JPH01187916A - Grain boundary insulation type semiconductor porcelain composition - Google Patents

Grain boundary insulation type semiconductor porcelain composition

Info

Publication number
JPH01187916A
JPH01187916A JP1336488A JP1336488A JPH01187916A JP H01187916 A JPH01187916 A JP H01187916A JP 1336488 A JP1336488 A JP 1336488A JP 1336488 A JP1336488 A JP 1336488A JP H01187916 A JPH01187916 A JP H01187916A
Authority
JP
Japan
Prior art keywords
grain boundary
thickness
oxide
dielectric constant
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336488A
Other languages
Japanese (ja)
Inventor
Toshiaki Kachi
敏晃 加地
Nobuyuki Wada
信之 和田
Hiroshi Tamura
博 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1336488A priority Critical patent/JPH01187916A/en
Publication of JPH01187916A publication Critical patent/JPH01187916A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors
    • H01G4/1281Semiconductive ceramic capacitors with grain boundary layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a capacitor in which high dielectric constant is obtained with small grain size, thickness can be reduced, stability and reliability of insulation resistance are not deteriorated by reduced thickness, large mechanical strength and large product of the dielectric constant and breakdown strength voltage are provided by employing the capacitor made of a specific composition. CONSTITUTION:A main ingredient is represented by a general formula of (Sr1-x-yBaxMy) (Ti1-zM'z)alphaO3 (where M is at least one selected from rare earth elements, M' is at least one kind selected from Nb, Ta and W, and at least one type of M, M' is contained), x, y+z, alpha are respectively 0.40<x<=0.60, 0.0005<=y+z<=0.03, and 1.001<=alpha<=1.010, its crystal grain boundaries are insulated by the oxide of Mn and at least one kind of oxide of one selected from Bi, Pb, B and Si, and its maximum grain size is 50mum or less. Or, one or more kinds of SiO2 and Al2O3 may be added by 0-0.1wt.% as sub ingredient to 99.9-100wt.% of the main ingredient.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は粒界絶縁形半導体磁器組成物に関し、特にた
とえば粒界絶縁形半導体磁器コンデンサの材料として用
いられる、粒界絶縁形半導体磁器組成物に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a grain boundary insulated semiconductor ceramic composition, and particularly to a grain boundary insulated semiconductor ceramic composition used as a material for a grain boundary insulated semiconductor ceramic capacitor, for example. Regarding.

(従来技術) この発明の背景となる従来の粒界絶縁形半導体磁器組成
物の一例が、特開昭56−54024号公報、特開昭5
6−54025号公報および特開昭56−54026号
公報に開示されている。この粒界絶縁形半導体磁器組成
物では、その最大粒径を100μm以上とすることによ
って、Kt率を大きくしている。この粒界絶縁形半導体
磁器組成物をコンデンサの材料として用いることにより
、コンデンサの静電容量を大きくすることができる。
(Prior Art) Examples of conventional grain boundary insulated semiconductor ceramic compositions that form the background of this invention are disclosed in Japanese Patent Laid-Open No. 56-54024 and Japanese Patent Laid-Open No. 54024-1989
It is disclosed in Japanese Patent Application Laid-open No. 6-54025 and Japanese Patent Application Laid-open No. 56-54026. In this grain boundary insulated semiconductor ceramic composition, the Kt ratio is increased by setting the maximum grain size to 100 μm or more. By using this grain boundary insulated semiconductor ceramic composition as a material for a capacitor, the capacitance of the capacitor can be increased.

(発明が解決しようとする問題点) しかしながら、このような粒界絶縁形半導体磁器組成物
では、それを用いてコンデンサを作るとき、その最大粒
径が100μm以上と大きいため、それを用いて作った
磁器板の厚み方向の粒子の数が少なくなる。そのため、
単位厚みあたりの絶縁層の厚みすなわち粒界相の厚みが
小さくなる。したがって、磁器板の単位厚みあたりの絶
縁破壊電圧が小さく、そのため誘電率と絶縁破壊電圧と
の積が小さくなってしまう。また、磁器板を200μm
程度に薄肉化したとき、絶縁抵抗の安定性および信頼性
が悪くなる。さらに、磁器板の機械的強度が小さくなり
、この磁器板を用いたコンデンサは破損されやすくなる
。したがって、このような粒界絶縁形半導体磁器組成物
を用いると、コンデンサのチップ化や薄肉化が困難であ
る。
(Problems to be Solved by the Invention) However, when making a capacitor using such a grain boundary insulated semiconductor ceramic composition, the maximum grain size is as large as 100 μm or more. The number of particles in the thickness direction of the porcelain plate is reduced. Therefore,
The thickness of the insulating layer per unit thickness, that is, the thickness of the grain boundary phase becomes smaller. Therefore, the dielectric breakdown voltage per unit thickness of the ceramic plate is small, and therefore the product of dielectric constant and dielectric breakdown voltage becomes small. In addition, a porcelain plate with a thickness of 200 μm
When the thickness is reduced to a certain degree, the stability and reliability of insulation resistance deteriorate. Furthermore, the mechanical strength of the porcelain plate is reduced, and capacitors using this porcelain plate are more likely to be damaged. Therefore, when such a grain boundary insulated semiconductor ceramic composition is used, it is difficult to make a capacitor chip or thin.

それゆえに、この発明の主たる目的は、粒径の小さいも
ので高い誘電率が確保でき、これを用いた磁器板の薄肉
化が可能で、磁器板を薄肉化しても絶縁抵抗の安定性お
よび信頼性が悪化せず、この磁器板の機械的強度が大き
く、かつ誘電率と絶縁破壊電圧との積が大きいコンデン
サを作ることができる、粒界絶縁形半導体磁器組成物を
提供することである。
Therefore, the main purpose of this invention is to ensure a high dielectric constant with small grain size, to make a porcelain plate thinner using the same, and to maintain insulation resistance stability and reliability even if the porcelain plate is made thinner. An object of the present invention is to provide a grain boundary insulated semiconductor porcelain composition capable of producing a capacitor in which the properties of the ceramic plate are not deteriorated, the mechanical strength of the porcelain plate is high, and the product of dielectric constant and dielectric breakdown voltage is large.

(問題点を解決するための手段) この発明は、主成分が(Sr+□−y Ba X M 
y)(Ti+−−M’−)tx03.(ただし、Mは希
土類元素の中から選ばれる少なくとも1種類、M′はN
b、TaおよびWの中から選ばれる少なくとも1種類、
ただし、M、M’のうち少なくとも1種を含有させる)
の一般式で表され、X、)’+Z、αが、それぞれ、0
.40<x≦0.60、O、ooos≦y+z≦0.0
3、および1.001≦α≦1.010の範囲内にあり
、その結晶粒界がMnの酸化物と、Bi、Pb、Bおよ
びSiの中から選ばれる少なくとも1種類の酸化物とに
よって絶縁体化され、その最大粒径が50μm以下であ
る、粒界絶縁形半導体磁器組成物である。
(Means for Solving the Problems) In this invention, the main component is (Sr+□-y Ba X M
y) (Ti+--M'-)tx03. (However, M is at least one kind selected from rare earth elements, and M' is N
At least one type selected from b, Ta and W,
However, at least one of M and M' is included)
It is expressed by the general formula, where X, )'+Z, α are respectively 0
.. 40<x≦0.60, O, ooos≦y+z≦0.0
3, and 1.001≦α≦1.010, and the grain boundaries are insulated by an oxide of Mn and at least one oxide selected from Bi, Pb, B, and Si. This is a grain boundary insulated semiconductor ceramic composition having a maximum grain size of 50 μm or less.

(作用) この粒界絶縁形半導体磁器組成物を用いてコンデンサを
作るための磁器板を形成すれば、粒径の大きい従来のも
のに比べて、磁器板の厚み方向に並ぶ粒子の数が多くな
る。そのため、単位厚みあたりの絶縁層の厚みすなわち
粒界相の厚みが大きくなる。したがって、磁器板の厚み
方向に直列に接続される等価的なコンデンサと等価的な
抵抗との数が多くなる。
(Function) If a porcelain plate for making a capacitor is formed using this grain-boundary insulated semiconductor porcelain composition, the number of particles aligned in the thickness direction of the porcelain plate will be larger than that of conventional ones with large grain sizes. Become. Therefore, the thickness of the insulating layer per unit thickness, that is, the thickness of the grain boundary phase increases. Therefore, the number of equivalent capacitors and equivalent resistors connected in series in the thickness direction of the ceramic plate increases.

(発明の効果) この発明によれば、これを用いた磁器板の薄肉化が可能
で、この磁器板の機械的強度が大きく、磁器板を薄板化
しても絶縁抵抗の安定性および信頼性が悪化せず、かつ
誘電率と絶縁破壊電圧との積が大きいコンデンサを作成
可能な粒界絶縁形半導体磁器組成物を得ることができる
(Effects of the Invention) According to the present invention, it is possible to make a porcelain plate thin using the same, the mechanical strength of this porcelain plate is high, and even if the porcelain plate is made thin, the insulation resistance is stable and reliable. It is possible to obtain a grain-boundary insulated semiconductor ceramic composition that does not deteriorate and can produce a capacitor with a large product of dielectric constant and dielectric breakdown voltage.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、出発原料として5rCO,、BaC0゜、Ti0
z 、Yz  Oz  、Ndz  03  、Nbz
  05、Ce0z 、Lag O3,WO3、S i
ozおよびAl2O3を準備した。そして、これらの原
料を表1に示す配合比になるように配合して配合原料を
得た。これらの配合原料を1150℃で2時間仮焼した
。次に、仮焼した配合原料に酢酸ビニル系樹脂を10重
量%加えて湿式粉砕し、50メツシユの篩で整粒して整
粒物を得た。そして、この整粒物を2ton/cfAの
圧力で直径IQmm、厚さ0゜3鶴の円板状に成形して
成形物を得た。
(Example) First, as starting materials, 5rCO,, BaCO°, Ti0
z , Yz Oz , Ndz 03 , Nbz
05, Ce0z, Lag O3, WO3, S i
oz and Al2O3 were prepared. Then, these raw materials were blended at the blending ratio shown in Table 1 to obtain blended raw materials. These mixed raw materials were calcined at 1150°C for 2 hours. Next, 10% by weight of a vinyl acetate resin was added to the calcined blended raw materials, which were wet-pulverized and sized using a 50-mesh sieve to obtain a sized product. Then, this sized product was molded into a disk shape with a diameter of IQ mm and a thickness of 0° and 3 mm under a pressure of 2 tons/cfA to obtain a molded product.

次に、この円板状の成形物を空気中において1200℃
で予備焼成し、さらに、窒素98容量%、水素2容量%
からなる還元性雰囲気中において1400℃で2〜4時
間焼成して半導体磁器を得た。
Next, this disc-shaped molded product was placed in air at 1200°C.
98% nitrogen by volume and 2% hydrogen by volume
Semiconductor porcelain was obtained by firing at 1400° C. for 2 to 4 hours in a reducing atmosphere consisting of:

得られた半導体磁器の表面に、表1に示すように、絶縁
体化剤としての次に示す金属酸化物のベーストA、Bお
よびCのうちの1種類を塗布した。
As shown in Table 1, one of the following metal oxide bases A, B, and C as an insulating agent was applied to the surface of the obtained semiconductor ceramic.

MnO□ ・・・・・・・ 7重量% Bi2O3・・・・・43重量% 樹脂フェス ・・・・・50重量% B MnO2・・・・・・・ 4重量% Pb30a   ・・・・・40重量%CuO・・・・
・・・ 6重量% 樹脂フェス ・・・・・50重量% M n Oz  ・・・・・・・ 5重量%H3BO□
  ・・・・・45重量% 樹脂フェス ・・・・・50重量% そして、金属酸化物を塗布した半導体磁器を空気中にお
いて1150℃で2時間熱処理をして、結晶粒界を絶縁
体化した。
MnO□・・・・・・7 weight% Bi2O3・・・43 weight% Resin face・・・50 weight% B MnO2・・・・・・4 weight% Pb30a・・・40 Weight% CuO...
...6% by weight Resin face...50% by weight M n Oz...5% by weight H3BO□
...45% by weight Resin face ...50% by weight Then, the semiconductor porcelain coated with metal oxide was heat-treated at 1150°C for 2 hours in the air to make the grain boundaries insulators. .

次に、結晶粒界を絶縁体化した半導体磁器の両面に銀ペ
ーストを印刷塗布した。これを800℃で30分焼き付
けて電極を形成し、試料1〜24(コンデンサ)を作成
した。
Next, silver paste was printed and coated on both sides of the semiconductor porcelain whose grain boundaries were made into insulators. This was baked at 800° C. for 30 minutes to form electrodes, thereby creating samples 1 to 24 (capacitors).

そして、得られた試料の誘電率(ε)、誘電損失(ta
nδ)、絶縁抵抗(IR)、静電容量温度特性(ΔTC
)および絶縁破壊電圧(B D V)を測定して表2に
示した。
Then, the dielectric constant (ε) and dielectric loss (ta
nδ), insulation resistance (IR), capacitance temperature characteristics (ΔTC
) and dielectric breakdown voltage (B D V) were measured and shown in Table 2.

なお、誘電率(ε)および誘電損失(tanδ)は、1
kHz、0.2V、、、、20℃の条件で測定した。
Note that the dielectric constant (ε) and dielectric loss (tan δ) are 1
It was measured under the conditions of kHz, 0.2V, ..., 20°C.

さらに、絶縁抵抗(IR)は、温度20℃において試料
の厚み11あたり16Vの直流電圧を印加し、その30
秒後に測定した。
Furthermore, the insulation resistance (IR) was determined by applying a DC voltage of 16 V per thickness 11 of the sample at a temperature of 20°C.
Measured after seconds.

また、静電容量温度特性(ΔTC)は、20°Cにおけ
る静電容量を基準として、−25℃〜85℃の温度範囲
における最大容量変化率を示した値である。なお、表2
の静電容量温度特性(ΔTC)の欄には、その上段に最
大容量増加率を、その下段に最大容量減少率をそれぞれ
示した。
Further, the capacitance temperature characteristic (ΔTC) is a value indicating the maximum capacitance change rate in the temperature range of -25°C to 85°C, based on the capacitance at 20°C. In addition, Table 2
In the column of capacitance temperature characteristics (ΔTC), the maximum capacity increase rate is shown in the upper row, and the maximum capacity decrease rate is shown in the lower row.

次に、この発明にかかる粒界絶縁形半導体磁器組成物の
成分の数値を限定した理由について説明する。
Next, the reason for limiting the numerical values of the components of the grain boundary insulated semiconductor ceramic composition according to the present invention will be explained.

Xが0.40以下では誘電率が低下する。また、Xが0
.60を超えると静電容量温度特性が悪化する。
When X is 0.40 or less, the dielectric constant decreases. Also, X is 0
.. When it exceeds 60, capacitance temperature characteristics deteriorate.

y+zが0.0005未満となるかまたはy+2が0.
03を超えると、中性または還元性雰囲気中で焼成して
も目的とする比抵抗を有する半導体磁器を得ることがで
きない。具体的には、コンデンサとしたとき、0.00
05未満では誘電率が小さく、誘電損失が悪くなり、0
.03を超えると絶縁抵抗が低下する。なお、この実施
例では、原料として金属酸化物を用いたが、原料として
酸化物以外の金属化合物や金属単体を用いても同様のこ
とが言える。
y+z is less than 0.0005 or y+2 is 0.
If it exceeds 0.03, it will not be possible to obtain semiconductor porcelain having the desired resistivity even if fired in a neutral or reducing atmosphere. Specifically, when used as a capacitor, 0.00
If it is less than 0.05, the dielectric constant will be small and the dielectric loss will be bad.
.. If it exceeds 03, the insulation resistance will decrease. In this example, a metal oxide was used as a raw material, but the same effect can be obtained even if a metal compound or an elemental metal other than an oxide is used as a raw material.

αがi、ooi未満では、最大結晶粒径が50μmを超
える。最大結晶粒径が50μmを超えると、試料の厚み
を200μm程度に薄肉化したとき、絶縁抵抗の安定性
および信頼性に問題が発生する。また、αが1.010
を超えると、結晶粒径が小さくなって、十分な誘電率が
得られない。
When α is less than i, ooi, the maximum crystal grain size exceeds 50 μm. If the maximum crystal grain size exceeds 50 μm, problems occur in the stability and reliability of insulation resistance when the thickness of the sample is reduced to about 200 μm. Also, α is 1.010
If it exceeds , the crystal grain size becomes small and a sufficient dielectric constant cannot be obtained.

Sin、およびAj!zozのうち少なくとも1種類を
含有させることにより、焼成温度を低下させ、絶縁破壊
電圧を大きくすることができ、かつ主成分のモル比の安
定性を高めることができるが、その添加量が0.1重量
%を超えると誘電率が低下する。
Sin, and Aj! By containing at least one type of zoz, the firing temperature can be lowered, the dielectric breakdown voltage can be increased, and the stability of the molar ratio of the main components can be increased. When it exceeds 1% by weight, the dielectric constant decreases.

特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓Patent applicant Murata Manufacturing Co., Ltd. Agent: Patent Attorney Oka 1) Zenhiro

Claims (2)

【特許請求の範囲】[Claims] (1)主成分が(Sr_1_−_x_−_yBa_xM
_y)(Ti_1_−_zM’_z)_αO_3(ただ
し、Mは希土類元素の中から選ばれる少なくとも1種類
、M’はNb、TaおよびWの中から選ばれる少なくと
も1種類、ただし、M、M’のうち少なくとも1種を含
有させる)の一般式で表され、x、y+z、αが、それ
ぞれ、 0.40<x≦0.60、 0.0005≦y+z≦0.03、および 1.001≦α≦1.010 の範囲内にあり、 その結晶粒界がMnの酸化物と、Bi、Pb、Bおよび
Siの中から選ばれる少なくとも1種類の酸化物とによ
って絶縁体化され、その最大粒径が50μm以下である
、粒界絶縁形半導体磁器組成物。
(1) The principal component is (Sr_1_−_x_−_yBa_xM
_y) (Ti_1_-_zM'_z)_αO_3 (M is at least one type selected from rare earth elements, M' is at least one type selected from Nb, Ta, and W, provided that M, M' x, y+z, and α are 0.40<x≦0.60, 0.0005≦y+z≦0.03, and 1.001≦α, respectively. ≦1.010, the grain boundaries are made into an insulator by an oxide of Mn and at least one oxide selected from Bi, Pb, B, and Si, and the maximum grain size is within the range of A grain boundary insulated semiconductor ceramic composition in which the particle diameter is 50 μm or less.
(2)99.9〜100重量%の前記主成分に、副成分
としてSiO_2またはAl_2O_3のうちの少なく
とも1種類を0〜0.1重量%添加した、特許請求の範
囲第1項記載の粒界絶縁形半導体磁器組成物。
(2) The grain boundary according to claim 1, wherein 0 to 0.1% by weight of at least one of SiO_2 or Al_2O_3 is added as a subcomponent to 99.9 to 100% by weight of the main component. Insulated semiconductor porcelain composition.
JP1336488A 1988-01-22 1988-01-22 Grain boundary insulation type semiconductor porcelain composition Pending JPH01187916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336488A JPH01187916A (en) 1988-01-22 1988-01-22 Grain boundary insulation type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336488A JPH01187916A (en) 1988-01-22 1988-01-22 Grain boundary insulation type semiconductor porcelain composition

Publications (1)

Publication Number Publication Date
JPH01187916A true JPH01187916A (en) 1989-07-27

Family

ID=11831042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336488A Pending JPH01187916A (en) 1988-01-22 1988-01-22 Grain boundary insulation type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPH01187916A (en)

Similar Documents

Publication Publication Date Title
JPS6249977B2 (en)
JPH01187916A (en) Grain boundary insulation type semiconductor porcelain composition
JPH01291413A (en) Grain boundary insulation type semiconductor porcelain composition
JPS63301410A (en) Insulated grain boundary type semiconductor ceramic composition
JPH01291414A (en) Grain boundary insulated semiconductor porcelain composition
JPH01292805A (en) Insulating grain boundary type semiconductor porcelain composition
JPH01187917A (en) Grain boundary insulation type semiconductor porcelain composition
JPH01187915A (en) Grain boundary insulation type semiconductor porcelain composition
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JP2713040B2 (en) Semiconductor porcelain composition and method for producing the same
JPS63301409A (en) Insulated grain boundary type semiconductor ceramic composite
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JP3111630B2 (en) Barium titanate-based semiconductor porcelain and method of manufacturing the same
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPS6249976B2 (en)
JPS63301411A (en) Insulated grain boundary type semiconductor ceramic composition
JP2630156B2 (en) Semiconductor porcelain composition and method for producing the same
JP2903991B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0645104A (en) Manufacture of semiconductor procelain with positive temperature coefficient of resistance
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH07267728A (en) Semiconductor porcelain composition and its production
JPH05258918A (en) Electrode material for voltage non-linear resistor
JPH06204005A (en) Semiconductor ceramic composite material and its manufacture
JPH07277818A (en) Grain boudnary insulated semiconductor porcelain composition
JPH05258919A (en) Electrode material for voltage non-linear resistor