JP4726082B2 - Method for producing crystal-oriented ceramics - Google Patents

Method for producing crystal-oriented ceramics Download PDF

Info

Publication number
JP4726082B2
JP4726082B2 JP2007047575A JP2007047575A JP4726082B2 JP 4726082 B2 JP4726082 B2 JP 4726082B2 JP 2007047575 A JP2007047575 A JP 2007047575A JP 2007047575 A JP2007047575 A JP 2007047575A JP 4726082 B2 JP4726082 B2 JP 4726082B2
Authority
JP
Japan
Prior art keywords
particles
producing
particle
target substance
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007047575A
Other languages
Japanese (ja)
Other versions
JP2008208004A (en
Inventor
諭 田中
敬三 植松
和人 田原
敦 牧谷
豊 土信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Nagaoka University of Technology
Original Assignee
Taiyo Yuden Co Ltd
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd, Nagaoka University of Technology filed Critical Taiyo Yuden Co Ltd
Priority to JP2007047575A priority Critical patent/JP4726082B2/en
Publication of JP2008208004A publication Critical patent/JP2008208004A/en
Application granted granted Critical
Publication of JP4726082B2 publication Critical patent/JP4726082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構成粒子の結晶方位を揃えた結晶配向セラミックスの製造方法に関する。   The present invention relates to a method for producing a crystallographically-oriented ceramic in which the crystal orientations of constituent particles are aligned.

結晶配向セラミックスの製造方法としてRTGG(Reactive Templated Grain Growth)法と称される方法が知られている。このRTGG法は従前のTGG(Templated Grain Growth)法の改良に当たるもので、主原料たるテンプレート粒子と補足原料とを含むスラリーを作成し、該スラリーにドクターブレード等によって応力を加えてテンプレート粒子が配列した成形体を作成し、該成形体を熱処理してテンプレート粒子と補足原料とを反応焼結させて目的物質の焼結体(結晶配向セラミックス)を得る方法である。   As a method for producing a crystallographically-oriented ceramic, a method called RTGG (Reactive Templated Grain Growth) method is known. This RTGG method is an improvement of the conventional TGG (Templated Grain Growth) method. A slurry containing template particles as a main raw material and a supplementary raw material is prepared, and stress is applied to the slurry by a doctor blade or the like to arrange the template particles. In this method, the molded body is prepared, and the molded body is heat-treated to react and sinter the template particles and the supplementary raw material to obtain a sintered body (crystal oriented ceramic) of the target substance.

また、結晶配向セラミックスの製造方法として強磁場法と称される方法も知られている。この強磁場法は、主原料たる粒子を含むスラリーを作成し、該スラリーに強磁場を印加して粒子が配向した成形体を作成し、該成形体を熱処理して焼結体(結晶配向セラミックス)を得る方法である。
特許3336872 特許3650872 特開2004−6704
In addition, a method called a strong magnetic field method is also known as a method for producing crystal-oriented ceramics. In this strong magnetic field method, a slurry containing particles as a main raw material is prepared, a strong magnetic field is applied to the slurry to form a compact in which the particles are oriented, and the compact is heat treated to obtain a sintered compact (crystal oriented ceramics). ).
Patent 33368872 Patent 3650872 JP2004-6704

前記RTGG法は、テンプレート粒子の成長速度の差異による異方性を結晶配向に利用しているため、配向させる結晶方位差が限定されることもあって構成粒子の結晶方位を制御し難い。一方、前記強磁場法は、強磁場を利用して配向を行っているためRTGG法に比べて構成粒子の結晶方位を制御し易いが、より高い結晶配向度を得るには未だ改良の余地がある。   In the RTGG method, since the anisotropy due to the difference in the growth rate of the template particles is utilized for crystal orientation, the crystal orientation of the constituent particles is difficult to control because the crystal orientation difference to be oriented is limited. On the other hand, since the strong magnetic field method is oriented using a strong magnetic field, the crystal orientation of the constituent particles is easier to control than the RTGG method, but there is still room for improvement in order to obtain a higher degree of crystal orientation. is there.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、高い結晶配向度が得られる結晶配向セラミックスの製造方法を提供することにある。   The present invention was created in view of the above circumstances, and an object thereof is to provide a method for producing a crystallographically-oriented ceramic capable of obtaining a high degree of crystal orientation.

前記課題を達成するため、本発明の結晶配向セラミックスの製造方法は、強磁場印加により配向し得る第1粒子と該第1粒子への金属イオン拡散を伴う反応焼結により目的物質を生成し得る第2粒子とを含むスラリーを作成するステップと、スラリーに強磁場を印加して第1粒子が配向した成形体を作成するステップと、成形体を熱処理して第2粒子から第1粒子への金属イオン拡散により第1粒子と第2粒子を反応焼結させて目的物質の焼結体を作成するステップとを備える、ことをその特徴とする。   In order to achieve the above object, the method for producing a crystallographically-oriented ceramic of the present invention can generate a target substance by first sintering that can be oriented by applying a strong magnetic field and reactive sintering involving diffusion of metal ions into the first particle. Creating a slurry containing the second particles, applying a strong magnetic field to the slurry to create a shaped body in which the first particles are oriented, and heat-treating the shaped body from the second particles to the first particles. And a step of reacting and sintering the first particles and the second particles by metal ion diffusion to create a sintered body of the target substance.

この結晶配向セラミックスの製造方法によれば、強磁場を印加して第1粒子を配向させた後に第2粒子から第1粒子への金属イオン拡散により第1粒子と第2粒子を反応焼結させているので、配向後の第1粒子の結晶方位は反応によって変化せず、目的物質の粒子は配向後の第1粒子の結晶方位に沿って成長する。つまり、生成された目的物質の粒子の結晶方位は配向後の第1粒子の結晶方位に従うため粒成長によっても変化することはないので、作成された焼結体に高い結晶配向度を得ることができる。   According to this method for producing a crystal-oriented ceramic, after applying a strong magnetic field to orient the first particles, the first particles and the second particles are reacted and sintered by metal ion diffusion from the second particles to the first particles. Therefore, the crystal orientation of the first particles after orientation does not change by reaction, and the particles of the target substance grow along the crystal orientation of the first particles after orientation. In other words, since the crystal orientation of the produced target substance particles follows the crystal orientation of the first particles after orientation, it does not change due to grain growth, so that a high degree of crystal orientation can be obtained in the produced sintered body. it can.

本発明によれば、高い結晶配向度が得られる結晶配向セラミックスの製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the crystal orientation ceramics from which a high degree of crystal orientation is obtained can be provided.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

本発明による結晶配向セラミックスの製造方法は、強磁場印加により配向し得る第1粒子と該第1粒子への金属イオン拡散を伴う反応焼結により目的物質を生成し得る第2粒子とを含むスラリーを作成するステップと、スラリーに強磁場を印加して第1粒子が配向した成形体を作成するステップと、成形体を熱処理して第2粒子から第1粒子への金属イオン拡散により第1粒子と第2粒子を反応焼結させて目的物質の焼結体を作成するステップとを備えている。   The method for producing a crystallographically-oriented ceramic according to the present invention comprises a slurry containing first particles that can be oriented by applying a strong magnetic field and second particles that can produce a target substance by reactive sintering involving diffusion of metal ions into the first particles. A step in which a strong magnetic field is applied to the slurry to form a shaped body in which the first particles are oriented, and the shaped body is heat-treated to diffuse the first particles by metal ion diffusion from the second particles to the first particles. And a step of reacting and sintering the second particles to produce a sintered body of the target substance.

前記スラリーには、第1粒子と第2粒子がそれぞれスラリー中に分散しているもの、或いは、第2粒子が表面にコーティングされた第1粒子がスラリー中に分散しているものが利用できる。前者のスラリーの場合には第1粒子と第2粒子の粒径比(第1粒子の粒径/第2粒子の粒径)が3.8以上、好ましくは3.8以上22以下のものを用いる。後者のスラリーの場合には第1粒子の粒径と第2粒子のコーティング厚さの比(第1粒子の粒径/第2粒子のコーティング厚さ)が4.6以上、好ましくは4.6以上27以下のものを用いる。   As the slurry, one in which the first particles and the second particles are dispersed in the slurry, or one in which the first particles coated on the surface of the second particles are dispersed in the slurry can be used. In the case of the former slurry, the particle size ratio between the first particles and the second particles (the particle size of the first particles / the particle size of the second particles) is 3.8 or more, preferably 3.8 or more and 22 or less. Use. In the case of the latter slurry, the ratio of the first particle size to the second particle coating thickness (first particle size / second particle coating thickness) is 4.6 or more, preferably 4.6. 27 or less is used.

前記目的物質には、一般式が(Bi22)2+(Am-1m3m+1)2-で表され、且つ、Aが1〜3価の金属元素から成りBが2〜6価の金属元素から成るビスマス層状化合物や、一般式が(A1)4(A2)24(B1)2(B2)830で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成るタングステンブロンズ型化合物や、一般式が(A3)(B3)O3で表され、且つ、A3が1〜3価の金属元素から成りB3が3〜5価の金属元素から成るペロブスカイト型化合物が挙げられる。 The target substance is represented by the general formula (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- , and A is composed of 1 to 3 valent metal elements. A bismuth layered compound composed of a divalent to hexavalent metal element, or a general formula represented by (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are 1 to 2 A tungsten bronze type compound composed of a valent metal element, C composed of a monovalent metal element, and B1 and B2 composed of a pentavalent metal element, or a general formula represented by (A3) (B3) O 3 , and A3 A perovskite type compound in which is composed of 1 to 3 valent metal elements and B3 is composed of 3 to 5 valent metal elements.

目的物質として前記ビスマス層状化合物を得る場合には、(1)第1粒子としてBiを含む1〜3価の金属元素を少なくとも1種類含み、且つ、Biを除く2〜6価の金属元素を少なくとも1種類含むビスマス層状化合物を用い、第2粒子として目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質を用いるか、(2)第1粒子としてその一般式が(A1)4(A2)24(B1)2(B2)830で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成るタングステンブロンズ型化合物を用い、第2粒子として目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質を用いる。 In the case of obtaining the bismuth layered compound as the target substance, (1) at least one 1 to 3 valent metal element containing Bi as the first particles and at least 2 to 6 valent metal elements excluding Bi Use one kind of bismuth layered compound, and use as the second particle a material capable of diffusing metal ions necessary for producing a sintered body of the target material, or (2) the general formula of the first particle as (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are composed of a monovalent metal element, C is composed of a monovalent metal element, and B1 and B2 are 5 A tungsten bronze-type compound composed of a valent metal element is used, and a substance capable of diffusing metal ions necessary for producing a sintered body of a target substance is used as the second particles.

前記(1)の具体例を挙げれば、目的物質としてSrBi4Ti415を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてSrTiO3を用い、目的物質としてCaBi4Ti415を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてCaTiO3を用い、目的物質としてBaBi4Ti415を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてBaTiO3を用い、目的物質としてNa0.5Bi4.5Ti415を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてBi0.5Na0.5TiO3を用い、目的物質としてK0.5Bi4.5Ti415を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてBi0.50.5TiO3を用い、目的物質としてPbBi4Ti415を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてPbTiO3を用い、目的物質としてSr2Bi4Ti518を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてSrTiO3を用い、目的物質としてBa2Bi4Ti518を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてBaTiO3を用い、目的物質としてPb2Bi4Ti518を得る場合には第1粒子としてBi4Ti312を用い第2粒子としてPbTiO3を用いる。 As a specific example of the above (1), when obtaining SrBi 4 Ti 4 O 15 as the target substance, Bi 4 Ti 3 O 12 is used as the first particle, SrTiO 3 is used as the second particle, and CaBi as the target substance. When obtaining 4 Ti 4 O 15 , Bi 4 Ti 3 O 12 is used as the first particles, CaTiO 3 is used as the second particles, and when BiBi 4 Ti 4 O 15 is obtained as the target substance, Bi is used as the first particles. When 4 Ti 3 O 12 is used and BaTiO 3 is used as the second particle and Na 0.5 Bi 4.5 Ti 4 O 15 is obtained as the target substance, Bi 4 Ti 3 O 12 is used as the first particle and Bi 0.5 is used as the second particle. When Na 0.5 TiO 3 is used and K 0.5 Bi 4.5 Ti 4 O 15 is obtained as the target substance, Bi 4 Ti 3 O 12 is used as the first particle, Bi 0.5 K 0.5 TiO 3 is used as the second particle, and the target substance is used. As PbBi 4 T When i 4 O 15 is obtained, Bi 4 Ti 3 O 12 is used as the first particle, PbTiO 3 is used as the second particle, and when Sr 2 Bi 4 Ti 5 O 18 is obtained as the target substance, the first particle is used. When Bi 4 Ti 3 O 12 is used and SrTiO 3 is used as the second particle and Ba 2 Bi 4 Ti 5 O 18 is obtained as the target substance, Bi 4 Ti 3 O 12 is used as the first particle and BaTiO is used as the second particle. 3 is used, Pb 2 Bi 4 Ti 5 O 18 is obtained as a target substance, Bi 4 Ti 3 O 12 is used as the first particles, and PbTiO 3 is used as the second particles.

前記(2)の具体例を挙げれば、目的物質としてSrBi2Nb29を得る場合には第1粒子としてSrNb26を用い第2粒子としてBi23を用い、目的物質としてSrBi2Ta29を得る場合には第1粒子としてSrTa26を用い第2粒子としてBi23を用い、目的物質としてBaBi2Nb29を得る場合には第1粒子としてBaNb26を用い第2粒子としてBi23を用い、目的物質としてBaBi2Ta29を得る場合には第1粒子としてBaTa26を用い第2粒子としてBi23を用い、目的物質としてPbBi2Nb29を得る場合には第1粒子としてPbNb26を用い第2粒子としてBi23を用い、目的物質としてPbBi2Ta29を得る場合には第1粒子としてPbTa26を用い第2粒子としてBi23を用いる。 To give a specific example of the above (2), when obtaining SrBi 2 Nb 2 O 9 as the target substance, SrNb 2 O 6 is used as the first particle, Bi 2 O 3 is used as the second particle, and SrBi as the target substance. When 2 Ta 2 O 9 is obtained, SrTa 2 O 6 is used as the first particle, Bi 2 O 3 is used as the second particle, and when BaBi 2 Nb 2 O 9 is obtained as the target substance, BaNb is used as the first particle. When using 2 O 6 and using Bi 2 O 3 as the second particle and obtaining BaBi 2 Ta 2 O 9 as the target substance, BaTa 2 O 6 is used as the first particle and Bi 2 O 3 is used as the second particle. the Bi 2 O 3 used as the second particles with PbNb 2 O 6 as the first particles in the case of obtaining PbBi 2 Nb 2 O 9 as a target substance, in the case of obtaining a PbBi 2 Ta 2 O 9 as target substance use the PBTA 2 O 6 as the first particles Using Bi 2 O 3 as the second particles.

また、目的物質として前記タングステンブロンズ型化合物を得る場合には、(1)第1粒子としてその一般式が(A1)4(A2)24(B1)2(B2)830で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成る目的物質よりも分子量の小さなタングステンブロンズ型化合物を用い、第2粒子として目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質を用いる。 When obtaining the tungsten bronze type compound as the target substance, (1) the general formula of the first particle is represented by (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 In addition, a tungsten bronze type compound having a molecular weight smaller than that of the target substance, in which A1 and A2 are composed of 1 to 2 metal elements, C is composed of monovalent metal elements, and B1 and B2 are pentavalent metal elements, A material capable of diffusing metal ions necessary for producing a sintered body of the target material is used as the second particles.

前記(1)の具体例を挙げれば、目的物質としてSr2NaNb515を得る場合には第1粒子としてSrNb26を用い第2粒子としてNaNbO3を用い、目的物質としてBa2NaNb515を得る場合には第1粒子としてBaNb26を用い第2粒子としてNaNbO3を用い、目的物質としてKSr2Nb515を得る場合には第1粒子としてSrNb25を用い第2粒子としてKNbO3を用い、目的物質としてKBa2Nb515を得る場合には第1粒子としてBaNb25を用い第2粒子としてKNbO3を用いる。 As a specific example of the (1), the NaNbO 3 used as the second particles with SrNb 2 O 6 as the first particles in the case of obtaining a Sr 2 NaNb 5 O 15 as a target substance, Ba 2 NaNb purpose material When obtaining 5 O 15 , BaNb 2 O 6 is used as the first particles, NaNbO 3 is used as the second particles, and when KSr 2 Nb 5 O 15 is obtained as the target substance, SrNb 2 O 5 is used as the first particles. When KNbO 3 is used as the second particle and KBa 2 Nb 5 O 15 is obtained as the target substance, BaNb 2 O 5 is used as the first particle and KNbO 3 is used as the second particle.

さらに、目的物質として前記ペロブスカイト型化合物を得る場合には、(1)第1粒子としてその一般式が(Bi22)2+(Am-1m3m+1)2-で表され、且つ、Aが1〜3価の金属元素から成りBが2〜6価の金属元素から成るビスマス層状化合物を用い、第2粒子として目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質を用いるか、(2)第1粒子としてその一般式が(A4)4(B4)617で表され、且つ、A4が1価の金属元素から成りB4が5価の金属元素から成る化合物を用い、第2粒子として目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質を用いるか、(3)第1粒子としてその一般式が(A1)4(A2)24(B1)2(B2)830で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成るタングステンブロンズ型化合物を用い、第2粒子として目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質を用いる。 Further, when the perovskite type compound is obtained as a target substance, (1) the general formula of the first particle is (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- And a bismuth layered compound in which A is composed of 1-3 valent metal elements and B is composed of 2-6 valent metal elements, and metal ion diffusion necessary for producing a sintered body of the target substance as second particles (2) The general formula of the first particles is (A4) 4 (B4) 6 O 17 , and A4 is composed of a monovalent metal element and B4 is pentavalent. A compound composed of a metal element is used, and a substance capable of diffusing metal ions necessary for producing a sintered body of the target substance is used as the second particle, or (3) the general formula is (A1) 4 as the first particle. (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are composed of 1 to 2 valent metal elements, and C is 1 valent A tungsten bronze type compound consisting of a metal element and B1 and B2 consisting of a pentavalent metal element is used, and a substance capable of diffusing metal ions necessary for producing a sintered body of the target substance is used as the second particles.

前記(1)の具体例を挙げれば、目的物質としてBi0.50.5TiO3を得る場合には第1粒子としてBi4Ti312を用い第2粒子として (0.25K2O・0.625TiO2)を用い、目的物質としてBi0.5Na0.5TiO3を得る場合には第1粒子としてBi4Ti312を用い第2粒子として(0.25Na2O・0.625TiO2)を用いる。 Wherein (1) the way of specific example, Bi 0.5 K 0.5 in the case of obtaining a TiO 3 as second particles using a Bi 4 Ti 3 O 12 as the first particles (0.25K 2O · 0.625TiO purpose material 2 ), when Bi 0.5 Na 0.5 TiO 3 is obtained as the target substance, Bi 4 Ti 3 O 12 is used as the first particles and (0.25Na 2 O · 0.625 TiO 2 ) is used as the second particles.

前記(2)の具体例を挙げれば、目的物質としてKNbO3を得る場合には第1粒子としてK4Nb617を用い第2粒子としてK2CO3を用い、目的物質として(K,Na)NbO3を得る場合には第1粒子としてK4Nb617を用い第2粒子として(K,Na)2CO3を用い、目的物質として(K,Na,Li)NbO3を得る場合には第1粒子としてK4Nb617を用い第2粒子として(K,Na,Li)2CO3を用いる。 As a specific example of the above (2), when obtaining KNbO 3 as the target substance, K 4 Nb 6 O 17 is used as the first particle, K 2 CO 3 is used as the second particle, and (K, When obtaining Na) NbO 3 , K 4 Nb 6 O 17 is used as the first particles, (K, Na) 2 CO 3 is used as the second particles, and (K, Na, Li) NbO 3 is obtained as the target substance. In this case, K 4 Nb 6 O 17 is used as the first particles, and (K, Na, Li) 2 CO 3 is used as the second particles.

前記(3)の具体例を挙げれば、目的物質として(K,Na,Sr)NbO3を得る場合には第1粒子としてSrNb26を用い第2粒子として(K,Na)NbO3を用い、目的物質として(K,Na,Ba)NbO3を得る場合には第1粒子としてBaNb26を用い第2粒子として(K,Na)NbO3を用い、目的物質として(K,Na,Li,Sr)NbO3を得る場合には第1粒子としてSrNb26を用い第2粒子として(K,Na,Li)NbO3を用い、目的物質として(K,Na,Li,Ba)NbO3を得る場合には第1粒子としてBaNb26を用い第2粒子として(K,Na,Li)NbO3を用い、目的物質として(K,Na,Li)NbO3を得る場合には第1粒子としてK3Li2Nb515を用い第2粒子として(K,Na)NbO3を用いる。 If the specific example of said (3) is given, when obtaining (K, Na, Sr) NbO 3 as a target substance, SrNb 2 O 6 is used as the first particle and (K, Na) NbO 3 is used as the second particle. When (K, Na, Ba) NbO 3 is used as the target substance, BaNb 2 O 6 is used as the first particle, (K, Na) NbO 3 is used as the second particle, and (K, Na) is used as the target substance. , Li, Sr) NbO 3 , SrNb 2 O 6 is used as the first particle, (K, Na, Li) NbO 3 is used as the second particle, and (K, Na, Li, Ba) is used as the target substance. When obtaining NbO 3 , BaNb 2 O 6 is used as the first particles, (K, Na, Li) NbO 3 is used as the second particles, and (K, Na, Li) NbO 3 is obtained as the target substance. as the second particle with K 3 Li 2 Nb 5 O 15 as the first particles (K, Na) NbO 3 There.

[実施例1]
以下に、SrBi4Ti415から成る結晶配向セラミックスの製法例を説明する。
[Example 1]
The following describes the preparation example of a crystal oriented ceramics composed of SrBi 4 Ti 4 O 15.

まず、Bi23粒子とTiO2粒子をmol比2:3で固相反応により合成して平均粒径1μmのBi4Ti312粒子を作成する。 First, Bi 2 O 3 particles and TiO 2 particles mol ratio of 2: synthesized by the solid phase reaction at 3 to create the Bi 4 Ti 3 O 12 particles having an average particle diameter of 1 [mu] m.

次に、平均粒径1μmのBi4Ti312粒子と平均粒径0.1μmのSrTiO3粒子をSrBi4Ti415の化学両論組成になるようにmol比1:1で配合し、これにイオン交換水と分散剤(中京油脂製D305)を固形分濃度が30vol%となるように添加してさらにボールミルで1hour撹拌してスラリーを作成する。 Next, Bi 4 Ti 3 O 12 particles having an average particle diameter of 1 μm and SrTiO 3 particles having an average particle diameter of 0.1 μm are blended at a molar ratio of 1: 1 so as to have a stoichiometric composition of SrBi 4 Ti 4 O 15 . To this, ion-exchanged water and a dispersing agent (D305, manufactured by Chukyo Yushi Co., Ltd.) are added so that the solid concentration becomes 30 vol%, and further stirred for 1 hour with a ball mill to prepare a slurry.

次に、スラリーをプラスチック容器に流し込み、スラリー面が磁場に直交するように該プラスチック容器を超伝導マグネット内に静置してスラリーにそれぞれ10Tの強磁場を印加し、強磁場印加中でスラリーを自然乾燥(約2日間)と温風乾燥(40℃程度、約1日)の何れかによって乾燥して成形体を作成する。   Next, the slurry is poured into a plastic container, the plastic container is left in a superconducting magnet so that the slurry surface is orthogonal to the magnetic field, and a strong magnetic field of 10 T is applied to the slurry. A molded body is prepared by drying by either natural drying (about 2 days) or warm air drying (about 40 ° C., about 1 day).

次に、成形体をプラスチック容器から取り出し、これを大気中で1000℃〜1200℃で2hour熱処理してBi4Ti312粒子とSrTiO3粒子とを反応焼結させてSrBi4Ti415から成る焼結体(結晶配向セラミックス)を作成する。作成された焼結体をXRD(X−ray diffraction,X線回折)で測定したところ、SrBi4Ti415粒子の結晶配向度は0.88(ロットゲーリング法で算出)であり極めて高い結晶配向度が得られることが確認できた。 Next, the molded body is taken out from the plastic container, and this is heat treated in the atmosphere at 1000 ° C. to 1200 ° C. for 2 hours to cause Bi 4 Ti 3 O 12 particles and SrTiO 3 particles to react and sinter to form SrBi 4 Ti 4 O 15. A sintered body (crystal oriented ceramics) made of When the prepared sintered body was measured by XRD (X-ray diffraction, X-ray diffraction), the degree of crystal orientation of the SrBi 4 Ti 4 O 15 particles was 0.88 (calculated by the Lotgering method), which is an extremely high crystal. It was confirmed that the degree of orientation was obtained.

図1(A)は前記スラリー中のBi4Ti312粒子とSrTiO3粒子の様子を模式的に示すもので、Bi4Ti312粒子とSrTiO3粒子は粒径が小さなSrTiO3粒子がBi4Ti312粒子の間に入り込むような状態で分散している。 1 (A) is the a state of the Bi 4 Ti 3 O 12 particles and SrTiO 3 particles in the slurry shows schematically, Bi 4 Ti 3 O 12 particles and SrTiO 3 particles particle size smaller SrTiO 3 particles Is dispersed in such a manner that it enters between the Bi 4 Ti 3 O 12 particles.

図1(B)は前記成形体中のBi4Ti312粒子とSrTiO3粒子の様子を模式的に示すもので、XRDの測定結果によれば、Bi4Ti312粒子は強磁場印加によってそのa−b面が強磁場方向に向くように配向されている。一方、SrTiO3粒子は強磁場を印加してもBi4Ti312粒子のようには配向されない。 FIG. 1 (B) schematically shows the state of Bi 4 Ti 3 O 12 particles and SrTiO 3 particles in the compact. According to the XRD measurement results, Bi 4 Ti 3 O 12 particles are strong magnetic fields. By application, the ab plane is oriented so as to face the direction of the strong magnetic field. On the other hand, SrTiO 3 particles are not oriented like Bi 4 Ti 3 O 12 particles even when a strong magnetic field is applied.

図1(C)及び図1(D)は前記反応焼結途中の様子を模式的に示すもので、熱処理によってSrTiO3粒子からBi4Ti312粒子にSr2 +が拡散してBi4Ti312粒子がSrBi4Ti415粒子に変化する反応が生じ、生成されたSrBi4Ti415粒子が配向方向に粒成長する。Sr2 +はBi4Ti312粒子に拡散するため、配向後のBi4Ti312粒子の結晶方位は反応によって変化せず、SrBi4Ti415粒子は配向後のBi4Ti312粒子の結晶方位に沿って成長する。つまり、生成されたSrBi4Ti415粒子の結晶方位は配向後のBi4Ti312粒子の結晶方位に従うために粒成長によっても変化することはないので、作成された焼結体に高い結晶配向度を得ることができる。 1 (C) and 1 (D) schematically show the state during the reaction sintering, and Sr 2 + diffuses from the SrTiO 3 particles to the Bi 4 Ti 3 O 12 particles by the heat treatment, and Bi 4. A reaction occurs in which the Ti 3 O 12 particles change to SrBi 4 Ti 4 O 15 particles, and the generated SrBi 4 Ti 4 O 15 particles grow in the orientation direction. For sr 2 + is to diffuse the Bi 4 Ti 3 O 12 particles, the crystal orientation of Bi 4 Ti 3 O 12 particles after orientation is unchanged by the reaction, SrBi 4 Ti 4 O 15 particles after orientation Bi 4 Ti It grows along the crystal orientation of 3 O 12 grains. That is, since the crystal orientation of the produced SrBi 4 Ti 4 O 15 particles follows the crystal orientation of the Bi 4 Ti 3 O 12 particles after orientation, the crystal orientation does not change even with grain growth. A high degree of crystal orientation can be obtained.

ところで、熱処理時にはBi4Ti312粒子からBi3 +の拡散も生じ得るため、先に述べたような反応焼結を効果的に行うにはBi3 +の拡散よりもSr2 +の拡散が促進されるようにBi4Ti312粒子とSrTiO3粒子の粒径比(Bi4Ti312粒子の粒径/SrTiO3粒子の粒径)を考慮する必要がある。 By the way, since Bi 3 + diffusion can also occur from Bi 4 Ti 3 O 12 particles during heat treatment, Sr 2 + diffusion is more effective than Bi 3 + diffusion for effective reactive sintering as described above. It is necessary to consider the particle size ratio of Bi 4 Ti 3 O 12 particles and SrTiO 3 particles (Bi 4 Ti 3 O 12 particle size / SrTiO 3 particle size).

前記粒径比による拡散現象及び結晶配向度の違いを検証するため、0.1μm以外の平均粒径のSrTiO3粒子を使用して同様の手順で焼結体を幾つか作成して、各焼結体をXRDで測定してSrBi4Ti415粒子の結晶配向度を確認した。 In order to verify the difference in the diffusion phenomenon and the degree of crystal orientation due to the particle size ratio, several sintered bodies were prepared in the same procedure using SrTiO 3 particles having an average particle size other than 0.1 μm, The aggregate was measured by XRD to confirm the degree of crystal orientation of the SrBi 4 Ti 4 O 15 particles.

図2はその確認結果を示すもので、SrTiO3粒子の粒径が小さいほどSrBi4Ti415粒子の結晶配向度は高くなること、具体的には前記粒径比が3.8以上で0.6以上の結晶配向度が得られること、また、実際上では結晶配向度を1.0にすることは難しいがSrTiO3粒子の粒径を選択することにより1.0に近い結晶配向度を得ることが確認できた。SrBi4Ti415粒子に0.6以上の結晶配向度が得られれば実用に適した圧電特性等の電気特性が得られるため、先に述べたBi4Ti312粒子とSrTiO3粒子の粒径比(Bi4Ti312粒子の粒径/SrTiO3粒子の粒径)は3.8以上であればよい。また、前記粒径比が22で結晶配向度は0.99に達するが、それ以上前記粒径比を上げても結晶配向度の上昇は僅かであり、SrTiO3粒子の粒径が小さくなるが故に均一なスラリー分散状態を作ることが難しくなることから、前記粒径比は3.8〜22が実用上で好ましい範囲となる。 FIG. 2 shows the result of the confirmation. The smaller the particle size of the SrTiO 3 particles, the higher the degree of crystal orientation of the SrBi 4 Ti 4 O 15 particles. Specifically, the particle size ratio is 3.8 or more. A crystal orientation degree of 0.6 or more can be obtained. In practice, it is difficult to set the crystal orientation degree to 1.0, but the crystal orientation degree close to 1.0 can be obtained by selecting the grain size of the SrTiO 3 particles. Could be confirmed. If a crystal orientation degree of 0.6 or more can be obtained in the SrBi 4 Ti 4 O 15 particles, electrical characteristics such as piezoelectric characteristics suitable for practical use can be obtained. Therefore, the Bi 4 Ti 3 O 12 particles and the SrTiO 3 particles described above are used. The particle size ratio (Bi 4 Ti 3 O 12 particles / SrTiO 3 particles) may be 3.8 or more. Further, when the particle size ratio is 22, the degree of crystal orientation reaches 0.99, but even if the particle size ratio is further increased, the increase in the crystal orientation degree is slight and the particle size of the SrTiO 3 particles becomes small. Therefore, since it becomes difficult to make a uniform slurry dispersion state, the particle size ratio is preferably in a practical range of 3.8 to 22.

[実施例2]
以下に、SrBi4Ti415から成る結晶配向セラミックスの他の製法例を説明する。
[Example 2]
Hereinafter, another example of a method for producing a crystallographically-oriented ceramic made of SrBi 4 Ti 4 O 15 will be described.

まず、平均粒径1μmのBi4Ti312粒子と平均粒径0.2μmのSrTiO3粒子をSrBi4Ti415の化学両論組成になるように配合して乾式摩砕し、SrTiO3粒子が厚さ0.07μmで表面にコーティングされたBi4Ti312粒子を作成する。 First, Bi 4 Ti 3 O 12 particles having an average particle diameter of 1 μm and SrTiO 3 particles having an average particle diameter of 0.2 μm are blended so as to have a stoichiometric composition of SrBi 4 Ti 4 O 15 , dry-milled, and SrTiO 3. Bi 4 Ti 3 O 12 particles are prepared with particles coated on the surface with a thickness of 0.07 μm.

次に、SrTiO3粒子が表面にコーティングされたBi4Ti312粒子にイオン交換水と分散剤(中京油脂製D305)を固形分濃度が30vol%となるように添加してさらにボールミルで1hour撹拌してスラリーを作成する。 Next, ion exchange water and a dispersing agent (D305 made by Chukyo Yushi) were added to Bi 4 Ti 3 O 12 particles coated with SrTiO 3 particles on the surface so that the solid concentration was 30 vol%, and further 1 hour by a ball mill. Stir to make a slurry.

以後は実施例1と同様の手順でSrBi4Ti415から成る焼結体(結晶配向セラミックス)を作成する。作成された焼結体をXRDで測定したところ、SrBi4Ti415粒子の結晶配向度は0.92であり極めて高い結晶配向度が得られることが確認できた。 Thereafter, a sintered body (crystal oriented ceramics) made of SrBi 4 Ti 4 O 15 is prepared in the same procedure as in Example 1. When the prepared sintered body was measured by XRD, the crystal orientation of the SrBi 4 Ti 4 O 15 particles was 0.92, and it was confirmed that an extremely high crystal orientation was obtained.

実施例1と同様に反応焼結を効果的に行うにはBi4Ti312粒子の粒径とSrTiO3粒子のコーティング厚さの比(Bi4Ti312粒子の粒径/SrTiO3粒子のコーティング厚さ)を考慮する必要がある。 Example 1 Bi 4 is effectively carry out the reaction sintering in the same manner as Ti 3 O 12 ratio of coating thickness of the particle size and SrTiO 3 particles having a particle (Bi 4 Ti 3 O 12 particle size / SrTiO 3 particles It is necessary to consider the coating thickness of the particles.

前記比による拡散現象及び結晶配向度の違いを検証するため、0.2μm以外の平均粒径のSrTiO3粒子を使用しコーティング厚さを0.07μm以外にしたBi4Ti312粒子を用いて同様の手順で焼結体を幾つか作成して、各焼結体をXRDで測定してSrBi4Ti415粒子の結晶配向度を確認した。 To verify the difference in the diffusion phenomenon and the degree of crystal orientation by the ratio, using a Bi 4 Ti 3 O 12 particles other than 0.07μm coating thickness using SrTiO 3 particles having an average particle diameter other than 0.2μm Then, several sintered bodies were prepared in the same procedure, and each sintered body was measured by XRD to confirm the degree of crystal orientation of the SrBi 4 Ti 4 O 15 particles.

図3はその確認結果を示すもので、SrTiO3粒子のコーティング厚さが小さいほどSrBi4Ti415粒子の結晶配向度は高くなること、具体的には前記比が4.6以上で0.6以上の結晶配向度が得られること、また、実際上では結晶配向度を1.0にすることは難しいがSrTiO3粒子のコーティング厚さを選択することにより1.0に近い結晶配向度を得ることが確認できた。SrBi4Ti415粒子に0.6以上の結晶配向度が得られれば実用に適した圧電特性等の電気特性が得られるため、先に述べたBi4Ti312粒子の粒径とSrTiO3粒子のコーティング厚さの比(Bi4Ti312粒子の粒径/SrTiO3粒子のコーティング厚さ)は4.6以上であればよい。また、前記比が27で結晶配向度は0.99に達するが、それ以上前記比を上げても結晶配向度の上昇は僅かであり、SrTiO3粒子の厚さが薄くなるが故に均一なコーティング状態を作ることが難しくなることから、前記比は4.6〜27が実用上で好ましい範囲となる。 FIG. 3 shows the result of confirmation. The smaller the coating thickness of the SrTiO 3 particles, the higher the crystal orientation of the SrBi 4 Ti 4 O 15 particles. Specifically, when the ratio is 4.6 or more, 0 is obtained. A crystal orientation degree of .6 or more can be obtained, and in practice, it is difficult to make the crystal orientation degree 1.0, but the crystal orientation degree close to 1.0 can be obtained by selecting the coating thickness of the SrTiO 3 particles. Could be confirmed. Since electrical characteristics such as piezoelectric characteristics suitable for practical use can be obtained if a crystal orientation degree of 0.6 or more is obtained in the SrBi 4 Ti 4 O 15 particles, the particle size of the Bi 4 Ti 3 O 12 particles described above can be obtained. The ratio of coating thickness of SrTiO 3 particles (Bi 4 Ti 3 O 12 particle diameter / SrTiO 3 particle coating thickness) may be 4.6 or more. Further, when the ratio is 27 and the degree of crystal orientation reaches 0.99, even if the ratio is further increased, the increase in the degree of crystal orientation is slight and the thickness of the SrTiO 3 particles is reduced, so that the uniform coating is achieved. Since it becomes difficult to make a state, 4.6 to 27 is a practically preferable range for the ratio.

[実施例3]
以下に、KSr2Nb515から成る結晶配向セラミックスの製法例を説明する。
[Example 3]
The following describes the preparation example of a crystal-oriented ceramic comprising a KSr 2 Nb 5 O 15.

まず、平均粒径2.5μmのSrNb26粒子と平均粒径0.3μmのKNbO3粒子をKSr2Nb515の化学両論組成になるように配合し、これにイオン交換水と分散剤(中京油脂製D305)を固形分濃度が30vol%となるように添加してさらにボールミルで1hour撹拌してスラリーを作成する。 First, SrNb 2 O 6 particles having an average particle diameter of 2.5 μm and KNbO 3 particles having an average particle diameter of 0.3 μm are blended so as to have a stoichiometric composition of KSr 2 Nb 5 O 15 , and ion-exchanged water and dispersed therein An agent (D305, manufactured by Chukyo Yushi Co., Ltd.) is added so that the solid content concentration is 30 vol%, and the slurry is further stirred by a ball mill for 1 hour.

以後は実施例1と同様の手順でKSr2Nb515から成る焼結体(結晶配向セラミックス)を作成する。作成された焼結体をXRDで測定したところ、KSr2Nb515粒子の結晶配向度は0.85であり極めて高い結晶配向度が得られることが確認できた。 Thereafter, a sintered body (crystal oriented ceramics) made of KSr 2 Nb 5 O 15 is prepared in the same procedure as in Example 1. When the prepared sintered body was measured by XRD, the degree of crystal orientation of the KSr 2 Nb 5 O 15 particles was 0.85, and it was confirmed that an extremely high degree of crystal orientation was obtained.

実施例1と同様に反応焼結を効果的に行うにはSrNb26粒子とKNbO3粒子の粒径比(SrNb26粒子の粒径/KNbO3粒子の粒径)を考慮する必要がある。 In order to perform reactive sintering effectively as in Example 1, it is necessary to consider the particle size ratio of SrNb 2 O 6 particles to KNbO 3 particles (particle size of SrNb 2 O 6 particles / particle size of KNbO 3 particles). There is.

前記粒径比による拡散現象及び結晶配向度の違いを検証するため、0.3μm以外の平均粒径のKNbO3粒子を使用して同様の手順で焼結体を幾つか作成して、各焼結体をXRDで測定してKSr2Nb515粒子の結晶配向度を確認した。 In order to verify the difference in the diffusion phenomenon and the degree of crystal orientation due to the particle size ratio, several sintered bodies were prepared in the same procedure using KNbO 3 particles having an average particle size other than 0.3 μm. The aggregate was measured by XRD, and the degree of crystal orientation of the KSr 2 Nb 5 O 15 particles was confirmed.

図2の確認結果と同様に、KNbO3粒子の粒径が小さいほどKSr2Nb515粒子の結晶配向度は高くなること、具体的には前記粒径比が3.8以上で0.6以上の結晶配向度が得られること、また、実際上では結晶配向度を1.0にすることは難しいがSrTiO3粒子の粒径を選択することにより1.0に近い結晶配向度を得ることが確認できた。KSr2Nb515粒子に0.6以上の結晶配向度が得られれば実用に適した圧電特性等の電気特性が得られるため、先に述べたSrNb26粒子とKNbO3粒子の粒径比(SrNb26粒子の粒径/KNbO3粒子の粒径)は3.8以上であればよい。また、前記粒径比が22で結晶配向度は0.99に達するが、それ以上前記粒径比を上げても結晶配向度の上昇は僅かであり、KNbO3粒子の粒径が小さくなるが故に均一なスラリー分散状態を作ることが難しくなることから、前記粒径比は3.8〜22が実用上で好ましい範囲となる。 As in the confirmation result of FIG. 2, the smaller the particle size of the KNbO 3 particles, the higher the degree of crystal orientation of the KSr 2 Nb 5 O 15 particles. Although it is difficult to obtain a crystal orientation degree of 6 or more, and in practice it is difficult to make the crystal orientation degree 1.0, a crystal orientation degree close to 1.0 is obtained by selecting the grain size of the SrTiO 3 particles. I was able to confirm. If the KSr 2 Nb 5 O 15 particles have a crystal orientation degree of 0.6 or more, electrical characteristics such as piezoelectric properties suitable for practical use can be obtained. Therefore, the SrNb 2 O 6 particles and the KNbO 3 particles described above are used. The diameter ratio (SrNb 2 O 6 particle diameter / KNbO 3 particle diameter) may be 3.8 or more. Further, when the particle size ratio is 22, the degree of crystal orientation reaches 0.99, but even if the particle size ratio is further increased, the increase in the crystal orientation degree is slight and the particle size of the KNbO 3 particles becomes small. Therefore, since it becomes difficult to make a uniform slurry dispersion state, the particle size ratio is preferably in a practical range of 3.8 to 22.

[実施例4]
以下に、KSr2Nb515から成る結晶配向セラミックスの他の製法例を説明する。
[Example 4]
Hereinafter, another example of a method for producing a crystallographically-oriented ceramic made of KSr 2 Nb 5 O 15 will be described.

まず、平均粒径2.5μmのSrNb26粒子と平均粒径0.4μmのKNbO3粒子をKSr2Nb515の化学両論組成になるように配合して乾式摩砕し、KNbO3粒子が厚さ0.2μmで表面にコーティングされたSrNb26粒子を作成する。 First, SrNb 2 O 6 particles having an average particle diameter of 2.5 μm and KNbO 3 particles having an average particle diameter of 0.4 μm are blended so as to have a stoichiometric composition of KSr 2 Nb 5 O 15 , dry-milled, and KNbO 3 SrNb 2 O 6 particles having a thickness of 0.2 μm and coated on the surface are prepared.

次に、KNbO3粒子が表面にコーティングされたSrNb26粒子にイオン交換水と分散剤(中京油脂製D305)を固形分濃度が30vol%となるように添加してさらにボールミルで1hour撹拌してスラリーを作成する。 Next, ion-exchanged water and a dispersant (D305 manufactured by Chukyo Yushi Co., Ltd.) are added to the SrNb 2 O 6 particles coated on the surface with KNbO 3 particles so that the solid concentration is 30 vol%, and further stirred for 1 hour with a ball mill. To make a slurry.

以後は実施例1と同様の手順でKSr2Nb515から成る焼結体(結晶配向セラミックス)を作成する。作成された焼結体をXRDで測定したところ、KSrBi4Ti415粒子の結晶配向度は0.9であり極めて高い結晶配向度が得られることが確認できた。 Thereafter, a sintered body (crystal oriented ceramics) made of KSr 2 Nb 5 O 15 is prepared in the same procedure as in Example 1. When the produced sintered body was measured by XRD, the crystal orientation degree of the KSrBi 4 Ti 4 O 15 particles was 0.9, and it was confirmed that an extremely high crystal orientation degree was obtained.

実施例1と同様に反応焼結を効果的に行うにはSrNb26粒子の粒径とKNbO3粒子のコーティング厚さの比(SrNb26粒子の粒径/KNbO3粒子のコーティング厚さ)を考慮する必要がある。 The coating thickness of the particle size / KNbO 3 particles of the coating thickness ratio (SrNb 2 O 6 particles having a particle size and KNbO 3 particles SrNb 2 O 6 particles effectively carry out the reaction sintering in the same manner as in Example 1 It is necessary to consider.

前記比による拡散現象及び結晶配向度の違いを検証するため、0.4μm以外の平均粒径のKNbO3粒子を使用しコーティング厚さを0.2μm以外にしたSrNb26粒子を用いて同様の手順で焼結体を幾つか作成して、各焼結体をXRDで測定してKSr2Nb515粒子の結晶配向度を確認した。 In order to verify the difference in the diffusion phenomenon and the degree of crystal orientation due to the above ratio, the same applies to the SrNb 2 O 6 particles using KNbO 3 particles having an average particle diameter other than 0.4 μm and having a coating thickness other than 0.2 μm. Several sintered bodies were prepared by the procedure described above, and each sintered body was measured by XRD to confirm the degree of crystal orientation of the KSr 2 Nb 5 O 15 particles.

図3の確認結果と同様に、KNbO3粒子のコーティング厚さが小さいほどKSr2Nb515粒子の結晶配向度は高くなること、具体的には前記比が4.6以上で0.6以上の結晶配向度が得られること、また、実際上では結晶配向度を1.0にすることは難しいがKNbO3粒子のコーティング厚さを選択することにより1.0に近い結晶配向度を得ることが確認できた。KSr2Nb515粒子に0.6以上の結晶配向度が得られれば実用に適した圧電特性等の電気特性が得られるため、先に述べたSrNb26粒子の粒径とKNbO3粒子のコーティング厚さの比(SrNb26粒子の粒径/KNbO3粒子のコーティング厚さ)は4.6以上であればよい。また、前記比が27で結晶配向度は0.99に達するが、それ以上前記比を上げても結晶配向度の上昇は僅かであり、SrTiO3粒子の厚さが薄くなるが故に均一なコーティング状態を作ることが難しくなることから、前記比は4.6〜27が実用上で好ましい範囲となる。 Similar to the confirmation results in FIG. 3, the smaller the coating thickness of the KNbO 3 particles, the higher the degree of crystal orientation of the KSr 2 Nb 5 O 15 particles. Specifically, the ratio is 0.6 or more and 0.6. Although it is difficult to obtain the above crystal orientation degree and in practice it is difficult to set the crystal orientation degree to 1.0, a crystal orientation degree close to 1.0 is obtained by selecting the coating thickness of the KNbO 3 particles. I was able to confirm. If a crystal orientation degree of 0.6 or more is obtained in the KSr 2 Nb 5 O 15 particles, electric characteristics such as piezoelectric characteristics suitable for practical use can be obtained. Therefore, the particle size of the SrNb 2 O 6 particles described above and the KNbO 3 The ratio of the coating thickness of the particles (SrNb 2 O 6 particle diameter / KNbO 3 particle coating thickness) may be 4.6 or more. Further, when the ratio is 27 and the degree of crystal orientation reaches 0.99, even if the ratio is further increased, the increase in the degree of crystal orientation is slight and the thickness of the SrTiO 3 particles is reduced, so that the uniform coating is achieved. Since it becomes difficult to make a state, 4.6 to 27 is a practically preferable range for the ratio.

[実施例5]
以下に、KNbO3から成る結晶配向セラミックスの製法例を説明する。
[Example 5]
The following describes the preparation example of a crystal oriented ceramics composed of KNbO 3.

まず、平均粒径2μmのK4Nb617粒子と乾燥雰囲気中で粉砕して粒度を調節した平均粒径0.4μmのK2CO3粒子をKNbO3の化学両論組成になるように配合し、これに無水エタノールを固形分濃度が30vol%となるように添加してさらにボールミルで1hour撹拌してスラリーを作成する。 First, K 4 Nb 6 O 17 particles having an average particle diameter of 2 μm and K 2 CO 3 particles having an average particle diameter of 0.4 μm, which are pulverized in a dry atmosphere and adjusted in particle size, are mixed so as to have a stoichiometric composition of KNbO 3. Then, absolute ethanol is added to this so that the solid content concentration becomes 30 vol%, and further stirred with a ball mill for 1 hour to prepare a slurry.

以後は実施例1と同様の手順でKNbO3から成る焼結体(結晶配向セラミックス)を作成する。作成された焼結体をXRDで測定したところ、KNbO3粒子の結晶配向度は0.7であり極めて高い結晶配向度が得られることが確認できた。 Thereafter, a sintered body (crystal oriented ceramics) made of KNbO 3 is prepared in the same procedure as in Example 1. When the prepared sintered body was measured by XRD, the crystal orientation degree of the KNbO 3 particles was 0.7, and it was confirmed that an extremely high crystal orientation degree was obtained.

実施例1と同様に反応焼結を効果的に行うにはK4Nb617粒子とK2CO3粒子の粒径比(K4Nb617粒子の粒径/K2CO3粒子の粒径)を考慮する必要がある。 In order to effectively carry out reactive sintering as in Example 1, the particle size ratio of K 4 Nb 6 O 17 particles to K 2 CO 3 particles (particle size of K 4 Nb 6 O 17 particles / K 2 CO 3 particles The particle size of the particle).

前記粒径比による拡散現象及び結晶配向度の違いを検証するため、0.4μm以外の平均粒径のK2CO3粒子を使用して同様の手順で焼結体を幾つか作成して、各焼結体をXRDで測定してKNbO3粒子の結晶配向度を確認した。 In order to verify the difference in the diffusion phenomenon and the degree of crystal orientation due to the particle size ratio, several sintered bodies were prepared in the same procedure using K 2 CO 3 particles having an average particle size other than 0.4 μm, Each sintered body was measured by XRD to confirm the degree of crystal orientation of the KNbO 3 particles.

図2の確認結果と同様に、K2CO3粒子の粒径が小さいほどKNbO3粒子の結晶配向度は高くなること、具体的には前記粒径比が3.8以上で0.6以上の結晶配向度が得られること、また、実際上では結晶配向度を1.0にすることは難しいがK2CO3粒子の粒径を選択することにより1.0に近い結晶配向度を得ることが確認できた。KNbO3粒子に0.6以上の結晶配向度が得られれば実用に適した圧電特性等の電気特性が得られるため、先に述べたK4Nb617粒子とK2CO3粒子の粒径比(K4Nb617粒子の粒径/K2CO3粒子の粒径)は3.8以上であればよい。また、前記粒径比が22で結晶配向度は0.99に達するが、それ以上前記粒径比を上げても結晶配向度の上昇は僅かであり、K2CO3粒子の粒径が小さくなるが故に均一なスラリー分散状態を作ることが難しくなることから、前記粒径比は3.8〜22が実用上で好ましい範囲となる。 As in the confirmation result of FIG. 2, the smaller the particle size of the K 2 CO 3 particles, the higher the degree of crystal orientation of the KNbO 3 particles. Specifically, the particle size ratio is 3.8 or more and 0.6 or more. It is difficult to obtain a crystal orientation degree of 1.0, but in practice it is difficult to make the crystal orientation degree 1.0, but by selecting the grain size of K 2 CO 3 particles, a crystal orientation degree close to 1.0 is obtained. I was able to confirm. If KNbO 3 particles have a crystal orientation degree of 0.6 or more, electrical properties such as piezoelectric properties suitable for practical use can be obtained. Therefore, the above-mentioned grains of K 4 Nb 6 O 17 particles and K 2 CO 3 particles The diameter ratio (the particle diameter of K 4 Nb 6 O 17 particles / the particle diameter of K 2 CO 3 particles) may be 3.8 or more. Further, when the particle size ratio is 22, the degree of crystal orientation reaches 0.99, but even if the particle size ratio is further increased, the increase in crystal orientation is slight, and the particle size of the K 2 CO 3 particles is small. Therefore, since it becomes difficult to make a uniform slurry dispersion state, the particle size ratio is preferably in a practical range of 3.8 to 22.

[実施例6]
以下に、KNbO3から成る結晶配向セラミックスの他の製法例を説明する。
[Example 6]
Hereinafter, another example of the method for producing a crystallographically-oriented ceramic made of KNbO 3 will be described.

まず、平均粒径2μmのK4Nb617粒子と乾燥雰囲気中で粉砕して粒度を調節した平均粒径0.4μmのK2CO3粒子をKNbO3の化学両論組成になるように配合して乾式摩砕し、K2CO3粒子が厚さ0.24μmで表面にコーティングされたK4Nb617粒子を作成する。 First, K 4 Nb 6 O 17 particles having an average particle diameter of 2 μm and K 2 CO 3 particles having an average particle diameter of 0.4 μm, which are pulverized in a dry atmosphere and adjusted in particle size, are mixed so as to have a stoichiometric composition of KNbO 3. Then, dry grinding is performed to prepare K 4 Nb 6 O 17 particles having a surface coated with K 2 CO 3 particles having a thickness of 0.24 μm.

次に、K2CO3粒子が表面にコーティングされたK4Nb617粒子に無水エタノールを固形分濃度が30vol%となるように添加してさらにボールミルで1hour撹拌してスラリーを作成する。 Next, absolute ethanol is added to the K 4 Nb 6 O 17 particles whose surfaces are coated with K 2 CO 3 particles so that the solid content concentration is 30 vol%, and further stirred for 1 hour with a ball mill to prepare a slurry.

以後は実施例1と同様の手順でKNbO3から成る焼結体(結晶配向セラミックス)を作成する。作成された焼結体をXRDで測定したところ、KNbO3粒子の結晶配向度は0.85であり極めて高い結晶配向度が得られることが確認できた。 Thereafter, a sintered body (crystal oriented ceramics) made of KNbO 3 is prepared in the same procedure as in Example 1. When the prepared sintered body was measured by XRD, the crystal orientation degree of the KNbO 3 particles was 0.85, and it was confirmed that an extremely high crystal orientation degree was obtained.

実施例1と同様に反応焼結を効果的に行うにはK4Nb617粒子の粒径とK2CO3粒子のコーティング厚さの比(K4Nb617粒子の粒径/K2CO3粒子のコーティング厚さ)を考慮する必要がある。 The particle size of the coating thickness ratio (K 4 Nb 6 O 17 particles having a particle size and K 2 CO 3 particles K 4 Nb 6 O 17 particles to effectively carry out the reaction sintering in the same manner as in Example 1 / It is necessary to consider the coating thickness of the K 2 CO 3 particles.

前記比による拡散現象及び結晶配向度の違いを検証するため、0.4μm以外の平均粒径のK2CO3粒子を使用しコーティング厚さを0.24μm以外にしたKNbO3粒子を用いて同様の手順で焼結体を幾つか作成して、各焼結体をXRDで測定してKNbO3粒子の結晶配向度を確認した。 In order to verify the difference in the diffusion phenomenon and the degree of crystal orientation due to the above ratio, the same applies to KNbO 3 particles using K 2 CO 3 particles having an average particle size other than 0.4 μm and having a coating thickness other than 0.24 μm. Several sintered bodies were prepared by the above procedure, and each sintered body was measured by XRD to confirm the degree of crystal orientation of the KNbO 3 particles.

図3の確認結果と同様に、K2CO3粒子のコーティング厚さが小さいほどKNbO3粒子の結晶配向度は高くなること、具体的には前記比が4.6以上で0.6以上の結晶配向度が得られること、また、実際上では結晶配向度を1.0にすることは難しいがK2CO3粒子のコーティング厚さを選択することにより1.0に近い結晶配向度を得ることが確認できた。KNbO3粒子に0.6以上の結晶配向度が得られれば実用に適した圧電特性等の電気特性が得られるため、先に述べたK4Nb617粒子の粒径とK2CO3粒子のコーティング厚さの比(K4Nb617粒子の粒径/K2CO3粒子のコーティング厚さ)は4.6以上であればよい。また、前記比が27で結晶配向度は0.99に達するが、それ以上前記比を上げても結晶配向度の上昇は僅かであり、K2CO3粒子の厚さが薄くなるが故に均一なコーティング状態を作ることが難しくなることから、前記比は4.6〜27が実用上で好ましい範囲となる。 Similar to the confirmation results of FIG. 3, the smaller the coating thickness of the K 2 CO 3 particles, the higher the crystal orientation of the KNbO 3 particles. Specifically, the ratio is 4.6 or more and 0.6 or more. Although crystal orientation can be obtained, and in practice it is difficult to make the crystal orientation 1.0, it is possible to obtain crystal orientation close to 1.0 by selecting the coating thickness of the K 2 CO 3 particles I was able to confirm. Since electrical characteristics such as piezoelectric characteristics suitable for practical use can be obtained if a crystal orientation degree of 0.6 or more is obtained in the KNbO 3 particles, the particle size of the K 4 Nb 6 O 17 particles and the K 2 CO 3 described above are obtained. The ratio of the coating thickness of the particles (the particle diameter of K 4 Nb 6 O 17 particles / the coating thickness of K 2 CO 3 particles) may be 4.6 or more. Further, when the ratio is 27, the degree of crystal orientation reaches 0.99, but even if the ratio is further increased, the increase in the degree of crystal orientation is slight and uniform because the thickness of the K 2 CO 3 particles is reduced. Since it becomes difficult to make a simple coating state, the ratio is 4.6 to 27 in a practically preferable range.

スラリー中のBi4Ti312粒子とSrTiO3粒子の様子を模式的に示す図、成形体中のBi4Ti312粒子とSrTiO3粒子の様子を模式的に示す図、反応焼結途中の様子を模式的に示す図である。Bi 4 Ti 3 O 12 particles and SrTiO 3 schematically shows a state of the particles in the slurry, Bi 4 Ti 3 O 12 particles and SrTiO 3 schematically shows a state of the particles in the compact, reaction sintering It is a figure which shows the mode on the way typically. Bi4Ti312粒子とSrTiO3粒子の粒径比(Bi4Ti312粒子の粒径/SrTiO3粒子の粒径)とSrBi4Ti415粒子の結晶配向度との関係を示す図である。The relationship between the particle size ratio of Bi 4 Ti 3 O 12 particles and SrTiO 3 particles (Bi 4 Ti 3 O 12 particles / SrTiO 3 particles) and the degree of crystal orientation of SrBi 4 Ti 4 O 15 particles FIG. Bi4Ti312粒子の粒径とSrTiO3粒子のコーティング厚さの比(Bi4Ti312粒子の粒径/SrTiO3粒子のコーティング厚さ)とSrBi4Ti415粒子の結晶配向度との関係を示す図である。Bi 4 Ti 3 O 12 particle size and SrTiO 3 particles coating thickness ratio of the particles (Bi 4 Ti 3 coating thickness of O 12 particle size / SrTiO 3 particles having a particle) and the crystal of SrBi 4 Ti 4 O 15 particles It is a figure which shows the relationship with orientation degree.

Claims (11)

強磁場印加により配向し得る第1粒子と該第1粒子への金属イオン拡散を伴う反応焼結により目的物質を生成し得る第2粒子とを含むスラリーを作成するステップと、
スラリーに強磁場を印加して第1粒子が配向した成形体を作成するステップと、
成形体を熱処理して第2粒子から第1粒子への金属イオン拡散により第1粒子と第2粒子を反応焼結させて目的物質の焼結体を作成するステップとを備
前記スラリーは第1粒子と第2粒子がそれぞれ該スラリー中に分散していて、第1粒子と第2粒子の粒径比(第1粒子の粒径/第2粒子の粒径)は3.8以上22以下である、
ことを特徴とする結晶配向セラミックスの製造方法。
Creating a slurry containing first particles that can be oriented by applying a strong magnetic field and second particles that can produce a target substance by reactive sintering accompanied by metal ion diffusion to the first particles;
Applying a strong magnetic field to the slurry to create a shaped body in which the first particles are oriented;
E Bei and creating a sintered body of the first particle and the target substance of the second particles are reaction sintering by the metal ions diffuse from the second particles by heat-treating the molded body to the first particles,
In the slurry, the first particles and the second particles are dispersed in the slurry, respectively, and the particle size ratio of the first particles to the second particles (the particle size of the first particles / the particle size of the second particles) is 3. 8 or more and 22 or less,
A method for producing a crystallographically-oriented ceramic.
強磁場印加により配向し得る第1粒子と該第1粒子への金属イオン拡散を伴う反応焼結により目的物質を生成し得る第2粒子とを含むスラリーを作成するステップと、
スラリーに強磁場を印加して第1粒子が配向した成形体を作成するステップと、
成形体を熱処理して第2粒子から第1粒子への金属イオン拡散により第1粒子と第2粒子を反応焼結させて目的物質の焼結体を作成するステップとを備え、
前記スラリーは第2粒子が表面にコーティングされた第1粒子が該スラリー中に分散していて、第1粒子の粒径と第2粒子のコーティング厚さの比(第1粒子の粒径/第2粒子のコーティング厚さ)は4.6以上27以下である
ことを特徴とする結晶配向セラミックスの製造方法。
Creating a slurry containing first particles that can be oriented by applying a strong magnetic field and second particles that can produce a target substance by reactive sintering accompanied by metal ion diffusion to the first particles;
Applying a strong magnetic field to the slurry to create a shaped body in which the first particles are oriented;
Heat-treating the formed body to react and sinter the first particles and the second particles by metal ion diffusion from the second particles to the first particles, thereby creating a sintered body of the target substance,
In the slurry, the first particles having the second particles coated on the surface are dispersed in the slurry, and the ratio of the particle size of the first particles to the coating thickness of the second particles (the particle size of the first particles / the first particle). The coating thickness of 2 particles) is 4.6 or more and 27 or less ,
Method for producing a crystal-oriented ceramic you wherein a.
目的物質はその一般式が(Bi 2 2 ) 2+ (A m-1 m 3m+1 ) 2- で表され、且つ、Aが1〜3価の金属元素から成りBが2〜6価の金属元素から成るビスマス層状化合物である、
ことを特徴とする請求項1または2に記載の結晶配向セラミックスの製造方法。
The target substance is represented by the general formula (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- , and A is composed of a 1-3 valent metal element and B is 2 to 2. A bismuth layered compound composed of a hexavalent metal element,
The method for producing a crystallographically-oriented ceramic according to claim 1 or 2 .
第1粒子はBiを含む1〜3価の金属元素を少なくとも1種類含み、且つ、Biを除く2〜6価の金属元素を少なくとも1種類含むビスマス層状化合物であり、
第2粒子は目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質である、
ことを特徴とする請求項に記載の結晶配向セラミックスの製造方法。
The first particle is a bismuth layered compound containing at least one kind of 1-3 valent metal element containing Bi and at least one kind of 2-6 valent metal element excluding Bi,
The second particle is a substance that enables metal ion diffusion necessary for producing a sintered body of the target substance.
The method for producing a crystallographically-oriented ceramic according to claim 3 .
第1粒子はその一般式が(A1) 4 (A2) 2 4 (B1) 2 (B2) 8 30 で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成るタングステンブロンズ型化合物であり、
第2粒子は目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質である、
ことを特徴とする請求項に記載の結晶配向セラミックスの製造方法。
The first particles are represented by the general formula (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are composed of a divalent metal element and C is 1 A tungsten bronze type compound consisting of a valent metal element and B1 and B2 consisting of a pentavalent metal element,
The second particle is a substance that enables metal ion diffusion necessary for producing a sintered body of the target substance.
The method for producing a crystallographically-oriented ceramic according to claim 3 .
目的物質はその一般式が(A1) 4 (A2) 2 4 (B1) 2 (B2) 8 30 で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成るタングステンブロンズ型化合物である、
ことを特徴とする請求項1または2に記載の結晶配向セラミックスの製造方法。
The target substance is represented by the general formula (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are composed of 1 to 2 metal elements, and C is monovalent. A tungsten bronze type compound in which B1 and B2 are composed of pentavalent metal elements
The method for producing a crystallographically-oriented ceramic according to claim 1 or 2 .
第1粒子はその一般式が(A1) 4 (A2) 2 4 (B1) 2 (B2) 8 30 で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成る目的物質よりも分子量の小さなタングステンブロンズ型化合物であり、
第2粒子は目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質である、
ことを特徴とする請求項6に記載の結晶配向セラミックスの製造方法。
The first particles are represented by the general formula (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are composed of a divalent metal element and C is 1 A tungsten bronze-type compound having a molecular weight smaller than that of a target substance consisting of a valent metal element and B1 and B2 being a pentavalent metal element,
The second particle is a substance that enables metal ion diffusion necessary for producing a sintered body of the target substance.
The method for producing a crystal-oriented ceramic according to claim 6.
目的物質はその一般式が(A3)(B3)O 3 で表され、且つ、A3が1〜3価の金属元素から成りB3が3〜5価の金属元素から成るペロブスカイト型化合物である、
ことを特徴とする請求項1または2に記載の結晶配向セラミックスの製造方法。
The target substance is a perovskite type compound whose general formula is represented by (A3) (B3) O 3 , A3 is composed of 1 to 3 metal elements, and B3 is composed of 3 to 5 metal elements.
The method for producing a crystallographically-oriented ceramic according to claim 1 or 2 .
第1粒子はその一般式が(Bi 2 2 ) 2+ (A m-1 m 3m+1 ) 2- で表され、且つ、Aが1〜3価の金属元素から成りBが2〜6価の金属元素から成るビスマス層状化合物であり、
第2粒子は目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質である、
ことを特徴とする請求項に記載の結晶配向セラミックスの製造方法。
The first particles are represented by the general formula (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- , and A is composed of 1 to 3 metal elements, and B is 2 A bismuth layered compound composed of a hexavalent metal element,
The second particle is a substance that enables metal ion diffusion necessary for producing a sintered body of the target substance.
A method for producing a crystallographically-oriented ceramic according to claim 8 .
第1粒子はその一般式が(A4) 4 (B4) 6 17 で表され、且つ、A4が1価の金属元素から成りB4が5価の金属元素から成る化合物であり、
第2粒子は目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質である、
ことを特徴とする請求項に記載の結晶配向セラミックスの製造方法。
The first particle is a compound represented by the general formula (A4) 4 (B4) 6 O 17 , A4 is composed of a monovalent metal element, and B4 is composed of a pentavalent metal element.
The second particle is a substance that enables metal ion diffusion necessary for producing a sintered body of the target substance.
A method for producing a crystallographically-oriented ceramic according to claim 8 .
第1粒子はその一般式が(A1) 4 (A2) 2 4 (B1) 2 (B2) 8 30 で表され、且つ、A1及びA2が1〜2価の金属元素から成りCが1価の金属元素から成りB1及びB2が5価の金属元素から成るタングステンブロンズ型化合物であり、
第2粒子は目的物質の焼結体の作成に必要な金属イオン拡散を可能とした物質である、
ことを特徴とする請求項に記載の結晶配向セラミックスの製造方法。
The first particles are represented by the general formula (A1) 4 (A2) 2 C 4 (B1) 2 (B2) 8 O 30 , and A1 and A2 are composed of a divalent metal element and C is 1 A tungsten bronze type compound consisting of a valent metal element and B1 and B2 consisting of a pentavalent metal element,
The second particle is a substance that enables metal ion diffusion necessary for producing a sintered body of the target substance.
A method for producing a crystallographically-oriented ceramic according to claim 8 .
JP2007047575A 2007-02-27 2007-02-27 Method for producing crystal-oriented ceramics Expired - Fee Related JP4726082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047575A JP4726082B2 (en) 2007-02-27 2007-02-27 Method for producing crystal-oriented ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047575A JP4726082B2 (en) 2007-02-27 2007-02-27 Method for producing crystal-oriented ceramics

Publications (2)

Publication Number Publication Date
JP2008208004A JP2008208004A (en) 2008-09-11
JP4726082B2 true JP4726082B2 (en) 2011-07-20

Family

ID=39784644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047575A Expired - Fee Related JP4726082B2 (en) 2007-02-27 2007-02-27 Method for producing crystal-oriented ceramics

Country Status (1)

Country Link
JP (1) JP4726082B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094334B2 (en) * 2006-12-25 2012-12-12 京セラ株式会社 Piezoelectric ceramic and piezoelectric element
KR101318516B1 (en) * 2009-03-31 2013-10-16 고쿠리츠다이가쿠호징 야마나시다이가쿠 Ceramic, piezoelectric device, and production method thereof
JP5734688B2 (en) * 2010-02-10 2015-06-17 キヤノン株式会社 Method for producing oriented oxide ceramics, oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP5791372B2 (en) 2010-06-10 2015-10-07 キヤノン株式会社 Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP5791371B2 (en) 2010-06-10 2015-10-07 キヤノン株式会社 Piezoelectric material, piezoelectric element, liquid ejection head, ultrasonic motor, dust removing device
JP5791370B2 (en) 2010-06-10 2015-10-07 キヤノン株式会社 Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP6209781B2 (en) * 2012-02-28 2017-10-11 国立大学法人山梨大学 Thermoelectric material and manufacturing method thereof
WO2014123134A1 (en) * 2013-02-06 2014-08-14 株式会社村田製作所 Piezoelectric oriented ceramic and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119065A (en) * 1998-10-08 2000-04-25 Toyota Central Res & Dev Lab Inc Production of oriented ceramic
JP2002121069A (en) * 2000-10-10 2002-04-23 Kyocera Corp Sintered compact of bismuth layered compound and method of producing the same
JP2002193672A (en) * 2000-10-18 2002-07-10 National Institute For Materials Science Oriented ceramic sintered compact and its manufacturing method
JP2006264316A (en) * 2005-02-25 2006-10-05 Nagaoka Univ Of Technology Precision orientation polycrystal ceramic sintered compact, its manufacturing process and manufacturing device
JP2006306678A (en) * 2005-04-28 2006-11-09 Toyota Central Res & Dev Lab Inc Anisotropic-shape powder, method for producing the same, crystal-oriented ceramics, and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666182B2 (en) * 1996-06-07 2005-06-29 株式会社豊田中央研究所 Method for producing crystal-oriented ceramics
JP3379387B2 (en) * 1996-08-30 2003-02-24 株式会社豊田中央研究所 Crystal oriented ceramics and method for producing the same
JP3557854B2 (en) * 1997-05-29 2004-08-25 株式会社豊田中央研究所 Manufacturing method of crystal orientation material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119065A (en) * 1998-10-08 2000-04-25 Toyota Central Res & Dev Lab Inc Production of oriented ceramic
JP2002121069A (en) * 2000-10-10 2002-04-23 Kyocera Corp Sintered compact of bismuth layered compound and method of producing the same
JP2002193672A (en) * 2000-10-18 2002-07-10 National Institute For Materials Science Oriented ceramic sintered compact and its manufacturing method
JP2006264316A (en) * 2005-02-25 2006-10-05 Nagaoka Univ Of Technology Precision orientation polycrystal ceramic sintered compact, its manufacturing process and manufacturing device
JP2006306678A (en) * 2005-04-28 2006-11-09 Toyota Central Res & Dev Lab Inc Anisotropic-shape powder, method for producing the same, crystal-oriented ceramics, and method for producing the same

Also Published As

Publication number Publication date
JP2008208004A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4726082B2 (en) Method for producing crystal-oriented ceramics
CN102378744B (en) Ceramic, piezoelectric device, and production method thereof
Takao et al. Microstructural evolution of crystalline‐oriented (K0. 5Na0. 5) NbO3 piezoelectric ceramics with a sintering aid of CuO
Haugen et al. Piezoelectric K 0.5 Na 0.5 NbO 3 ceramics textured using needlelike K 0.5 Na 0.5 NbO 3 templates
Promsawat et al. Enhanced dielectric and ferroelectric properties of Pb (Mg 1/3 Nb 2/3) 0.65 Ti 0.35 O 3 ceramics by ZnO modification
CN104609859A (en) Method for preparing 0-3 magnetic-electricity composite ceramic through low-temperature sintering realized by induction of nanometer sintering additive through self-propagating
Hussain et al. Sodium excess Ta‐Modified (K0. 5Na0. 5) NbO3 ceramics prepared by reactive template grain growth method
Zeng et al. Plate‐like Na0. 5Bi0. 5TiO3 template synthesized by a topochemical method
Liu et al. Cu-modified Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 textured ceramics with enhanced electromechanical properties and improved thermal stability
Li et al. The piezoelectric and dielectric properties of sodium–potassium niobate ceramics with new multiphase boundary
Yao et al. Preparation and electrical properties of (1− x) SrBi2Nb2O9− xBiFeO3 lead-free piezoelectric ceramics
Chen et al. Substituent Effects in 0.65 Pb (Mg1/3Nb2/3O30. 35PbTiO3 Piezoelectric Ceramics
Yao et al. Processing and enhanced electrical properties of Sr1-x (K0. 5Bi0. 5) xBi2Nb2O9 lead-free piezoelectric ceramics
Patri et al. Tunable polarization with enhanced multiferroic response of W/Co co-doped Bi4LaFeTi3O15 Aurivillius ceramics
Nayak et al. Dielectric, ferroelectric and conduction behavior of tungsten modified SrBi 4 Ti 4 O 15 ceramic
Yao et al. Preparation and electrical properties of SrBi 2− x Sm x Nb 2 O 9 lead-free piezoelectric ceramics
Paul et al. Room-temperature multiferroic properties and magnetoelectric coupling in Bi 4− x Sm x Ti 3− x Co x O 12− δ ceramics
Parkash et al. Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic
Joly et al. Studies on the effect of substitution of tetravalent ions for La3+ in LaMnO3
KR20160041536A (en) Composite bismuth-based lead-free piezoelectric ceramics and Actuator using the same
Wei et al. Structure and electrical properties of textured Sr1. 85Ca0. 15NaNb5O15 ceramics prepared by the reactive templated grain growth
KR100875479B1 (en) Lead-free piezoelectric ceramic composition and its manufacturing method
Chae et al. Improved piezoelectric properties of Ag doped 0.94 (K 0.5–β Na 0.5–δ) NbO 3–0.06 Li 1–γ NbO 3 ceramics by templated grain growth method
Jin et al. Fabrication of grain-oriented PbNb2O6-based high temperature piezoelectric ceramics
Cho et al. Effect of chemical inhomogeneity on domains and ferroelectric properties of Fe‐modified 0.77 Bi0. 5Na0. 5TiO3–0.23 SrTiO3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees