JPH0754763B2 - Method of manufacturing voltage non-linear resistor element - Google Patents

Method of manufacturing voltage non-linear resistor element

Info

Publication number
JPH0754763B2
JPH0754763B2 JP61051159A JP5115986A JPH0754763B2 JP H0754763 B2 JPH0754763 B2 JP H0754763B2 JP 61051159 A JP61051159 A JP 61051159A JP 5115986 A JP5115986 A JP 5115986A JP H0754763 B2 JPH0754763 B2 JP H0754763B2
Authority
JP
Japan
Prior art keywords
layer
sio
agent
mol
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61051159A
Other languages
Japanese (ja)
Other versions
JPS62208604A (en
Inventor
雅昭 勝又
義和 小林
昭宏 高見
孝義 豊見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61051159A priority Critical patent/JPH0754763B2/en
Publication of JPS62208604A publication Critical patent/JPS62208604A/en
Publication of JPH0754763B2 publication Critical patent/JPH0754763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化亜鉛を主成分とし、それ自体が電圧非直線
性を有する焼結体の側面に高抵抗層を形成した電圧非直
線抵抗体素子の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a voltage non-linear resistor element in which a high resistance layer is formed on the side surface of a sintered body containing zinc oxide as a main component and having voltage non-linearity itself. The present invention relates to a manufacturing method.

従来の技術 電圧非直線抵抗体素子は一般にバリスタと呼ばれ、電圧
安定化やサージ吸収用の素子として用いられている。
2. Description of the Related Art Voltage non-linear resistance elements are generally called varistor and are used as elements for voltage stabilization and surge absorption.

中でも、酸化亜鉛を主成分として、これに少量のビスマ
ス,コバルト,マンガン,アンチモン,クロムなどを添
加した酸化亜鉛バリスタは、その大きなサージ電流耐量
と優れた電圧非直線性から、近年、ギャップレスアレス
タとして従来のシリコンカーバイトバリスタにとって代
わり広く利用されている。
Among them, zinc oxide varistors containing zinc oxide as a main component and a small amount of bismuth, cobalt, manganese, antimony, chromium, etc. added to them as gapless arresters in recent years due to their large surge current withstanding capability and excellent voltage nonlinearity. It is widely used in place of the conventional silicon carbide varistor.

酸化亜鉛バリスタをアレスタとして用いる場合、極めて
重要な特性要素が2つある。第1は、放電耐量特性であ
る。これはJEC−187−1973に規定された4×10μsの衝
撃電流を5分間隔で2回印加したピーク電流の限界値で
ある。第2に、課電寿命特性で、これは規定の交流電圧
を印加した際に、アレスタ素子が熱暴走に至るまでの時
間である。通常は、周囲温度を100℃以上にし、課電率
(V印加電圧×100/V1mA)を90%以上に設定し、加速試
験を行って寿命予測をする。近年、これらの特性を兼ね
備えた高性能のアレスタ素子の開発要望が強い。
When using a zinc oxide varistor as an arrester, there are two very important characteristic factors. The first is discharge withstand capability. This is the limit value of the peak current defined by JEC-187-1973, which is obtained by applying an impact current of 4 × 10 μs twice at 5-minute intervals. Secondly, the life characteristic of voltage application, which is the time until the arrester element causes thermal runaway when a prescribed AC voltage is applied. Normally, the ambient temperature is set to 100 ° C or higher, the charge rate (V applied voltage × 100 / V 1mA ) is set to 90% or higher, and an accelerated test is performed to predict the life. In recent years, there has been a strong demand for the development of a high performance arrester element having these characteristics.

従来より電圧非直線抵抗体素子(アレスタ素子)の製造
方法として、特開昭56−69804号公報,特公昭60−15128
号公報などが知られている。前者は、酸化亜鉛に少量の
酸化ビスマス,酸化コバルト,酸化マンガン,酸化ニッ
ケルなどを添加し、粉砕,混合,造粒工程を経て得られ
た成形体、もしくは700℃〜1150℃で仮焼した仮焼体の
側面にZn2SiO4,Zn7Sb2O12,Bi2O3などを含む物質を塗布
した後、焼結し、側面に高抵抗層を有するアレスタ素子
を製造するものである。後者は、同様にして得られた成
型体を焼成する際、焼成容器内に酸化アンチモン,酸化
ビスマス,酸化ケイ素を配置し、気−固相反応により、
側面に高抵抗層を有するアレスタ素子を製造するもので
ある。
Conventionally, as a method of manufacturing a voltage non-linear resistor element (arrestor element), Japanese Patent Laid-Open No. 56-69804 and Japanese Patent Publication No. 60-15128 have been proposed.
Japanese publications are known. The former is a compact obtained by adding a small amount of bismuth oxide, cobalt oxide, manganese oxide, nickel oxide, etc. to zinc oxide, pulverizing, mixing, and granulating, or calcination at 700 ° C to 1150 ° C. This is to manufacture an arrester element having a high resistance layer on the side surface after applying a substance containing Zn 2 SiO 4 , Zn 7 Sb 2 O 12 , Bi 2 O 3 etc. on the side surface of the fired body and sintering it. In the latter case, when a molded body obtained in the same manner is fired, antimony oxide, bismuth oxide, and silicon oxide are placed in a firing vessel, and by gas-solid reaction,
This is to manufacture an arrester element having a high resistance layer on the side surface.

発明が解決しようとする問題点 このような前者の方法では、側面高抵抗層の構造が不安
定で素子と側面剤との密着性が悪く、放電耐量特性が悪
いという欠点を有していた。また、後者の方法では、焼
成容器内部に適当に配置したSb2O3,Bi2O3,SiO2からなる
塗布剤の蒸気と成形体とを反応させるため、側面高抵抗
層の厚みが充分とれず、放電耐量が低いばかりでなく、
同一焼成容器中で焼成可能な素子数が限られ、量産性に
欠けるという欠点を有していた。
Problems to be Solved by the Invention The former method has a drawback in that the structure of the side surface high resistance layer is unstable, the adhesion between the element and the side surface agent is poor, and the discharge withstand characteristic is poor. Further, in the latter method, since the vapor of the coating agent made of Sb 2 O 3 , Bi 2 O 3 , and SiO 2 appropriately arranged inside the firing container is allowed to react with the molded body, the thickness of the side surface high resistance layer is sufficient. Not only the discharge resistance is low,
The number of elements that can be fired in the same firing container is limited, and there is a drawback that mass productivity is lacking.

本発明は、このような問題点を解決するもので、アレス
タとしての酸化亜鉛バリスタの高性能化、すなわち放電
耐量特性,課電寿命特性の大巾な向上を目的とするもの
である。
The present invention solves such a problem, and an object of the present invention is to improve the performance of a zinc oxide varistor as an arrester, that is, to greatly improve the discharge withstand voltage characteristic and the charging life characteristic.

問題点を解決するための手段 この目的を達成するために、本発明は酸化亜鉛を主成分
とする成形体を700〜1150℃で仮焼し、次に前記成形体
の側面に、Zn7Sb2O12からなる第1の側面剤を塗布した
後、前記第1の側面剤の上部に、SiO2を主成分とし、副
成分としてBi2O3を0〜30モル%含む第2の側面剤を塗
布し、その後、焼結させて、焼結体側面に、第1層(下
層)がZn7Sb2O12からなり、第2層(上層)がZn2SiO4
らなる高抵抗層を形成するものである。
Means for Solving the Problems In order to achieve this object, the present invention calcinates a molded body containing zinc oxide as a main component at 700 to 1150 ° C., and then Zn 7 Sb is formed on the side surface of the molded body. After applying a first side agent composed of 2 O 12, a second side surface containing SiO 2 as a main component and 0 to 30 mol% of Bi 2 O 3 as a sub-component on top of the first side agent. A high resistance layer in which the first layer (lower layer) is made of Zn 7 Sb 2 O 12 and the second layer (upper layer) is made of Zn 2 SiO 4 on the side surface of the sintered body by applying an agent and then sintering. Is formed.

作用 この構成により、酸化亜鉛バリスタ素子の側面に、安定
した2層構造の高抵抗層が形成される。下層はZn7Sb2O
12の結晶層で、酸化亜鉛バリスタ素子−高抵抗層間の密
着性を向上させ、放電耐量特性を向上させることができ
る。上層は、Zn2SiO4からなり、酸化亜鉛バリスタ素子
内部から、Bi2O3の飛散を抑制し、課電寿命特性を大幅
に向上させることができる。
By this structure, a stable high resistance layer having a two-layer structure is formed on the side surface of the zinc oxide varistor element. The lower layer is Zn 7 Sb 2 O
With 12 crystal layers, the adhesion between the zinc oxide varistor element and the high resistance layer can be improved, and the discharge withstand voltage characteristic can be improved. The upper layer is made of Zn 2 SiO 4 , and it is possible to suppress the scattering of Bi 2 O 3 from the inside of the zinc oxide varistor element, and to significantly improve the voltage life characteristic.

実施例 以下、本発明の製造方法およびそれによって得られた電
圧非直線抵抗体素子について実施例に基づき詳細に説明
する。
Examples Hereinafter, the manufacturing method of the present invention and the voltage non-linear resistance element obtained thereby will be described in detail based on Examples.

まず、ZnOの粉末に、合計量に対しBi2O30.5モル%、Co2
O30.5モル%、MnO20.5モル%、Sb2O31.0モル%、Cr2O
30.5モル%、NiO0.5モル%を加え、充分に粉砕,混合し
た後、造粒して原料粉を得た。この原料粉を直径40mm、
厚さ30mmの大きさに圧縮成形した。このようにして得ら
れた成形体を900℃,2時間焼成して冷却して仮焼体を得
た。
First, ZnO powder was added to the total amount of Bi 2 O 3 0.5 mol% and Co 2
O 3 0.5 mol%, MnO 2 0.5 mol%, Sb 2 O 3 1.0 mol%, Cr 2 O
3 0.5 mol% and NiO 0.5 mol% were added, thoroughly pulverized and mixed, and then granulated to obtain a raw material powder. This raw powder is 40mm in diameter,
It was compression molded to a size of 30 mm in thickness. The molded body thus obtained was baked at 900 ° C. for 2 hours and cooled to obtain a calcined body.

一方、側面高抵抗層用のペーストは、Zn7Sb2O12,Bi2O3,
SiO2を適当な割合で混合した原料粉と、エチルセルロー
ス25wt%,ブチルカルビトール75wt%からなるバインダ
ーとを、重量比で1対3の割合で配合し、均一になるよ
うに混練して作成した。本発明では、この側面高抵抗層
用のペーストは、Zn7Sb2O12からなる下層用と、SiO2
主成分とする上層用の2種類がある。
On the other hand, the paste for the side surface high resistance layer is Zn 7 Sb 2 O 12 , Bi 2 O 3 ,
A raw material powder in which SiO 2 was mixed at an appropriate ratio and a binder composed of 25 wt% of ethyl cellulose and 75 wt% of butyl carbitol were mixed at a ratio of 1 to 3 by weight, and kneaded to be uniform. . In the present invention, there are two types of paste for the side surface high resistance layer, one for the lower layer made of Zn 7 Sb 2 O 12 and the other for the upper layer containing SiO 2 as a main component.

前述の仮焼体側面に下層用のペーストを塗布し、乾燥さ
せてから、上層用のペーストを塗布し、再度乾燥後、空
気中において1200℃で焼結させた。このようにして得ら
れた焼結体の両端面を研磨し、アルミニウムの溶射電極
を形成した。
The paste for the lower layer was applied to the side surface of the calcined body described above, dried, and then the paste for the upper layer was applied, dried again, and then sintered in air at 1200 ° C. Both end surfaces of the thus obtained sintered body were polished to form a sprayed aluminum electrode.

第1図は上述したようにして得た電圧非直線抵抗体素子
の断面図であり、1はZnOと主成分とする焼結体、2はZ
n7Sb2O12を主成分とする側面高抵抗層第1層(下層)、
3はZn2SiO4を主成分とする側面高抵抗層第2層(上
層)、4はアルミニウム溶射により形成された電極であ
る。なお、側面高抵抗層2,3の成分はX線回折により確
認された。また、X線マイクロアナライザーによる分析
から、第1層(下層)2にはMn,Co,Crなどが固溶し、第
2層(上層)3には主としてCoが固溶していることが確
認された。
FIG. 1 is a sectional view of the voltage non-linear resistance element obtained as described above, where 1 is a sintered body containing ZnO as a main component, and 2 is Z
First layer (lower layer) of the lateral high-resistance layer containing n 7 Sb 2 O 12 as a main component,
3 is a second layer (upper layer) of the lateral high-resistance layer containing Zn 2 SiO 4 as a main component, and 4 is an electrode formed by aluminum spraying. The components of the side surface high resistance layers 2 and 3 were confirmed by X-ray diffraction. In addition, from the analysis by the X-ray microanalyzer, it was confirmed that Mn, Co, Cr, etc. were solid-dissolved in the first layer (lower layer) 2 and Co was mainly dissolved in the second layer (upper layer) 3. Was done.

下記の第1表は、側面高抵抗層第1層および第2層用の
側面剤の組成表である。第1層用側面剤はZn7Sb2O12
バインダーの混合物で、第2層用側面剤はSiO2100〜50
モル%にBi2O30〜50モル%を添加した6種類である。
The following Table 1 is a composition table of the side surface agent for the first and second side surface high resistance layers. The side agent for the first layer is a mixture of Zn 7 Sb 2 O 12 and a binder, and the side agent for the second layer is SiO 2 100-50.
There are 6 types in which Bi 2 O 3 0 to 50 mol% is added to the mol%.

このペーストを仮焼体に第1層用側面剤、第2層用側面
剤の順に塗布し、焼結させた後、V1mA/mm,V1mA/V
10μA,外観などを調べた。この結果を下記の第2表に
示す。比較のため従来例1としてBi2O3,Sb2O3,Si2O3
それぞれ10モル%,10モル%,80モル%含む側面剤を塗布
した場合、従来例2としてBi2O3,Sb2O3をそれぞれ10モ
ル%,90モル%含むペーストを焼成容器内側に塗布し、
気−固相反応により側面高抵抗層を形成した場合のデー
タを追記した。
This paste is applied to the calcined body in the order of the side agent for the first layer and the side agent for the second layer, and after sintering, V 1mA / mm, V 1mA / V
The appearance was checked at 10 μA . The results are shown in Table 2 below. For comparison, when a side agent containing Bi 2 O 3 , Sb 2 O 3 , and Si 2 O 3 in an amount of 10 mol%, 10 mol%, and 80 mol%, respectively, was applied as Conventional Example 1, Bi 2 O 3 was used as Conventional Example 2. , Sb 2 O 3 containing 10 mol% and 90 mol%, respectively, was applied to the inside of the baking container,
The data when the side surface high resistance layer is formed by the gas-solid reaction is added.

第2表よりわかるように、側面剤の1層塗布、2層塗布
によらず電圧非直線性はBi2O3濃度の増加とともに高く
なる。しかし、Bi2O3添加量が40モル%以上になると側
面剤が流れ落ちる現象が見られる。また、SiO2のみを側
面剤として用いた場合(試料8)、バリスタ素子と側面
剤の一部が未反応になる。さらに、V1mA/mmはBi2O3
度とともにわずかに低下するものの問題点とはならな
い。
As can be seen from Table 2, the voltage non-linearity increases as the Bi 2 O 3 concentration increases, regardless of whether the side agent is applied in one layer or two layers. However, when the added amount of Bi 2 O 3 is 40 mol% or more, the side agent flows down. Further, when only SiO 2 is used as the side agent (Sample 8), the varistor element and the side agent are partially unreacted. Further, V 1mA / mm slightly decreases with the Bi 2 O 3 concentration, but this is not a problem.

下記の第3表に前記試料の放電耐量特性および課電寿命
特性を示した。ここで、放電耐量試験は、JEC−187−19
73に定められた4×10μsの衝撃電流を同一方向に5分
間隔で2回印加し、外観は目視にて、電圧非直線性の劣
化は定電源電流にて調べた。また、課電寿命試験は周囲
温度130℃,課電率95%(60Hz,AC)の条件で行い、漏れ
電流が10mAを越えた時点で熱暴走と判定した。
Table 3 below shows the discharge withstand voltage characteristics and the applied voltage life characteristics of the samples. Here, the discharge withstand test is based on JEC-187-19
An impact current of 4 × 10 μs defined in 73 was applied twice in the same direction at intervals of 5 minutes, the appearance was visually observed, and the deterioration of voltage nonlinearity was examined at a constant power supply current. In addition, the applied voltage life test was performed under the conditions of an ambient temperature of 130 ° C and an applied voltage of 95% (60Hz, AC), and when the leakage current exceeded 10mA, it was judged as thermal runaway.

第3表の放電耐量特性に注目すると、第2層用側面剤中
のBi2O3濃度が0〜30モル%の時(試料1〜4)、すな
わち本発明の製造法による場合、放電耐量は最大90kA1
回となり、従来例1,2の放電耐量(〜50kA2回)に比べ大
巾に向上していることがわかる。また、この状態で側面
高抵抗層の構造は、第1図のように第1層(下層)のZn
7Sb2O12多結晶相を第2層(上層)のZn2SiO4多結晶相が
とり囲む明確な2層構造を形成している。そして、Bi2O
3濃度が30モル%を越えると焼結体側面に流れが発生
し、第1層に塗布したZn7Sb2O12の一部が表面に露出
し、安定した2層構造は得られず放電耐量特性は低下す
る。また、過剰なBi2O3が側面高抵抗層のZn7Sb2O12,Zn2
SiO4の粒界層に残留し、側面高抵抗層の強度が低下する
ことも放電耐量低下の一要因であると考えられる。一
方、前記の2層塗布用の側面剤(A1,B1〜6)を単独で
用いた場合(試料7〜13)、放電耐量は極めて低い。
Focusing on the discharge withstand characteristics in Table 3, when the Bi 2 O 3 concentration in the side surface agent for the second layer is 0 to 30 mol% (Samples 1 to 4), that is, according to the production method of the present invention, the discharge withstand capacity is Is up to 90kA1
It can be seen that the discharge resistance is greatly improved compared to the discharge withstand capacity of the conventional examples 1 and 2 (up to 50 kA 2 times). Further, in this state, the structure of the side surface high resistance layer is as shown in FIG.
A clear two-layer structure in which the 7 Sb 2 O 12 polycrystalline phase is surrounded by the Zn 2 SiO 4 polycrystalline phase of the second layer (upper layer) is formed. And Bi 2 O
3 When the concentration exceeds 30 mol%, a flow occurs on the side surface of the sintered body, a part of Zn 7 Sb 2 O 12 applied to the first layer is exposed on the surface, and a stable two-layer structure cannot be obtained and discharge occurs. The withstanding characteristic deteriorates. In addition, excessive Bi 2 O 3 is Zn 7 Sb 2 O 12 , Zn 2 in the lateral high-resistance layer.
It is considered that the fact that SiO 4 remains in the grain boundary layer and the strength of the side surface high resistance layer is reduced is also one of the causes of the reduction in discharge withstand capability. On the other hand, when the side agents (A1, B1 to 6) for two-layer coating described above are used alone (Samples 7 to 13), the discharge resistance is extremely low.

次に、課電寿命の結果に注目すると、本発明の製造法に
よる試料1〜6は、50Hr以上の寿命性能を有するに対
し、各側面剤を単独で用いた場合と従来例では〜30Hrと
寿命性能も劣る。第2図に第2層用側面剤中のBi2O3
度と試料1〜6が熱暴走に至るまでの時間をプロットし
た。第2層用側面剤のBi2O3が増加するにつれ課電寿命
特性は良くなるが、Bi2O3濃度が40モル%以上になると
若干低下する。これは側面高抵抗層の流れに関係してい
ると考えられる。
Next, paying attention to the result of the voltage-applied life, the samples 1 to 6 produced by the production method of the present invention have a life performance of 50 Hr or more, while each side agent is used alone and the conventional example has a performance of -30 Hr. The life performance is also inferior. In FIG. 2, the Bi 2 O 3 concentration in the side surface agent for the second layer and the time required for samples 1 to 6 to reach thermal runaway are plotted. Voltage application life characteristics as the Bi 2 O 3 of the second layer for side material is increased, the better but, Bi 2 O 3 concentration is slightly decreased becomes more than 40 mol%. This is considered to be related to the flow of the side surface high resistance layer.

以上のように、本発明の製造法による電圧非直線抵抗体
素子が放電耐量特性,課電寿命特性ともに高性能を示す
理由は完全には解明されていないが、側面剤中にBi2O3,
Sb2O3,SiO2を用いた場合の生成物であるZn7Sb2O12,Zn2S
iO4が混在した系から、本発明例のように2層に層別さ
れた系となった効果が非常に大きいと考えられる。ま
た、下層のZn7Sb2O12相は高抵抗でバリスタ素子との密
着性が高く放電耐量に寄与し、上層のZn2SiO4層はバリ
スタ素子からのBi2O3飛散を軽減し課電寿命特性の向上
に寄与していると考えられる。さらに、Zn7Sb2O12相は
ボアが多いため、Zn2SiO4相がその欠陥を補って放電耐
量特性の向上にも役立っていると考えられる。
As described above, the reason why the voltage non-linear resistance element produced by the manufacturing method of the present invention exhibits high performance in both discharge withstand characteristics and electric charge life characteristics has not been completely clarified, but Bi 2 O 3 is contained in the side agent. ,
Zn 7 Sb 2 O 12 , Zn 2 S which is the product when Sb 2 O 3 , SiO 2 is used
It is considered that the effect of changing from a system in which iO 4 is mixed to a system in which two layers are layered as in the example of the present invention is very large. In addition, the lower Zn 7 Sb 2 O 12 phase has high resistance and high adhesion to the varistor element and contributes to the discharge withstand capacity, while the upper Zn 2 SiO 4 layer reduces Bi 2 O 3 scattering from the varistor element. It is considered that this contributes to the improvement of the electric life characteristics. Furthermore, since the Zn 7 Sb 2 O 12 phase has many bores, it is considered that the Zn 2 SiO 4 phase compensates for the defects and is also useful for improving the discharge withstand characteristic.

本実施例においては側面高抵抗層用の1種類の側面剤を
仮焼体に塗布した場合についてのみ記載したが、第1
層,第2層用側面剤ともに成形体に塗布した場合、また
第1層用側面剤を成形体に、第2層用側面剤を仮焼体に
塗布した場合にも同様の効果があることを確認した。
In the present embodiment, description has been made only on the case where one kind of side agent for the side surface high resistance layer is applied to the calcined body.
The same effect is obtained when both the side agent for the second layer and the side agent for the second layer are applied to the molded body, or when the side agent for the first layer is applied to the molded body and the side agent for the second layer is applied to the calcined body. It was confirmed.

発明の効果 以上のように本発明は、酸化亜鉛バリスタ素子の成形体
または仮焼体の側面に、Zn7Sb2O12からなる第1の側面
剤を塗布し、次に、その上から、SiO2を主成分とし、副
成分としてBi2O3を0〜30モル%含む第2の側面剤を塗
布し、その後、焼結させて電圧非直線抵抗体素子を得る
ものである。この構成により、酸化亜鉛バリスタ素子の
側面に、安定した2層構造の高抵抗層が形成され、アレ
スタとして、極めて重要な特性である放電耐量特性、課
電寿命特性のいずれも非常に高性能を示す。ここで、下
層はZn7Sb2O12の結晶層で、酸化亜鉛バリスタ素子−高
抵抗層間の密着性を高め、放電耐量特性を向上させてい
ると思われる。また、上層は、Zn2SiO4の結晶層からな
り、酸化亜鉛バリスタ素子内部から、Bi2O3の飛散を抑
制し、課電寿命特性を大幅に向上させていると思われ
る。さらに、下層のZn7Sb2O12の結晶層はボアが多い
が、上層のZn2SiO4がその欠陥部分を補うことにより放
電耐量特性を向上させているものと考えられる。
As described above, the present invention applies the first side agent made of Zn 7 Sb 2 O 12 to the side surface of the formed body or the calcined body of the zinc oxide varistor element, and then, from above, A second side surface agent containing SiO 2 as a main component and Bi 2 O 3 as an accessory component in an amount of 0 to 30 mol% is applied and then sintered to obtain a voltage nonlinear resistor element. With this configuration, a stable high-resistance layer having a two-layer structure is formed on the side surface of the zinc oxide varistor element, and as an arrester, extremely high performance is achieved in both discharge withstand characteristic and electric charge life characteristic, which are extremely important characteristics. Show. Here, the lower layer is a crystalline layer of Zn 7 Sb 2 O 12 , and it seems that the adhesion between the zinc oxide varistor element and the high resistance layer is enhanced and the discharge withstand voltage characteristic is improved. Further, the upper layer is composed of a Zn 2 SiO 4 crystal layer, and it is considered that the scattering of Bi 2 O 3 from the inside of the zinc oxide varistor element is suppressed, and the electric charge life characteristic is significantly improved. Further, although the lower Zn 7 Sb 2 O 12 crystal layer has many bores, it is considered that the upper Zn 2 SiO 4 compensates for the defective portion to improve the discharge withstand characteristic.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による製造方法より得られた
電圧非直線抵抗体素子の断面図、第2図は本発明方法に
おいて第2層用側面剤中のBi2O3の濃度と課電寿命特性
の関係を示す図である。 1……酸化亜鉛形バリスタ素子、2……側面高抵抗層第
1層(下層)、3……側面高抵抗層第2層(上層)、4
……電極。
FIG. 1 is a cross-sectional view of a voltage non-linear resistor element obtained by a manufacturing method according to an embodiment of the present invention, and FIG. 2 shows the concentration of Bi 2 O 3 in a side agent for the second layer in the method of the present invention. It is a figure which shows the relationship of a charging life characteristic. 1 ... Zinc oxide varistor element, 2 ... Side surface high resistance layer first layer (lower layer), 3 ... Side surface high resistance layer second layer (upper layer), 4
……electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊見 孝義 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭58−194303(JP,A) 特開 昭56−69804(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayoshi Toyomi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-58-194303 (JP, A) JP-A-56-69804 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とする成形体を700〜115
0℃で仮焼し、次に、前記成形体の側面に、Zn7Sb2O12
らなる第1の側面剤を塗布した後、前記第1の側面剤の
上部に、SiO2を主成分とし、副成分としてBi2O3を0〜3
0モル%含む第2の側面剤を塗布した後、焼結し、焼結
体側面に第1層(下層)がZn7Sb2O12からなり、第2層
(上層)がZn2SiO4からなる高抵抗層を形成する電圧非
直線抵抗体素子の製造方法。
1. A molded body containing zinc oxide as a main component is 700-115.
After calcination at 0 ° C., and then applying a first side agent made of Zn 7 Sb 2 O 12 to the side surface of the molded body, SiO 2 is used as a main component on the upper side of the first side agent. And Bi 2 O 3 as an accessory component in an amount of 0 to 3
A second side agent containing 0 mol% was applied and then sintered, and the side surface of the sintered body had a first layer (lower layer) made of Zn 7 Sb 2 O 12 and a second layer (upper layer) made of Zn 2 SiO 4 A method of manufacturing a voltage non-linear resistor element for forming a high resistance layer made of.
【請求項2】酸化亜鉛を主成分とする成形体の側面に、
Zn7Sb2O12からなる第1の側面剤を塗布し、次に、前記
第1の側面剤の上部に、SiO2を主成分とし、副成分とし
てBi2O3を0〜30モル%含む第2の側面剤を塗布し、そ
の後、焼結し、焼結体側面に第1層(下層)がZn7Sb2O
12からなり、第2層(上層)がZn2SiO4からなる高抵抗
層を形成する電圧非直線抵抗体素子の製造方法。
2. A side surface of a molded body containing zinc oxide as a main component,
A first side agent made of Zn 7 Sb 2 O 12 is applied, and then SiO 2 is contained as a main component and Bi 2 O 3 is contained as an auxiliary component in an amount of 0 to 30 mol% on the first side agent. A second side agent including is applied and then sintered, and the first layer (lower layer) is Zn 7 Sb 2 O on the side surface of the sintered body.
A method of manufacturing a voltage non-linear resistor element comprising a high resistance layer consisting of 12 and a second layer (upper layer) of Zn 2 SiO 4 .
【請求項3】酸化亜鉛を主成分とする成形体の側面に、
Zn7Sb2O12からなる第1の側面剤を塗布し、次に、前記
成形体を700〜1150℃で仮焼した後、前記成形体の前記
第1の側面剤の上部に、SiO2を主成分とし、副成分とし
てBi2O3を0〜30モル%含む第2の側面剤を塗布し、そ
の後、焼結し、焼結体側面に第1層(下層)がZn7Sb2O
12からなり、第2層(上層)がZn2SiO4からなる高抵抗
層を形成する電圧非直線抵抗体素子の製造方法。
3. A side surface of a molded body containing zinc oxide as a main component,
A first side agent composed of Zn 7 Sb 2 O 12 was applied, and then the molded body was calcined at 700 to 1150 ° C., and then SiO 2 was formed on the first side agent of the molded body. Is applied as a main component, and a second side agent containing Bi 2 O 3 as an accessory component in an amount of 0 to 30 mol% is applied and then sintered, and the first layer (lower layer) has Zn 7 Sb 2 on the side surface of the sintered body. O
A method of manufacturing a voltage non-linear resistor element comprising a high resistance layer consisting of 12 and a second layer (upper layer) of Zn 2 SiO 4 .
JP61051159A 1986-03-07 1986-03-07 Method of manufacturing voltage non-linear resistor element Expired - Lifetime JPH0754763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051159A JPH0754763B2 (en) 1986-03-07 1986-03-07 Method of manufacturing voltage non-linear resistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051159A JPH0754763B2 (en) 1986-03-07 1986-03-07 Method of manufacturing voltage non-linear resistor element

Publications (2)

Publication Number Publication Date
JPS62208604A JPS62208604A (en) 1987-09-12
JPH0754763B2 true JPH0754763B2 (en) 1995-06-07

Family

ID=12879046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051159A Expired - Lifetime JPH0754763B2 (en) 1986-03-07 1986-03-07 Method of manufacturing voltage non-linear resistor element

Country Status (1)

Country Link
JP (1) JPH0754763B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208606A (en) * 1986-03-07 1987-09-12 松下電器産業株式会社 Manufacture of voltage nonlinear resistance device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941284B2 (en) * 1979-11-12 1984-10-05 松下電器産業株式会社 Manufacturing method of voltage nonlinear resistor
JPS58194303A (en) * 1982-05-07 1983-11-12 三菱電機株式会社 Zinc oxide varistor
JPS62208606A (en) * 1986-03-07 1987-09-12 松下電器産業株式会社 Manufacture of voltage nonlinear resistance device
JPH0754762B2 (en) * 1986-03-07 1995-06-07 松下電器産業株式会社 Method of manufacturing voltage non-linear resistor element

Also Published As

Publication number Publication date
JPS62208604A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
JPS6015127B2 (en) Voltage nonlinear resistor and its manufacturing method
EP0115149A1 (en) Varistor and method for manufacturing the same
JPH0754763B2 (en) Method of manufacturing voltage non-linear resistor element
JPH0754762B2 (en) Method of manufacturing voltage non-linear resistor element
US8562859B2 (en) Voltage nonlinear resistor, lightning arrester equipped with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JPS62282407A (en) Manufacture of voltage nonlinear resistance element
JPS62208603A (en) Manufacture of voltage nonlinear resistance device
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPH0758644B2 (en) Method of manufacturing voltage non-linear resistor element
JPS6249961B2 (en)
JP2003109806A (en) Nonlinear resistor and its manufacturing method
JPS62208605A (en) Manufacture of voltage nonlinear resistance device
JP2001052907A (en) Ceramic element and manufacturing method
JP2687470B2 (en) Manufacturing method of zinc oxide type varistor
JPS62208602A (en) Manufacture of voltage nonlinear resistance device
JP2531586B2 (en) Voltage nonlinear resistor
JP2003007512A (en) Nonlinear resistor element
JP2621408B2 (en) Manufacturing method of zinc oxide type varistor
JP3089370B2 (en) Voltage non-linear resistance composition
JPH08203708A (en) Nonlinear resistor
JPH06140207A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor
JPS6156843B2 (en)
JP2001093705A (en) Nonlinear resistor and method for manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term