性により、粒径の揃った扁平な主結晶が特定の
向きに配向したビスマス層状化合物焼結体を作製でき、
高く、かつばらつきの小さい圧電特性を有する焼結体を
得ることができる。
As described above in detail, according to the bismuth layered compound sintered body of the present invention, a bismuth layered compound powder is prepared by applying a high magnetic field in a specific direction to a slurry obtained by adding a solvent to the bismuth layered compound powder. The compound crystal can be oriented so that the c-axis is perpendicular to the direction in which the magnetic field is applied. By firing this, a flat main crystal having a uniform grain size is formed due to the anisotropy of crystal growth. Bismuth layered compound sintered body oriented in a specific direction can be manufactured,
It is possible to obtain a sintered body having high piezoelectric characteristics with small variations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のビスマス層状化合物焼結体の模式図で
ある。
FIG. 1 is a schematic view of a bismuth layered compound sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1 ビスマス層状化合物焼結体 2 主結晶 A 配向方向と垂直な面 H 磁場の印加方向 Reference Signs List 1 sintered bismuth layered compound 2 main crystal A plane perpendicular to orientation direction H direction of application of magnetic field

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】一般式が(Bi222+(Am-1
m3m+12-(但し、A:アルカリ金属、アルカリ土類
金属および鉛の群から選ばれる少なくとも1種、B:4
a金属または5a金属の群から選ばれる少なくとも1
種、m>1)で表されるビスマス層状化合物からなる扁
平粒子を主結晶とし、c面と垂直な結晶面方向に配向し
た焼結体であり、該配向方向と垂直な面における主結晶
のうち、長径dが0.5da≦d≦2da(daは主結晶
の平均長径)を満たす結晶の割合が全主結晶の80%以
上であることを特徴とするビスマス層状化合物焼結体。
(1) The general formula is (Bi 2 O 2 ) 2+ (A m-1 B
m O 3m + 1 ) 2- (where A: at least one selected from the group consisting of alkali metals, alkaline earth metals and lead, B: 4
at least one selected from the group of a metal or 5a metal
Seed, a sintered body having flat particles of a bismuth layered compound represented by m> 1) as a main crystal and oriented in a crystal plane direction perpendicular to the c-plane, and a main crystal in a plane perpendicular to the orientation direction. of major axis d is 0.5d a ≦ d ≦ 2d a ( d a mean major diameter of the main crystal) bismuth layered compound sintered body, wherein the proportion of the crystals that satisfies is not less than 80% of the total primary crystals .
【請求項2】前記配向方向と垂直な面のX線回折強度に
おいて、(I(020)+I(220))/(I(020)+I(220)
(006)+I(008)+I(0010))(ただし、I( hkl)は各
結晶面のピーク強度)で示される配向度fが、0.75
以上であることを特徴とする請求項1記載のビスマス層
状化合物焼結体。
2. An X-ray diffraction intensity of a plane perpendicular to the orientation direction, wherein (I (020) + I (220) ) / (I (020) + I (220) +
I (006) + I (008) + I (0010) ) (where I ( hkl) is the peak intensity of each crystal plane) and the degree of orientation f is 0.75.
The bismuth layered compound sintered body according to claim 1, wherein:
【請求項3】前記配向方向と垂直な面の表面での配向度
1と、該配向方向と垂直な面の表面を0.1mm研磨
した研磨面における配向度f2との比(f2/f 1)が
0.8以上であることを特徴とする請求項2記載のビス
マス層状化合物焼結体。
3. A degree of orientation on a surface perpendicular to the orientation direction.
f1And the surface perpendicular to the orientation direction is polished by 0.1 mm.
Degree of orientation f on the polished surfaceTwoAnd the ratio (fTwo/ F 1)But
3. The screw according to claim 2, wherein the ratio is 0.8 or more.
Mass layered compound sintered body.
【請求項4】相対密度が95%以上であることを特徴と
する請求項1乃至3のいずれか記載のビスマス層状化合
物焼結体。
4. The bismuth layered compound sintered body according to claim 1, wherein the relative density is 95% or more.
【請求項5】前記主結晶の長径が20μm以下である割
合が80%以上であることを特徴とする請求項1乃至4
のいずれか記載のビスマス層状化合物焼結体。
5. The method according to claim 1, wherein the ratio of the major crystal having a major axis of 20 μm or less is 80% or more.
The bismuth layered compound sintered body according to any one of the above.
【請求項6】前記主結晶の平均アスペクト比が3〜10
であることを特徴とする請求項1乃至5記載のビスマス
層状化合物焼結体。
6. The main crystal has an average aspect ratio of 3 to 10.
The bismuth layered compound sintered body according to claim 1, wherein:
【請求項7】セラミック原料粉末としてビスマス層状化
合物を90重量%以上含む粉末に溶媒を添加したスラリ
ーを作製し、該スラリーに対して一方向に1T以上の磁
場を印加して前記ビスマス層状化合物粉末をc面と垂直
な結晶面に配向させつつ前記スラリーを固化した後、焼
成することを特徴とするビスマス層状化合物焼結体の製
造方法。
7. A slurry in which a solvent is added to a powder containing at least 90% by weight of a bismuth layered compound as a ceramic raw material powder, and a magnetic field of 1 T or more is applied to the slurry in one direction to produce the bismuth layered compound powder. Solidifying the slurry while orienting the slurry to a crystal plane perpendicular to the c-plane, and then firing the slurry to produce a bismuth layered compound sintered body.
【請求項8】前記ビスマス層状化合物粉末の平均粒径が
0.5〜2.0μmであることを特徴とする請求項6記
載のビスマス層状化合物焼結体の製造方法。
8. The method for producing a bismuth layered compound sintered body according to claim 6, wherein the average particle diameter of the bismuth layered compound powder is 0.5 to 2.0 μm.
JP2000309785A 2000-10-10 2000-10-10 Method for producing bismuth layered compound sintered body Expired - Fee Related JP4688271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309785A JP4688271B2 (en) 2000-10-10 2000-10-10 Method for producing bismuth layered compound sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309785A JP4688271B2 (en) 2000-10-10 2000-10-10 Method for producing bismuth layered compound sintered body

Publications (2)

Publication Number Publication Date
JP2002121069A true JP2002121069A (en) 2002-04-23
JP4688271B2 JP4688271B2 (en) 2011-05-25

Family

ID=18789878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309785A Expired - Fee Related JP4688271B2 (en) 2000-10-10 2000-10-10 Method for producing bismuth layered compound sintered body

Country Status (1)

Country Link
JP (1) JP4688271B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217111A (en) * 2004-01-29 2005-08-11 Sumitomo Heavy Ind Ltd High molecular piezoelectric body and apparatus for manufacturing the same
WO2006043407A1 (en) * 2004-10-21 2006-04-27 Murata Manufacturing Co., Ltd Production method for non-ferromagnetic substance molded product, and non-ferromagnetic substance molded product
JP2008208004A (en) * 2007-02-27 2008-09-11 Nagaoka Univ Of Technology Method for producing crystalline orientation ceramic
JP2010254560A (en) * 2009-03-31 2010-11-11 Canon Inc Ceramic, piezoelectric device, and method for producing the device
WO2012026397A1 (en) * 2010-08-26 2012-03-01 独立行政法人物質・材料研究機構 Piezoelectric ceramic and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139552A (en) * 1996-08-30 1998-05-26 Toyota Central Res & Dev Lab Inc Crystal oriented ceramics and its production
JPH10265271A (en) * 1997-03-26 1998-10-06 Toyota Central Res & Dev Lab Inc Production of crystal oriented ceramics
JP2000034194A (en) * 1998-07-15 2000-02-02 Toyota Central Res & Dev Lab Inc Crystal-oriented bismuth layered perovskite-type compound and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139552A (en) * 1996-08-30 1998-05-26 Toyota Central Res & Dev Lab Inc Crystal oriented ceramics and its production
JPH10265271A (en) * 1997-03-26 1998-10-06 Toyota Central Res & Dev Lab Inc Production of crystal oriented ceramics
JP2000034194A (en) * 1998-07-15 2000-02-02 Toyota Central Res & Dev Lab Inc Crystal-oriented bismuth layered perovskite-type compound and its production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010043376, Tsuguto Takeuchi, "Piezoelectric Properties of Bismuth Layer−Structured Ferroelectric Ceramics with a Preferred Orienta", Japanese Journal of Applied Physics, 199909, Vol.38, P.5553−5556, JP *
JPN6010043377, 鈴木 達, "強磁場中スリップキャストによるアルミナの配向", 粉体粉末冶金協会講演概要集平成12年度春季大会, 20000516, P.98, JP, 粉体粉末冶金協会 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217111A (en) * 2004-01-29 2005-08-11 Sumitomo Heavy Ind Ltd High molecular piezoelectric body and apparatus for manufacturing the same
WO2006043407A1 (en) * 2004-10-21 2006-04-27 Murata Manufacturing Co., Ltd Production method for non-ferromagnetic substance molded product, and non-ferromagnetic substance molded product
JP2008208004A (en) * 2007-02-27 2008-09-11 Nagaoka Univ Of Technology Method for producing crystalline orientation ceramic
JP4726082B2 (en) * 2007-02-27 2011-07-20 国立大学法人長岡技術科学大学 Method for producing crystal-oriented ceramics
JP2010254560A (en) * 2009-03-31 2010-11-11 Canon Inc Ceramic, piezoelectric device, and method for producing the device
WO2012026397A1 (en) * 2010-08-26 2012-03-01 独立行政法人物質・材料研究機構 Piezoelectric ceramic and method for producing same
JPWO2012026397A1 (en) * 2010-08-26 2013-10-28 独立行政法人物質・材料研究機構 Piezoelectric ceramics and manufacturing method thereof

Also Published As

Publication number Publication date
JP4688271B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4541985B2 (en) Method for producing polycrystal
EP1253121B1 (en) Grain oriented ceramics and a production process thereof, as well as an anisotropically-shaped powder and a production process thereof
JPH1160333A (en) Piezoelectric ceramics
JP3666182B2 (en) Method for producing crystal-oriented ceramics
JP4534531B2 (en) Method for producing anisotropic shaped powder
JP4756312B2 (en) Anisotropic shaped powder, method for producing the same, and method for producing crystal-oriented ceramics
EP2269965B1 (en) Piezoelectric ceramic and piezoelectric ceramic composition
CN104844202A (en) Lead manganate antimonate doped niobium nickel-lead zirconate titanate piezoelectric ceramic
EP3085678B1 (en) Piezoelectric ceramic, manufacturing method therefor, and electronic component
US6627104B1 (en) Mechanochemical fabrication of electroceramics
JP4502493B2 (en) Zinc oxide sintered body and method for producing the same
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP4688271B2 (en) Method for producing bismuth layered compound sintered body
JPH08259323A (en) Compound lanthanum/lead/zirconium/titanium perovskite, ceramic composition and actuator
JP2010163313A (en) Method of manufacturing crystal-orientated ceramic
JP3020493B1 (en) Piezoelectric ceramics
JP3032761B1 (en) Piezoelectric ceramics
JP2001106568A (en) CRYSTAL-GRAIN-ORIENTED CERAMICS, MANUFACTURING PROCESS OF THE SAME AND PRODUCTION PROCESS OF PLATELIKE Ba6Ti17O40 POWDER FOR MANUFACTURING THE SAME
JP4419232B2 (en) Crystalline oriented bismuth layered perovskite type porcelain composition and method for producing the same
JPH07267733A (en) Piezoelectric porcelain composition
JP2010222185A (en) Anisotropic-shape powder and method for manufacturing of crystal-oriented ceramic
JP2002284574A (en) Manufacturing method of piezoelectric ceramic
JPH06116010A (en) Production of bismuth laminar compound
JP2010222193A (en) Method for manufacturing crystal-oriented ceramic
Kim et al. (NaxK0. 98-xLi0. 02)(Nb0. 8Ta0. 2) O3 Lead-Free Piezoelectric Ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees