JPH0645104A - Manufacture of semiconductor procelain with positive temperature coefficient of resistance - Google Patents

Manufacture of semiconductor procelain with positive temperature coefficient of resistance

Info

Publication number
JPH0645104A
JPH0645104A JP3177091A JP3177091A JPH0645104A JP H0645104 A JPH0645104 A JP H0645104A JP 3177091 A JP3177091 A JP 3177091A JP 3177091 A JP3177091 A JP 3177091A JP H0645104 A JPH0645104 A JP H0645104A
Authority
JP
Japan
Prior art keywords
resistance
temperature coefficient
barium titanate
semiconductor
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3177091A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3177091A priority Critical patent/JPH0645104A/en
Publication of JPH0645104A publication Critical patent/JPH0645104A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the manufacturing method for a BaTiO3 semiconductor porcelain having a high resistance temperature coefficient at room temperature and a positive resistance temperature coefficient with which a high reliability can be accomplished on an element. CONSTITUTION:After the material, which is indicated by the formula Ba4(Ti13-xMnx)O30 (X=0.1 to 2) has been added to the material which is mainly composed of barium titanate containing the semiconductor element such as rare earth element of Y and the like, Nb, Sb etc., they are fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、正の抵抗温度係数を
有するチタン酸バリウム(BaTiO3)系半導体磁器
の製造方法に関し、その抵抗温度係数を向上させる方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a barium titanate (BaTiO 3 ) based semiconductor ceramic having a positive temperature coefficient of resistance, and a method for improving the temperature coefficient of resistance.

【0002】[0002]

【従来の技術】近年、大きな正の抵抗温度係数を有する
チタン酸バリウム(BaTiO3)系半導体磁器が開発
されている。このチタン酸バリウム系半導体磁器は、キ
ュリー点を越えると抵抗値が急激に増大し、通過する電
流量を減少させるため、回路の過電流保護用や、テレビ
受像機のブラウン管枠の消磁用などの用途に広く用いら
れている。かかる特性を備えた正の抵抗温度係数を有す
るチタン酸バリウム系半導体磁器としては、例えば、チ
タン酸バリウム(BaTiO3)系主成分材料にSb,
Bi,Nb,Taまたは希土類元素のうち少なくとも1
種を微量添加して半導体化したものが知られている。そ
して、その用途の広がりや性能に対する要求が厳しくな
るにつれて、その要求に応えるために、正の抵抗温度係
数をさらに増大するための種々の研究がなされ、今日に
至っている。
2. Description of the Related Art In recent years, barium titanate (BaTiO 3 ) based semiconductor ceramics having a large positive temperature coefficient of resistance have been developed. This barium titanate-based semiconductor porcelain rapidly increases in resistance when it exceeds the Curie point and reduces the amount of current passing through it, so it is used for circuit overcurrent protection and for degaussing the CRT frame of TV receivers. Widely used for purposes. As a barium titanate-based semiconductor ceramic having a positive temperature coefficient of resistance having such characteristics, for example, a barium titanate (BaTiO 3 ) -based main component material containing Sb,
At least one of Bi, Nb, Ta or rare earth elements
It is known that a small amount of seed is added to form a semiconductor. As the range of applications and demands for performance have become more severe, various researches have been conducted to further increase the positive temperature coefficient of resistance in order to meet the demands, and have reached the present day.

【0003】このような研究の成果として、正の抵抗温
度係数を有するBaTiO3系半導体磁器の抵抗温度係
数を向上させる方法として、BaTiO3系半導体をC
u,Fe,Mn等を含む溶液に浸漬した後、これを加熱
処理することにより焼結体の粒界にのみCu,Fe,M
nなどを拡散させる方法(特公昭50−36035号公
報)や、あるいは、仮焼成して、BaTiO3粉を作成
した後、Mn23などを混合して本焼成する方法などが
提案されている。
As a result of such research, as a method of improving the temperature coefficient of resistance of a BaTiO 3 -based semiconductor ceramic having a positive temperature coefficient of resistance, BaTiO 3 -based semiconductor was
After immersing in a solution containing u, Fe, Mn, etc., heat treatment is applied to Cu, Fe, M only at the grain boundaries of the sintered body.
A method of diffusing n or the like (Japanese Patent Publication No. Sho 50-36035), or a method of calcination to prepare BaTiO 3 powder and then mixing Mn 2 O 3 etc. and performing main calcination has been proposed. There is.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の方
法のうち、前者の方法においては、溶液が焼結体の内部
にまで浸透しにくいため、焼成体の表面付近の粒界には
Cu,Fe,Mnなどが拡散するが、焼成体の内部の粒
界にまでは拡散しにくく、均質な半導体磁器を得ること
が困難であるという問題点がある。
However, in the former method among the above-mentioned conventional methods, since the solution does not easily penetrate into the inside of the sintered body, Cu, Although Fe, Mn, and the like diffuse, they do not easily diffuse to the grain boundaries inside the fired body, which makes it difficult to obtain a homogeneous semiconductor porcelain.

【0005】また、後者の方法においては、Mnなどが
結晶粒内にまで拡散するために、室温抵抗が増大してし
まうという問題点がある。
Further, the latter method has a problem that the room temperature resistance increases because Mn and the like diffuse into the crystal grains.

【0006】この発明は、上記問題点を解決するもので
あり、室温における抵抗温度係数が高く、素子の高信頼
性を実現することが可能な正の抵抗温度係数を有するB
aTiO3系半導体磁器の製造方法を提供することを目
的とする。
The present invention solves the above problems and has a high temperature coefficient of resistance at room temperature and a positive temperature coefficient of resistance that can realize high reliability of the device.
It is an object of the present invention to provide a method for manufacturing an aTiO 3 based semiconductor ceramic.

【0007】[0007]

【課題を解決するための手段及び作用】上記目的を達成
するために、この発明の正の抵抗温度係数を有する半導
体磁器の製造方法は、Yなどの希土類元素やNb,Sb
などの半導体化元素を含有させたチタン酸バリウム系主
成分材料に、式:Ba4(Ti13-XMnX)030(X=
0.1〜2)で表される材料を添加混合した後、これを
焼成することを特徴としている。
In order to achieve the above object, a method for manufacturing a semiconductor ceramic having a positive temperature coefficient of resistance according to the present invention is a rare earth element such as Y or Nb, Sb.
To the barium titanate-based main component material containing a semiconducting element such as the formula: Ba 4 (Ti 13-X Mn X ) 0 30 (X =
0.1 to 2) is added and mixed, and then this is fired.

【0008】なお、上記正の抵抗温度係数を有する半導
体磁器の製造方法においては、チタン酸バリウム系主成
分材料に対する式:Ba4(Ti13-XMnX)030(X=
0.1〜2)で示される材料の添加割合は0.1〜2モ
ル%であることが好ましい。この発明の正の抵抗温度係
数を有する半導体磁器の製造方法においては、Ba 4
(Ti13-XMnX)030(X=0.1〜2)が焼成中に
液相となって、BaTiO3系主成分材料の結晶粒子の
周囲を包囲するため、焼成終了後の粒子周囲、すなわ
ち、粒界付近にMnの高濃度層が形成され、高PTC化
することが可能になる。
The semiconductor having the positive temperature coefficient of resistance is
In the method for manufacturing body porcelain, the barium titanate-based main component is used.
Formula for material: BaFour(Ti13-XMnX) 030(X =
The addition ratio of the materials shown in 0.1-2) is 0.1-2
% Is preferable. Positive resistance temperature coefficient of the present invention
In a method of manufacturing a semiconductor porcelain having a number of Four
(Ti13-XMnX) 030(X = 0.1-2) during firing
Becomes a liquid phase and becomes BaTiO 3.3Of the crystal particles of the main component material
In order to surround the surroundings, around the particles after firing,
Then, a high concentration layer of Mn is formed near the grain boundary, and the PTC is increased.
It becomes possible to do.

【0009】[0009]

【実施例】以下に、この発明の実施例及び比較例を示し
て発明の特徴をさらに詳細に説明する。
EXAMPLES The features of the present invention will be described in more detail below by showing Examples and Comparative Examples of the present invention.

【0010】(実施例1)まず、BaCO3,TiO2
SrCO3,TiO2,Y23,SiO2のそれぞれを下
記の式(1): (Ba0.946Sr0.050.004)TiO3+0.01SiO2 (1) で表される所定の組成になるような割合で混合する。
(Example 1) First, BaCO 3 , TiO 2 ,
Each of SrCO 3 , TiO 2 , Y 2 O 3 , and SiO 2 has a predetermined composition represented by the following formula (1): (Ba 0.946 Sr 0.05 Y 0.004 ) TiO 3 + 0.01SiO 2 (1) Mix in different proportions.

【0011】そして、これを純水及びジルコニアボール
とともにポリエチレン製ポットに入れて5時間粉砕混合
した後、1100℃で2時間仮焼することにより、チタ
ン酸バリウム系主成分材料を調製する。
Then, this is put in a polyethylene pot together with pure water and zirconia balls, pulverized and mixed for 5 hours, and then calcined at 1100 ° C. for 2 hours to prepare a barium titanate-based main component material.

【0012】さらに、BaCO3,TiO2,及びMn2
3のそれぞれを下記の式(2): Ba4(Ti13-XMnX)030 (2) で表される所定の組成になるような割合で調合した後、
純水及びジルコニアボールとともにポリエチレン製ポッ
トに入れ、5時間粉砕混合した後、乾燥し、1300℃
で2時間仮焼する。それから、さらにこの仮焼粉を純水
及びジルコニアボールとともに、ポリエチレン製ポット
に入れて10時間粉砕して平均粒径が約1μmになるよ
うに粒度調整した後、これを乾燥して上記式(2)で表さ
れる材料(添加物質)を得る。なお、Mn量Xの値は0
〜5の範囲で変化させた。
Furthermore, BaCO 3 , TiO 2 , and Mn 2
0 3 each was mixed in the following formula (2): Ba 4 (Ti 13-X Mn X ) 0 30 (2) in a prescribed composition ratio,
Put it in a polyethylene pot with pure water and zirconia balls, pulverize and mix for 5 hours, then dry, 1300 ° C
Calcination for 2 hours. Then, the calcined powder, together with pure water and zirconia balls, was placed in a polyethylene pot and ground for 10 hours to adjust the particle size to an average particle size of about 1 μm, and then dried to obtain the above formula (2). ) To obtain a material (additive substance). The value of Mn amount X is 0
It was changed in the range of ~ 5.

【0013】上記の (Ba0.946Sr0.050.004)T
iO3+0.01SiO2 (式(1))で表されるチタン酸
バリウム系主成分材料とBa4(Ti13-XMnX)0
30(式(2))で表される材料とを、Ba4(Ti13-X
X)030の含有割合が0.5mol%となるように調合
し、さらに酢酸ビニル系のバインダ5重量%を添加す
る。そして、これを純水及びジルコニアボールとともに
ポリエチレン製ポットに入れ、5時間粉砕混合した後乾
燥し、プレス成形機によりプレス成形して、直径17m
m,厚さ3mmの円板状の成形体を作成する。それから、
この成形体を1350℃で1時間焼成して半導体磁器を
得た。次に、この半導体磁器の両主面に、In−Ga合
金を塗布して電極を形成し、これを試料として室温(2
5℃)における比抵抗及び抵抗温度係数を測定した。
The above (Ba 0.946 Sr 0.05 Y 0.004 ) T
TiO 3 + 0.01SiO 2 (formula (1)) barium titanate-based main component material and Ba 4 (Ti 13-X Mn X ) 0
30 (equation (2)) and the material represented by Ba 4 (Ti 13-X M
n X) content of 0 30 is formulated such that 0.5 mol%, further added a binder 5 wt% of vinyl acetate. Then, this is put in a polyethylene pot together with pure water and zirconia balls, pulverized and mixed for 5 hours, dried, and press-molded by a press molding machine to obtain a diameter of 17 m.
Create a disk-shaped molded body with m and a thickness of 3 mm. then,
The molded body was fired at 1350 ° C. for 1 hour to obtain a semiconductor ceramic. Next, an In—Ga alloy is applied to both main surfaces of this semiconductor porcelain to form electrodes, which are used as samples for room temperature (2
The specific resistance and the temperature coefficient of resistance at 5 ° C.) were measured.

【0014】(比較例1)比較のため、Ba4(Ti
13-XMnX)030を別途添加(後添加)することなく、
BaCO3,TiO2,SrCO3,TiO2,Y23、S
iO2とともにMn23を上記実施例1のチタン酸バリ
ウム系半導体磁器の最終組成と同じ組成になるような割
合で調合し、これを焼成することによりチタン酸バリウ
ム系半導体磁器を作成した。すなわち、比較例の半導体
磁器は、Ba4(Ti13-XMnX)030を後から別途添加
する工程がないことを除いては上記実施例1と同様の方
法で作成されており、半導体磁器の最終組成、試料の調
製方法なども上記実施例1と同様である。
Comparative Example 1 For comparison, Ba 4 (Ti
Without adding (post-adding) 13-X Mn X ) 0 30 separately,
BaCO 3, TiO 2, SrCO 3 , TiO2, Y 2 O 3, S
Mn 2 O 3 was mixed with iO 2 in a proportion such that the final composition of the barium titanate-based semiconductor ceramic of Example 1 was the same, and the mixture was fired to prepare a barium titanate-based semiconductor ceramic. That is, the semiconductor porcelain of the comparative example was produced by the same method as in Example 1 except that there was no step of adding Ba 4 (Ti 13-X Mn X ) 0 30 afterwards separately. The final composition of the porcelain, the method for preparing the sample, and the like are the same as in Example 1 above.

【0015】上記実施例1及び比較例1において、Mn
量Xを変化させた場合の抵抗温度係数の変化を図1に示
す。図1から明らかなように、比較例1より実施例1の
方が抵抗温度係数が高く、特に、Mn量Xを0.1以上
とすることにより、実用上必要とされる10%/℃以上
の高い抵抗温度係数が得られることがわかった。
In the above Example 1 and Comparative Example 1, Mn
FIG. 1 shows the change in the temperature coefficient of resistance when the amount X is changed. As is clear from FIG. 1, the temperature coefficient of resistance of Example 1 is higher than that of Comparative Example 1, and in particular, by setting the Mn content X to be 0.1 or more, 10% / ° C. or more which is practically required. It was found that a high temperature coefficient of resistance of was obtained.

【0016】なお、抵抗温度係数は次式(3)により算出
した値である。 抵抗温度係数={2.303/(T2−T1)}×100 (3) 但し、T1:抵抗が室温抵抗の10倍になるときの温度
(℃) T2:抵抗が室温抵抗の100倍になるときの温度
(℃)
The resistance temperature coefficient is a value calculated by the following equation (3). Resistance temperature coefficient = {2.303 / (T2-T1)} × 100 (3) where T1: temperature when resistance becomes 10 times room temperature resistance (° C) T2: resistance becomes 100 times room temperature resistance When temperature (℃)

【0017】また、図2に実施例1と比較例1の室温比
抵抗を示す。なお比抵抗は下記の式(4)により算出した
値である。 比抵抗=R×(S/L) (4) 但し、Rは抵抗値、Sは表面積、Lは厚みである。
Further, FIG. 2 shows room temperature specific resistances of Example 1 and Comparative Example 1. The specific resistance is a value calculated by the following equation (4). Specific resistance = R × (S / L) (4) where R is the resistance value, S is the surface area, and L is the thickness.

【0018】図1より、室温比抵抗は、Mn量Xの増加
とともに高くなり、また、実施例1と比較例1を比較す
ると実施例1の方が室温比抵抗が低く、実施例1につい
ては、Mn量Xが2以下で特に低い比抵抗値が得られる
ことがわかった。
From FIG. 1, the room temperature resistivity increases as the Mn content X increases, and comparing Example 1 with Comparative Example 1, Example 1 has a lower room temperature resistivity, and Example 1 shows , Mn amount X was 2 or less, it was found that a particularly low specific resistance value was obtained.

【0019】(実施例2)Mn量Xを0.5モル%一定
とし、Ba4(Ti13-XMnX)030の添加量を0〜5モ
ル%の範囲で変化させたこと以外は上記実施例1と同様
の方法でチタン酸バリウム系半導体磁器を調製し、室温
(25℃)における比抵抗及び抵抗温度係数を測定し
た。
Example 2 Except that the Mn amount X was kept constant at 0.5 mol% and the addition amount of Ba 4 (Ti 13 -X Mn X ) 0 30 was changed within the range of 0 to 5 mol%. Barium titanate-based semiconductor porcelain was prepared by the same method as in Example 1, and the specific resistance and the temperature coefficient of resistance at room temperature (25 ° C.) were measured.

【0020】(比較例2)Ba4(Ti13-XMnX)030
を別途添加(後添加)することなく、BaCO3,Ti
2,SrCO3,TiO2,Y23とともに、SiO2
びMn23を実施例2のチタン酸バリウム系半導体磁器
の最終組成と同じ組成になるような割合で調合し、これ
を焼成することによりチタン酸バリウム系半導体磁器を
作成した。したがって、半導体磁器の最終組成、試料の
調製方法などは上記実施例2と同様である。
(Comparative Example 2) Ba 4 (Ti 13-X Mn X ) 0 30
Without adding (post-adding) separately, BaCO 3 , Ti
SiO 2, Mn 2 O 3 , together with O 2 , SrCO 3 , TiO 2 , and Y 2 O 3 , were mixed in a ratio such that the final composition of the barium titanate-based semiconductor ceramic of Example 2 was the same, and the mixture was fired. By doing so, a barium titanate-based semiconductor ceramic was prepared. Therefore, the final composition of the semiconductor porcelain, the method for preparing the sample, and the like are the same as in Example 2 above.

【0021】上記実施例2において、Ba4(Ti13-X
MnX)030の添加量を変化させた場合の抵抗温度係数
の変化を図3に示す。図3から明らかなように、比較例
2より実施例2の方が抵抗温度係数が高く、特に、Ba
4(Ti13-XMnX)030の添加量を0.1モル%以上と
することにより、10%/℃以上の高い抵抗温度係数が
得られることがわかった。
In Example 2 above, Ba 4 (Ti 13-X
FIG. 3 shows changes in the temperature coefficient of resistance when the amount of Mn X ) 0 30 added was changed. As is clear from FIG. 3, the temperature coefficient of resistance of Example 2 is higher than that of Comparative Example 2, and in particular, Ba
It was found that a high temperature coefficient of resistance of 10% / ° C. or more can be obtained by setting the addition amount of 4 (Ti 13-X Mn X ) 0 30 to 0.1 mol% or more.

【0022】また、図4に実施例2と比較例2の室温比
抵抗を示す。図4より、室温比抵抗は、Ba4(Ti
13-XMnX)030の添加量の増加とともに高くなり、ま
た、実施例2と比較例2を比較すると実施例2の方が室
温比抵抗が低く、実施例2については、Ba4(Ti
13-XMnX)030添加量が2モル%以下で特に低い比抵
抗値が得られることがわかった。
Further, FIG. 4 shows room temperature specific resistances of Example 2 and Comparative Example 2. From FIG. 4, the room temperature resistivity is Ba 4 (Ti
13-X Mn X) increases with increasing 0 30 amount of, also, Example 2 and is compared with Comparative Example 2 towards the second embodiment is low room temperature resistivity, for Example 2, Ba 4 ( Ti
It was found that a particularly low specific resistance value was obtained when the amount of 13-X Mn X ) 0 30 added was 2 mol% or less.

【0023】[0023]

【発明の効果】上述のように、この発明の正の抵抗温度
係数を有する半導体磁器の製造方法は、Yなどの希土類
元素やNb,Sbなどの半導体化元素を含有させたチタ
ン酸バリウム系主成分材料に、式:Ba4(Ti13-X
X)030(X=0.1〜2)で示される材料を添加混
合した後、これを焼成するように構成しているため、正
の抵抗温度特性を有するチタン酸バリウム系半導体磁器
の室温における抵抗温度係数を大幅に高めることができ
る。
As described above, according to the method of manufacturing a semiconductor ceramic having a positive temperature coefficient of resistance of the present invention, a barium titanate-based main component containing a rare earth element such as Y or a semiconducting element such as Nb or Sb is used. For the constituent materials, the formula: Ba 4 (Ti 13-X M
n X ) 0 30 (X = 0.1-2) is added and mixed, and then the composition is fired, so that a barium titanate-based semiconductor ceramic having a positive resistance temperature characteristic can be obtained. The temperature coefficient of resistance at room temperature can be significantly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1のMn量Xと抵抗温度係数との
関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the Mn content X and the temperature coefficient of resistance of Example 1.

【図2】図2は実施例1のMn量Xと室温比抵抗との関
係を示す線図である。
FIG. 2 is a graph showing the relationship between the Mn content X and the room temperature specific resistance of Example 1.

【図3】図3は実施例2のBa4(Ti13-XMnX)030
添加量と抵抗温度係数との関係を示す線図である。
FIG. 3 shows Ba 4 (Ti 13-X Mn X ) 0 30 of Example 2.
It is a diagram which shows the relationship between the amount of addition and a temperature coefficient of resistance.

【図4】図4は実施例2のBa4(Ti13-XMnX)030
添加量と室温比抵抗との関係を示す線図である。
FIG. 4 shows Ba 4 (Ti 13-X Mn X ) 0 30 of Example 2.
It is a diagram which shows the relationship between the amount of addition and room temperature specific resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Yなどの希土類元素やNb,Sbなどの
半導体化元素を含有させたチタン酸バリウム系主成分材
料に、式:Ba4(Ti13-XMnX)030(X=0.1〜
2)で表される材料を添加混合した後、これを焼成する
ことを特徴とする正の抵抗温度係数を有する半導体磁器
の製造方法。
1. A barium titanate-based main component material containing a rare earth element such as Y or a semiconducting element such as Nb or Sb is added to the formula: Ba 4 (Ti 13-X Mn X ) 0 30 (X = 0. 1 ~
A method for manufacturing a semiconductor ceramic having a positive temperature coefficient of resistance, which comprises adding and mixing the materials represented by 2) and then firing the mixture.
【請求項2】 前記チタン酸バリウム系主成分材料に対
する前記式:Ba4(Ti13-XMnX)030(X=0.1
〜2)で示される材料の添加割合が0.1〜2モル%で
あることを特徴とする請求項1記載の正の抵抗温度係数
を有する半導体磁器の製造方法。
2. The formula: Ba 4 (Ti 13 -X Mn X ) 0 30 (X = 0.1) for the barium titanate-based main component material.
2. The method for producing a semiconductor porcelain having a positive temperature coefficient of resistance according to claim 1, wherein the addition ratio of the material represented by 2) is 0.1 to 2 mol%.
JP3177091A 1991-01-30 1991-01-30 Manufacture of semiconductor procelain with positive temperature coefficient of resistance Withdrawn JPH0645104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177091A JPH0645104A (en) 1991-01-30 1991-01-30 Manufacture of semiconductor procelain with positive temperature coefficient of resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177091A JPH0645104A (en) 1991-01-30 1991-01-30 Manufacture of semiconductor procelain with positive temperature coefficient of resistance

Publications (1)

Publication Number Publication Date
JPH0645104A true JPH0645104A (en) 1994-02-18

Family

ID=12340287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177091A Withdrawn JPH0645104A (en) 1991-01-30 1991-01-30 Manufacture of semiconductor procelain with positive temperature coefficient of resistance

Country Status (1)

Country Link
JP (1) JPH0645104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205343A (en) * 2007-02-22 2008-09-04 Tdk Corp Manufacturing method of laminated type thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205343A (en) * 2007-02-22 2008-09-04 Tdk Corp Manufacturing method of laminated type thermistor

Similar Documents

Publication Publication Date Title
US6221800B1 (en) Method of producing PTC semiconducting ceramic
JPH0645104A (en) Manufacture of semiconductor procelain with positive temperature coefficient of resistance
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP3023920B2 (en) Manufacturing method of semiconductor porcelain
JPS606535B2 (en) porcelain composition
JP3038906B2 (en) Method for producing barium titanate-based semiconductor porcelain
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH04311002A (en) Manufacture of semiconductor porcelain with positive temperature coefficient of resistance
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH0212001B2 (en)
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JP3111630B2 (en) Barium titanate-based semiconductor porcelain and method of manufacturing the same
JPH04338601A (en) Semiconductor porcelain having positive resistance temperature coefficient and manufacture thereof
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH0383855A (en) Production of barium titanate-based semiconductor porcelain
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH05301766A (en) Barium titanate-based semiconductive porcelain and its production
JPS6366401B2 (en)
JPH01289205A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPS59188906A (en) Semiconductor porcelain composition for voltage nonlinear resistor
JPS61253812A (en) Ceramic composition for semiconductor capacitor
JPH09246015A (en) Preparation of positive characteristic semiconductor ceramic
JPH01187916A (en) Grain boundary insulation type semiconductor porcelain composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514