JPS62282410A - Manufacture of voltage nonlinear resistance element - Google Patents

Manufacture of voltage nonlinear resistance element

Info

Publication number
JPS62282410A
JPS62282410A JP61126076A JP12607686A JPS62282410A JP S62282410 A JPS62282410 A JP S62282410A JP 61126076 A JP61126076 A JP 61126076A JP 12607686 A JP12607686 A JP 12607686A JP S62282410 A JPS62282410 A JP S62282410A
Authority
JP
Japan
Prior art keywords
layer
main component
mol
added
resistance layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61126076A
Other languages
Japanese (ja)
Inventor
雅昭 勝又
高見 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61126076A priority Critical patent/JPS62282410A/en
Publication of JPS62282410A publication Critical patent/JPS62282410A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は酸化亜鉛を主成分とし、それ自身が電圧非直線
性を有する焼結体の側面に、高抵抗層を形成した電圧非
直線抵抗体素子の製造方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention forms a high-resistance layer on the side surface of a sintered body containing zinc oxide as a main component and having voltage nonlinearity itself. The present invention relates to a method of manufacturing a voltage nonlinear resistor element.

従来の技術 電圧非直線抵抗体素子は一般にバリスタと呼ばれ、電圧
安定化やサージ吸収素子として用いられている。なかで
も、酸化亜鉛を主成分とし、これに少量ノBi2O3,
Co2o31Mno2.5b2o3゜0r2O.などの
金属酸化物を添加した酸化亜鉛バリスタは、その大きな
サージ電流耐量と優れた電圧非直線性から、近年ギャッ
プレスアレスタ用の素子として従来のシリコンカーバイ
トバリスタにとって代わり広く利用されている。
BACKGROUND ART A voltage nonlinear resistor element is generally called a varistor, and is used as a voltage stabilizing or surge absorbing element. Among them, zinc oxide is the main component, and a small amount of Bi2O3,
Co2o31Mno2.5b2o3゜0r2O. Zinc oxide varistors doped with metal oxides have recently been widely used as elements for gapless arresters in place of conventional silicon carbide varistors due to their large surge current withstand capacity and excellent voltage nonlinearity.

酸化亜鉛バリスタをアレスタ素子として用いる場合、極
めて重要な特性要素が2つある。第1は、放電耐量特性
である。これはJRC−187−1973に規定されて
いる4×10μsの衝撃電流を6分間隔で2回印加し、
素子が耐え得るピーク電流の限界値である。第2に課電
寿命特性で、これは規定の交流電圧を印加した際に、ア
レスタ素子が熱暴走に至るまでの時間である。通常は、
周囲温度を100°C以上、課電率(V印加電圧×1o
o/V+m人)を90%以上に設定し、加速試験を行う
。近年、高放電耐量、長寿命のアレスタ素子の開発が市
場から強く望まれている。
When using a zinc oxide varistor as an arrester element, there are two extremely important characteristic factors. The first is discharge endurance characteristics. This is done by applying an impact current of 4 x 10 μs twice at 6 minute intervals as specified in JRC-187-1973.
This is the limit value of the peak current that the element can withstand. The second is the energization life characteristic, which is the time it takes for the arrester element to reach thermal runaway when a specified alternating current voltage is applied. Normally,
When the ambient temperature is 100°C or higher, the charging rate (V applied voltage x 1o
o/V+m people) is set to 90% or higher and an accelerated test is performed. In recent years, there has been a strong demand from the market for the development of arrester elements with high discharge resistance and long life.

従来より、電圧非直線抵抗体素子゛(以下アレスタ素子
)の製造方法として、特開昭56−69804号公報、
特公昭60−15128号公報などが知られている。前
者は酸化亜鉛形のアレスタ素子の成形体または仮焼体の
側面にSiO2,Zn、5b2O.。
Conventionally, as a method for manufacturing a voltage nonlinear resistor element (hereinafter referred to as an arrester element), Japanese Patent Application Laid-Open No. 56-69804,
Japanese Patent Publication No. 60-15128 is known. The former has SiO2, Zn, 5b2O. .

Bi2O3などの混合物を塗布した後、焼結し、側面に
高抵抗層を有するアレスタ素子を製造するものである。
After applying a mixture such as Bi2O3, it is sintered to produce an arrester element having a high resistance layer on the side surface.

後者は、同様の成形体を焼成する際、焼成容器内に5b
2O5.Bユ2O3. SiO□などからなる混合物を
配置し、気−固相反応により、側面に高抵抗層を有する
アレスタ素子を製造するものである。
For the latter, when firing a similar molded body, 5b is placed in the firing container.
2O5. B Yu2O3. An arrester element having a high resistance layer on the side surface is manufactured by disposing a mixture of SiO□ or the like and performing a gas-solid phase reaction.

発明が解決しようとする問題点 このような前者の方法では、側面高抵抗層の構造が不安
定で素子と側面剤との密着性が悪く、放電耐量が低いと
いう欠点を有していた。また、後者の方法では、焼成容
器内部に適当に配置した5b2O. 、 B工2O5な
どからなる塗布剤の蒸気と成形体とを反応させるため、
側面高抵抗層の厚みが充分とれず、放電耐量が低いばか
りでなく、同一焼成容器中で焼成可能な素子数が限られ
、量産性に欠けるという欠点を有していた。
Problems to be Solved by the Invention The former method has disadvantages in that the structure of the side high resistance layer is unstable, the adhesion between the element and the side surface agent is poor, and the discharge withstand capacity is low. In the latter method, 5b2O. , in order to cause the molded body to react with the vapor of the coating agent made of B-2O5, etc.
The high-resistance layer on the side surface was not thick enough, resulting in a low discharge withstand capacity, and the number of elements that could be fired in the same firing container was limited, making it difficult to mass-produce.

本発明は、このような問題点を解決するもので、アレス
タとしての酸化亜鉛バリスタの高性能化、すなわち放電
耐量特性、課電寿命特性の大巾な向上を目的とするもの
である。
The present invention is intended to solve these problems, and aims to improve the performance of a zinc oxide varistor as an arrester, that is, to significantly improve its discharge withstand characteristics and charging life characteristics.

問題点を解決するための手段 本発明では、前記の問題点を解決するため、酸化亜鉛を
主成分とするアレスタ素子の成形体または仮焼体の側面
に2種類の成分の異なった側面剤を塗布することにより
、焼結体側面に2層の高抵抗層を形成したものである。
Means for Solving the Problems In the present invention, in order to solve the above-mentioned problems, two types of side-facing agents with different components are applied to the side surface of the molded or calcined body of the arrester element whose main component is zinc oxide. By coating, two high-resistance layers are formed on the side surface of the sintered body.

作用 本発明の電圧非直線抵抗体素子の製造方法は、酸化亜鉛
バリスタ素子の成形体または仮焼体の側面に、Zn2S
104を主成分としZn7Sb2O12を添加した第1
の側面剤を塗布し、その上部に3i0□を主成分としB
12o、を添加した第2の側面剤を塗布した後、焼成し
、バリスタ素子側面に高抵抗層を形成するため、高抵抗
層下層部にZn、5b2O,2゜Zn2S104  の
混合相、同上層部にZn2SiO4相の安定な2層構造
を得ることができる。このことからバリスタ素体−高抵
抗層間の密着性が増し放電耐量が向上し、高抵抗層上部
のZn2Si04のカバーリング効果によりバリスタ素
体からのBi2O。
Function The method for manufacturing a voltage nonlinear resistor element according to the present invention includes adding Zn2S to the side surface of a molded or calcined body of a zinc oxide varistor element.
104 as the main component and Zn7Sb2O12 added.
3i0□ is the main component and B is applied on top.
After applying the second side surface agent containing 12o, it is fired to form a high resistance layer on the side surface of the varistor element. In order to form a high resistance layer on the side surface of the varistor element, a mixed phase of Zn, 5b2O, 2°Zn2S104 is added to the lower layer of the high resistance layer, and a mixed phase of Zn, 5b2O, 2°Zn2S104 is added to the upper layer. A stable two-layer structure of Zn2SiO4 phase can be obtained. This increases the adhesion between the varistor body and the high-resistance layer, improving the discharge withstand capacity, and the covering effect of Zn2Si04 on the upper part of the high-resistance layer reduces Bi2O from the varistor body.

飛散を軽減し、課電寿命特性を大巾に向上させることが
できる。
It is possible to reduce scattering and greatly improve the charging life characteristics.

実施例 以下、本発明の製造方法およびそれによって得られた電
圧非直線抵抗体素子について実施例て基づき詳細に説明
する。
EXAMPLES Hereinafter, the manufacturing method of the present invention and the voltage nonlinear resistor element obtained thereby will be explained in detail based on examples.

まず、ZnOの粉末に、合計量に対しB1□0゜0.5
%/L/%、 Ga2O,0,5%/l、% 、 Mn
02O.5 %/l/ % 、 5b2o31 、Oモ
ル%、 0r2O. o、s モル% 。
First, add B1□0°0.5 to the total amount of ZnO powder.
%/L/%, Ga2O, 0.5%/l, %, Mn
02O. 5%/l/%, 5b2o31, O mol%, 0r2O. o, s mol%.

Nio 0.5モルチを加え、充分に粉砕、混合した後
、造粒して原料粉を得た。この原料粉を直径40 rr
an、厚さ30mmの大きさに圧縮成形した。このよう
にして得られた成形体を900℃、2時間焼成し冷却し
て仮焼体を得た。
After adding 0.5 mulch of Nio and sufficiently grinding and mixing, the mixture was granulated to obtain a raw material powder. This raw material powder has a diameter of 40 rr.
It was compression molded to a size of 30 mm thick. The thus obtained molded body was fired at 900° C. for 2 hours and cooled to obtain a calcined body.

一方、側面高抵抗層用のペーストは、Zn7Sb2O1
2、Zn25in4. Bi2O,、Sin、、を適当
な割合で混合した原料粉と、エチルセルロース25ωt
%。
On the other hand, the paste for the side high resistance layer is Zn7Sb2O1
2, Zn25in4. Raw material powder mixed with Bi2O,, Sin, in an appropriate ratio and ethyl cellulose 25ωt
%.

ブチルカルピトール76ωt%からなるバインダーとを
、重量比で1対3の割合で配合し、均一になるように混
練して作成した。本発明では、この側面高抵抗層用ノペ
ーストはZn25in4. Zn7Sb2O.2からな
る下層用と、Sio2を主成分とする上層用の2種類が
ある。
A binder consisting of 76 ωt% butyl calpitol was blended in a weight ratio of 1:3 and kneaded uniformly. In the present invention, the paste for the side high resistance layer is Zn25in4. Zn7Sb2O. There are two types: one for the lower layer consisting of Sio2 and the other for the upper layer consisting of Sio2 as the main component.

前述の仮焼体側面に下層用のペーストを塗布し、乾燥さ
せてから、上層用のペーストを塗布し、再度乾燥後、空
気中において12O0℃で焼結させた。このようにして
得られた焼結体の両端面を研磨し、アルミニウムの溶射
電極を形成した。
A paste for the lower layer was applied to the side surface of the calcined body, dried, and then a paste for the upper layer was applied, dried again, and sintered at 120° C. in air. Both end faces of the sintered body thus obtained were polished to form sprayed aluminum electrodes.

第1図は上述したようにして得た電圧非直線抵抗体素子
の断面図であシ、1はZnOを主成分とする焼結体、2
はZn7Sb2O1□、Zn2SiO4相の混在する側
面高抵抗層第1層(下層)、3はZn2SiO4を主成
分とする側面高抵抗層第2層(上層)、4はアルミニウ
ム溶射により形成された電極である。
FIG. 1 is a cross-sectional view of the voltage nonlinear resistor element obtained as described above, in which 1 is a sintered body mainly composed of ZnO, 2
is the first layer (lower layer) of the side high resistance layer containing a mixture of Zn7Sb2O1□ and Zn2SiO4 phases, 3 is the second layer (upper layer) of the side high resistance layer whose main component is Zn2SiO4, and 4 is the electrode formed by aluminum spraying. .

なお、側面高抵抗層2.3の成分はXflJ回折によシ
確認された。また、X線マイクロアナライザーによる分
析から、第1層(下層)2にはMn、Go。
Note that the components of the side high resistance layer 2.3 were confirmed by XflJ diffraction. Furthermore, analysis using an X-ray microanalyzer revealed that the first layer (lower layer) 2 contains Mn and Go.

Crなどが固溶し、第2層(上層)3には主としてCO
が固溶していることが確認された。′下記の第1表は、
側面高抵抗層第1層および第2層用の側面剤の組成表で
ある。第1層用側面剤はZn25in4. Zn、5b
2O,2からなり、第2層用側面剤は5in2. Bi
2O5からなる。
Cr etc. are dissolved in solid solution, and the second layer (upper layer) 3 mainly contains CO.
was confirmed to be in solid solution. 'Table 1 below is
It is a composition table of the side surface agent for the first layer and the second layer of the side surface high resistance layer. The side surface material for the first layer is Zn25in4. Zn, 5b
2O,2, and the side surface agent for the second layer is 5in2. Bi
Consists of 2O5.

この側面剤を仮焼体に第1層用側面剤、第2層用側面剤
の順に塗布し、焼結させた後、AJメタリコン電極を付
け、vlmA / rrrm * v+mA/” 、O
At、A 。
After applying this sidewall agent to the calcined body in the order of the sidewall agent for the first layer and the sidewall agent for the second layer and sintered it, an AJ metallicon electrode was attached, and vlmA / rrrm * v + mA/'', O
At, A.

外観などを調べた。この結果を第2表に示すと共に第1
層用、第2層用の側面剤の組合せを種々変えた場合につ
いて示している。比較のため従来例1としてBi2O,
、Zn7Sb2O,2.5in2をそれぞれ10モル%
、10モル%、80モル%含む側面剤を含む側面剤を仮
焼体に塗布した場合、従来例2としてBi2O,、5b
2O.をそれぞれ10モル%。
I checked the appearance etc. The results are shown in Table 2 and
This figure shows various combinations of side coating materials for the layer and the second layer. For comparison, Bi2O is used as conventional example 1,
, Zn7Sb2O, 2.5in2 each at 10 mol%
, 10 mol % and 80 mol % of the siding agent are applied to the calcined body, as conventional example 2 Bi2O, 5b
2O. 10 mol% each.

90%ルチ含む塗布剤を焼成容器内に配置し、気−固相
反応により側面高抵抗層を形成した場合のデータを追記
した。ここで、vtmム/rIrInは第2層用側面剤
中の”2Os 11度が増加するにつれて低下傾向を示
し、逆にv、Tnム/V、。1人は向上する傾向がある
。しかし、第2層側面剤中のBi2O5濃度が30モル
%を超えると側面剤の流れが発生し、vlmA / v
TO、、Aは逆にわずかに上昇する。また、第1層側面
剤中のZn75k)2O126度が増すにつれ、V、。
Data for the case where a coating agent containing 90% ruti was placed in a firing container and a side high resistance layer was formed by gas-solid phase reaction was added. Here, vtm/rIrIn shows a decreasing tendency as the "2Os 11 degrees" in the second layer side surface agent increases, and conversely, v, Tnmu/V, .1 tends to increase. However, When the Bi2O5 concentration in the second layer lateral agent exceeds 30 mol%, a flow of the lateral agent occurs, and vlmA/v
On the contrary, TO, , A slightly increases. Also, as the Zn75k)2O126 degree in the first layer sidewall agent increases, V.

ム/V、。μは向上している。M/V. μ is improving.

(以下余白) 〈第 3 表〉 第2図〜第7図に本発明および参考例の製造方法による
電圧非直線抵抗体素子の放電耐量特性、課電寿命特性の
結果を示す。図中の横軸は第2層側面剤中の81□03
の濃度である。ここで、放電耐量試験はJICC−IE
I7−1973に規定された4×10μsの衝撃電流を
同一方向に5分間隔で2回印加し、外観異常などをチェ
ックした。また、試験は10に人毎のステップアップ方
式で行い、図中には黒丸印で示した。そして、2回の衝
撃電流に耐えなかった試料に関しては印加電流から6に
人を減じて示した。さらに、課電寿命試験パ は周囲温
度130’C,課電率95%(’6011’ZAC)の
条件で行い、漏れ電流が10 mAに達した時点で熱暴
走と判定し、それに要した時間を図中に白丸印で示した
。下記の第3表に従来例1および2の放電耐量特性、課
電寿命特性を示した。ここで、Bi2O5,Zn、Sb
、、012.  Sλ02系側面剤塗固剤式(従来例1
)では、放電耐量50KAI回、課電寿命29時間、B
:L2O5.5b2O3気−固相反応系(従来例2)で
は、放電耐量50に人2回、課電寿命31時間の性能を
有していた。
(The following is a blank space) <Table 3> Figures 2 to 7 show the results of discharge withstand characteristics and energized life characteristics of voltage nonlinear resistor elements produced by the manufacturing methods of the present invention and reference examples. The horizontal axis in the figure is 81□03 in the second layer side surface agent.
The concentration is Here, the discharge withstand test is JICC-IE
An impact current of 4×10 μs specified in I7-1973 was applied twice in the same direction at 5-minute intervals, and abnormalities in appearance were checked. Further, the test was conducted in a step-up manner for each person in 10 days, and is indicated by a black circle in the figure. For samples that could not withstand two shock currents, 6 people were subtracted from the applied current. Furthermore, the power life test was conducted under the conditions of an ambient temperature of 130'C and a charging rate of 95% ('6011'ZAC), and thermal runaway was determined when the leakage current reached 10 mA, and the time required for this was determined to have occurred. is indicated by a white circle in the figure. Table 3 below shows the discharge withstand characteristics and charging life characteristics of Conventional Examples 1 and 2. Here, Bi2O5, Zn, Sb
,,012. Sλ02 side surface agent coating type (conventional example 1)
), the discharge capacity is 50 KAI times, the charging life is 29 hours, and B
:L2O5.5b2O3 The gas-solid phase reaction system (Conventional Example 2) had a discharge capacity of 50 times per person and a life of 31 hours when charged.

第2図から第7図を比較すると、第1層側面剤中のZn
、 Sb、、 o+2濃度が0.1モル係よシ低い領域
および30モル係より高い領域で放電耐量特性、課電寿
命特性とも低レベルにあるが、0゜1〜3゜モル係の領
域では両特性とも優れていることがかかる。また、第2
層側面剤中の81□05濃度が増加するに従い課電寿命
特性は向上し、2oモル係でピークに達し、3Qモル係
を超えた場合には再び低下する。これは側面高抵抗層の
一部が焼結反応の過程で、Bi2O,が過多であること
Kより流れ落ち、逆にアレスタ素子からの812O3が
飛散し易くなるためと考えられる。一方、放電耐量特性
はB12O3濃度が2o〜30モルチまでは一定で、そ
の後急激に低下する。これはB1□05濃度が高いため
側面高抵抗層の一部が流れ落ちたり、上層に形成される
Zn2Si04相の粒界にBi2O3が残存するためと
考えちれる。そして、第1層側面剤に前記側面剤A5、
第2層側面剤に前記側面剤B3を用いた場合、放電耐量
特性は90に人、課電寿命特性は32O時間の性能を有
し、従来例と比較し著しい高特性が得られることがわか
る。
Comparing Figures 2 to 7, it can be seen that Zn in the first layer sidewall
, Sb,, In the region where the O+2 concentration is lower than 0.1 molar concentration and in the region higher than 30 molar concentration, both discharge withstand characteristics and charging life characteristics are at low levels, but in the region of 0°1 to 3° molar concentration, It requires that both characteristics be excellent. Also, the second
As the 81□05 concentration in the layer side agent increases, the charged life characteristics improve, reaching a peak at 2O molar ratio, and decrease again when it exceeds 3Q molar ratio. This is thought to be because during the sintering reaction in a part of the side high resistance layer, excessive Bi2O flows down from the K, and conversely, 812O3 from the arrester element becomes more likely to scatter. On the other hand, the discharge capacity characteristics are constant until the B12O3 concentration is 20 to 30 molti, and then rapidly decreases. This is considered to be because a part of the side high resistance layer flows down due to the high concentration of B1□05, or because Bi2O3 remains at the grain boundaries of the Zn2Si04 phase formed in the upper layer. Then, the side surface agent A5 is added to the first layer side surface agent,
It can be seen that when the above-mentioned side surface agent B3 is used as the second layer side surface agent, the discharge withstand characteristic is 90 hours and the energized life characteristic is 32 hours, which shows that significantly higher characteristics can be obtained compared to the conventional example. .

以上のように、本発明の製造方法による電圧非直線抵抗
体素子が、放電耐量特性、課電寿命特性ともに高性能を
示す理由は、以下のように推定される。すなわち、従来
のBi2O3,Zn、5b2O.、。
As described above, the reason why the voltage nonlinear resistor element manufactured by the manufacturing method of the present invention exhibits high performance in both discharge withstand characteristics and energized life characteristics is presumed as follows. That is, conventional Bi2O3, Zn, 5b2O. ,.

(Sb2O3)、SiO2からなる3成分単層側面剤を
用いた場合、その生成物は単にZn7Sb2O,2とZ
n2S工04の混在系であるのに対し、2層塗布方式の
側面剤を用いた場合、第1層(下層)にZn、Sb、、
012. Zn28i04相が生成し、第2層(上層)
にZn2SiO4相が生成して構造が極めて安定となる
。このようにして生成した下層の特にZn7Sb2O,
2相は高抵抗でバリスタ素子との密着”性が高く放電耐
量の向上に寄与し、上層のZn、、SiO4相はバリス
タ素子からのBi2O,飛散を軽減し課電寿命特性の向
上に寄与していると考えられる。
(Sb2O3), SiO2, the product is simply Zn7Sb2O,2 and Z
In contrast to the mixed system of n2S work 04, when using a two-layer coating type side coating, the first layer (lower layer) contains Zn, Sb,...
012. Zn28i04 phase is generated and the second layer (upper layer)
A Zn2SiO4 phase is formed in the structure, making the structure extremely stable. In particular, the lower layer produced in this way, Zn7Sb2O,
The 2-phase has high resistance and good adhesion with the varistor element, contributing to improving the discharge withstand capacity, and the upper layer Zn, SiO4 phase reduces Bi2O and scattering from the varistor element, contributing to improving the charging life characteristics. It is thought that

本実施例においては側面高抵抗層用の2種類の側面剤を
仮焼体に塗布した場合についてのみ記載したが、第1層
、第2層用側面剤をともに成形体に塗布した場合、また
第1層用側面剤を成形体に、第2層用側面剤を仮焼体に
塗布した場合にも同様の効果があることを確認した。ま
た、本発明においては側面高抵抗層用の材料として5i
n2゜Zn25in4. Zn、5b2O,2.  B
i、、O,を用いたが、これらにアレスタ素子の粒界層
の構成要素である成分、すなわちBi、、05. Co
2O3,Or、、O,、MnO2゜NiO、MgOなど
を添加しても本発明の効果に変わりはないものである。
In this example, only the case where two types of side surface agents for the side high resistance layer were applied to the calcined body was described, but the case where both the side surface agents for the first layer and the second layer were applied to the molded body, and It was confirmed that a similar effect was obtained when the first layer side surface agent was applied to the molded body and the second layer side surface agent was applied to the calcined body. In addition, in the present invention, 5i is used as a material for the side high resistance layer.
n2゜Zn25in4. Zn, 5b2O, 2. B
i, , O, were used, but in addition to these, a component that is a component of the grain boundary layer of the arrester element, that is, Bi, , 05. Co
Even if 2O3, Or, , O, , MnO2°NiO, MgO, etc. are added, the effects of the present invention will not change.

発明の効果 以上のように本発明によれば、酸化亜鉛形バリスタ素子
の成形体または仮焼体の側面にZn、、5io4゜Zn
7Sb2O,2からなる第1の側面剤を塗布し、その上
層にSユ02. Bi2O,からなる第2の側面剤を塗
布後、焼結させることにより、放電耐量特性、課電寿命
特性が非常に優れた電圧非直線抵抗体素子を製造するこ
とができる。
Effects of the Invention As described above, according to the present invention, Zn, .
A first side coating consisting of 7Sb2O,2 is applied, and the upper layer is coated with Syu02. By applying and sintering the second side surface agent made of Bi2O, it is possible to manufacture a voltage nonlinear resistor element with very excellent discharge withstand characteristics and energized life characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法による電圧非直線抵抗体素子
の断面図、第2図〜第7図は本発明および参考例の製造
方法による電圧非直線抵抗体素子の放電耐量特性および
課電寿命特性を示す図である。 1・・・・・・酸化亜鉛形バリスタ素子、2・・・・・
・側面高抵抗層第1層(下層)、3・・・・・・側面高
抵抗層第2層(上層)、4・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
艶どヒ更劇?酪バリスク木子 ご−倒面島抵荻1才L)@(下層) 4−ミス肱 第1図 第2図 Bti!03JL11 (fル%) 第3図 Btυ3謙演(己し悴) 第4図 →BjzO3漠l (モル%) 第5図
FIG. 1 is a cross-sectional view of a voltage nonlinear resistor element produced by the manufacturing method of the present invention, and FIGS. FIG. 3 is a diagram showing life characteristics. 1... Zinc oxide type varistor element, 2...
- Side high resistance layer 1st layer (lower layer), 3... Side high resistance layer 2nd layer (upper layer), 4... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
Glossy drama? Dairy Balisk Kikogo-Otamenjima Resistance 1 year old L) @ (lower layer) 4-Miss Elle 1st figure 2nd figure Bti! 03JL11 (f%) Fig. 3 Btυ3 performance (mole%) Fig. 4 → BjzO3 (mol%) Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体を700〜1150
℃の温度範囲で仮焼し、得られた仮焼体の側面にZn_
2SiO_4を主成分としZn_7Sb_2O_1_2
を0.1〜30モル%含む第1の側面剤を塗布し、前記
第1の側面剤の上部にSiO_2を主成分としBi_2
O_3を0〜30モル%含む第2の側面剤を塗布した後
、焼結し、焼結体側面に高抵抗層を形成する電圧非直線
抵抗体素子の製造方法。
(1) A molded body containing zinc oxide as the main component and additives added so that the sintered body itself exhibits voltage nonlinearity has a temperature of 700 to 1150
Calcined in the temperature range of ℃, Zn_
Zn_7Sb_2O_1_2 with 2SiO_4 as the main component
A first side agent containing 0.1 to 30 mol% of
A method for manufacturing a voltage nonlinear resistor element, which comprises applying a second side surface agent containing 0 to 30 mol% of O_3 and then sintering it to form a high resistance layer on the side surface of the sintered body.
(2)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体の側面にZn_2S
iO_4を主成分としZn_7Sb_2O_1_2を0
.1〜30モル%含む第1の側面剤を塗布し、前記第1
の側面剤の上部にSiO_2を主成分としBi_2O_
3を0〜30モル%含む第2の側面剤を塗布した後、焼
結し、焼結体側面に高抵抗層を形成する電圧非直線抵抗
体素子の製造方法。
(2) Zn_2S is added to the side surface of a molded body whose main component is zinc oxide and additives are added so that the sintered body itself exhibits voltage nonlinearity.
Main component is iO_4 and Zn_7Sb_2O_1_2 is 0
.. A first side agent containing 1 to 30 mol% is applied, and the first
Bi_2O_ with SiO_2 as the main component on the top of the side surface agent.
A method for manufacturing a voltage nonlinear resistor element, which comprises applying a second side surface agent containing 0 to 30 mol% of 3, followed by sintering to form a high resistance layer on the side surface of the sintered body.
(3)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体の側面にZn_2S
iO_4を主成分としZn_7Sb_2O_1_2を0
.1〜30モル%含む第1の側面剤を塗布し、700〜
1150℃の温度範囲で仮焼後、仮焼体の側面にSiO
_2を主成分としBi_2O_3を0〜30モル%含む
第2の側面剤を塗布した後、焼結し、焼結体側面に高抵
抗層を形成する電圧非直線抵抗体素子の製造方法。
(3) Zn_2S is added to the side surface of a molded body whose main component is zinc oxide and additives are added so that the sintered body itself exhibits voltage nonlinearity.
Main component is iO_4 and Zn_7Sb_2O_1_2 is 0
.. Apply the first side agent containing 1 to 30 mol%, and
After calcining in a temperature range of 1150℃, SiO is added to the side surface of the calcined body.
A method for manufacturing a voltage nonlinear resistor element, which comprises applying a second side surface agent containing Bi_2O_3 as a main component and 0 to 30 mol% of Bi_2O_3 and then sintering to form a high-resistance layer on the side surface of the sintered body.
JP61126076A 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element Pending JPS62282410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126076A JPS62282410A (en) 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126076A JPS62282410A (en) 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element

Publications (1)

Publication Number Publication Date
JPS62282410A true JPS62282410A (en) 1987-12-08

Family

ID=14926016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126076A Pending JPS62282410A (en) 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS62282410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831616A (en) * 1994-07-20 1996-02-02 Matsushita Electric Ind Co Ltd Varistor and manufacture thereof
JP2009177085A (en) * 2008-01-28 2009-08-06 Tdk Corp Ceramic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831616A (en) * 1994-07-20 1996-02-02 Matsushita Electric Ind Co Ltd Varistor and manufacture thereof
JP2009177085A (en) * 2008-01-28 2009-08-06 Tdk Corp Ceramic element

Similar Documents

Publication Publication Date Title
JPS63136603A (en) Manufacture of voltage nonlinear resistor
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPH0136684B2 (en)
JP2656233B2 (en) Voltage non-linear resistor
JPS62282407A (en) Manufacture of voltage nonlinear resistance element
JPS62282406A (en) Manufacture of voltage nonlinear resistance element
JPS62208601A (en) Manufacture of voltage nonlinear resistance device
JP3830354B2 (en) Method for manufacturing voltage nonlinear resistor
JPS62208602A (en) Manufacture of voltage nonlinear resistance device
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JPS62282408A (en) Manufacture of voltage nonlinear resistance element
JPS62208603A (en) Manufacture of voltage nonlinear resistance device
JPH05234716A (en) Zinc oxide varistor
JPS62208605A (en) Manufacture of voltage nonlinear resistance device
JP2001006904A (en) Voltage nonlinear resistor
JP3089370B2 (en) Voltage non-linear resistance composition
JPH0754763B2 (en) Method of manufacturing voltage non-linear resistor element
JPH10149904A (en) Manufacturing method of varistor
JP3089371B2 (en) Voltage non-linear resistance composition
JPS63146408A (en) Manufacture of voltage nonlinear resistor
JPS6236615B2 (en)
JPS5823402A (en) Method of producing nonlinear resistor
JPS6329801B2 (en)
JPH0258807A (en) Manufacture of voltage nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor