JPS62208602A - Manufacture of voltage nonlinear resistance device - Google Patents

Manufacture of voltage nonlinear resistance device

Info

Publication number
JPS62208602A
JPS62208602A JP61051156A JP5115686A JPS62208602A JP S62208602 A JPS62208602 A JP S62208602A JP 61051156 A JP61051156 A JP 61051156A JP 5115686 A JP5115686 A JP 5115686A JP S62208602 A JPS62208602 A JP S62208602A
Authority
JP
Japan
Prior art keywords
layer
mol
main component
high resistance
agent containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61051156A
Other languages
Japanese (ja)
Inventor
雅昭 勝又
高見 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61051156A priority Critical patent/JPS62208602A/en
Publication of JPS62208602A publication Critical patent/JPS62208602A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化亜鉛を主成分とし、それ自体が電圧非直線
性を有する焼結体の側面に高抵抗層を形成した電圧非直
線抵抗体素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage non-linear resistor element which is composed mainly of zinc oxide and has a high resistance layer formed on the side surface of a sintered body which itself has voltage non-linearity. This relates to a manufacturing method.

従来の技術 電圧非直線抵抗体素子は一般にバリスタと呼ばれ、電圧
安定化やサージ吸収用の素子として用い3べ一/ られている。
BACKGROUND OF THE INVENTION Conventional voltage nonlinear resistor elements are generally called varistors and are used as voltage stabilizing and surge absorbing elements.

中でも、酸化亜鉛を主成分としてこれに少量のビスマス
、コバルト、マンガン、アンチモン、クロムなどを添加
した酸化亜鉛バリスタは、その大きなサージ電流耐量と
優れた電圧非直線性から、近年、ギャップレスアレスタ
として従来のシリコンカーバイトバリスタにとって代わ
り広く利用されている。
Among these, zinc oxide varistors, which are mainly composed of zinc oxide and to which small amounts of bismuth, cobalt, manganese, antimony, chromium, etc. are added, have recently become popular as gapless arresters due to their large surge current withstand capacity and excellent voltage nonlinearity. It is widely used as a replacement for silicon carbide varistors.

酸化亜鉛バリスタをアレスタとして用いる場合、極めて
重要な特性要素が2つある。第1は、放電耐量特性であ
る。これはJRC−187−1973に規定された4×
10μsの衝撃電流を6分間隔で2回印加したピーク電
流の限界値である。第2に、課電寿命特性で、これは規
定の交流電圧を印加した際に、アレスタ素子が熱暴走に
至るまでの時間である。通常は、周囲温度を100’C
以上にし、課電率(V印加電圧×100/V+mA)を
90%以上に設定し、加速試験を行って寿命予測をする
。近年、これらの特性を兼ね備えた高性能のアレスタ素
子の開発要望が強い。
When using a zinc oxide varistor as an arrester, there are two extremely important characteristic factors. The first is discharge endurance characteristics. This is 4× specified in JRC-187-1973.
This is the peak current limit value obtained by applying a 10 μs impact current twice at 6 minute intervals. The second is the energization life characteristic, which is the time it takes for the arrester element to reach thermal runaway when a specified alternating current voltage is applied. Normally, the ambient temperature is 100'C.
With the above conditions, the charging rate (V applied voltage x 100/V+mA) is set to 90% or more, and an accelerated test is performed to predict the lifespan. In recent years, there has been a strong demand for the development of high-performance arrester elements that have both of these characteristics.

従来よシミ正非直線抵抗体素子(アレスタ素子)の製造
方法として、特開昭66−69804号公報、特公昭6
0−15126号公報などが知られている。前者は、酸
化亜鉛に少量の酸化ビスマス。
As conventional methods for manufacturing stain positive nonlinear resistor elements (arrestor elements), Japanese Patent Laid-Open No. 66-69804 and Japanese Patent Publication No. 66-698
Publication No. 0-15126 is known. The former is zinc oxide with a small amount of bismuth oxide.

酸化コバルト、酸化マンガン、酸化ニッケルなどを添加
し、粉砕、混合、造粒工程を経て得られた成形体もしく
は700°C〜1150℃で仮焼した仮焼体の側面にZ
n2SiO4、Zn7Sb2O12、Bi2O5などを
含む物質を塗布した後、焼結し、側面に高抵抗層を有す
るアレスタ素子を製造するものである。後者は、同様に
して得られた成型体を焼成する際、焼成容器内に酸化ア
ンチモン、酸化ビスマス、酸化ケイ素を配置し、気−固
相反応により、側面に高抵抗層を有するアレスタ素子を
製造するものである。
Cobalt oxide, manganese oxide, nickel oxide, etc. are added to the molded body obtained through pulverization, mixing, and granulation processes, or the side surface of a calcined body calcined at 700°C to 1150°C.
After coating a material containing n2SiO4, Zn7Sb2O12, Bi2O5, etc., it is sintered to produce an arrester element having a high resistance layer on the side surface. The latter involves placing antimony oxide, bismuth oxide, and silicon oxide in a firing container when firing a molded body obtained in the same manner, and producing an arrester element having a high-resistance layer on the side surface through a gas-solid reaction. It is something to do.

発明が解決しようとする問題点 このような前者の方法では、側面高抵抗層の構造が不安
定で素子と側面剤との密着性が悪く、放電耐量が低いと
いう欠点を有していた。また、後者の方法では、焼成容
器内部に適当に配置した56−ジ Sb2O5 、 Bi2O5などからなる塗布剤の蒸気
と成型体とを反応させるため、側面高抵抗層の厚みが充
分とれず、放電耐量が低いばかりでなく、同一焼成容器
中で焼成可能な素子数が限られ、量産性に欠けるという
欠点を有していた。
Problems to be Solved by the Invention The former method has disadvantages in that the structure of the side high resistance layer is unstable, the adhesion between the element and the side surface agent is poor, and the discharge withstand capacity is low. In addition, in the latter method, the vapor of a coating agent made of 56-diSb2O5, Bi2O5, etc. placed appropriately inside the firing container reacts with the molded body, so the thickness of the high-resistance layer on the side surface cannot be sufficiently thickened, and the discharge withstand capacity is reduced. Not only is this method low, but the number of elements that can be fired in the same firing container is limited, and mass productivity is lacking.

本発明は、このような問題点を解決するもので、アレス
タとしての酸化亜鉛バリスタの高性能化、すなわち放電
耐量特性1課電寿命特性の大巾な向上を目的とするもの
である。
The present invention solves these problems and aims to improve the performance of a zinc oxide varistor as an arrester, that is, to significantly improve the discharge withstand characteristics 1 and the charging life characteristics.

問題点を解決するだめの手段 本発明では、上記の問題点を解決するため、酸化亜鉛を
主成分とする成形体、仮焼体の側面に、2層の成分の異
なった高抵抗層を形成することによシ、高抵抗層−素子
間の密着性を上げ、素子からのBi2O5飛散を防ぐ、
安定な構造の高抵抗層を形成することを特徴としている
Means to Solve the Problems In the present invention, in order to solve the above problems, two high-resistance layers with different components are formed on the sides of a molded body or calcined body whose main component is zinc oxide. By doing so, it increases the adhesion between the high resistance layer and the element and prevents Bi2O5 from scattering from the element.
It is characterized by forming a high resistance layer with a stable structure.

作用 本発明による電圧非直線抵抗体素子の製造方法によれば
、酸化亜鉛バリスタ素子の成型体または仮焼体の側面に
SiO2 、Sb2O5からなる第1の側6ページ 固剤を塗布し、その上部にSiO2を主成分とする第2
の側面剤を塗布した後、焼成し、バリスタ素子側面に高
抵抗層を形成するため、高抵抗層下層部にZn7Sb2
O12、同」二層部にZn2SiO4の安定な2層構造
を得ることができる。このことから、バリスタ素体−高
抵抗層間の密着性が増し、放電耐量が向上するばかりで
なく、高抵抗層上層部のZn2SiO4層のカバーリン
グによりバリスタ素体内部からのBi2O3飛散を抑え
、課電寿命特性も大巾に向上させることができる。
According to the method for manufacturing a voltage nonlinear resistor element according to the present invention, a solid agent made of SiO2 or Sb2O5 is applied to the side surface of a molded body or a calcined body of a zinc oxide varistor element, and the upper part thereof is A second layer containing SiO2 as the main component
After coating the side surface agent, it is fired to form a high resistance layer on the side surface of the varistor element.
A stable two-layer structure of Zn2SiO4 can be obtained in the two-layer part. This not only increases the adhesion between the varistor element and the high-resistance layer, improving the discharge withstand capacity, but also suppresses Bi2O3 scattering from inside the varistor element by covering the Zn2SiO4 layer on top of the high-resistance layer. Electrical life characteristics can also be greatly improved.

実施例 以下、本発明の製造方法およびそれによって得られた電
圧非直線抵抗体素子について実施例に基づき詳細に説明
する。  ・ まず、ZnOの粉末に、合計量に対しBi2O30,6
モル%、 GO2030,5モル%、 Mn020.5
モル%。
EXAMPLES Hereinafter, the manufacturing method of the present invention and the voltage nonlinear resistor element obtained thereby will be explained in detail based on examples.・ First, add Bi2O30,6 to the ZnO powder based on the total amount.
Mol%, GO2030, 5mol%, Mn020.5
mole%.

Sb2O31.0 モ/l/%、 Cr2O30+E5
 モ/l/%、N100.25モル%を加え、充分に粉
砕、混合した後造粒して原料粉を得た。この原料粉を直
径40mm、厚さ30mmの大きさに圧縮成形した。こ
のようにし7ヘー/′ て得られた成形体を900°C,2時間焼成し冷却して
仮焼体を得た。
Sb2O31.0 mo/l/%, Cr2O30+E5
Mo/l/% and N100.25 mol% were added, thoroughly crushed and mixed, and then granulated to obtain a raw material powder. This raw material powder was compression molded to a size of 40 mm in diameter and 30 mm in thickness. The molded body thus obtained was fired at 900°C for 2 hours and cooled to obtain a calcined body.

一方、側面高抵抗層用のペーストは、Sb2O3゜Bi
2O3、SiO2を適当な割合で混合した原料粉と、エ
チルセルロース25wt%、フチルカルヒトール76w
t%からなるバインダーとを、重量比で1対30割合で
配合し均一になるように混練して作成した。本発明では
、この側面高抵抗層用のペーストは、SiO2 、Sb
2Osからなる下層用と、SiO2を主成分とする上層
用の2種類がある。
On the other hand, the paste for the side high resistance layer is Sb2O3゜Bi
Raw material powder mixed with 2O3 and SiO2 in appropriate proportions, ethyl cellulose 25wt%, phthyl calhitol 76w
t% of the binder was blended in a weight ratio of 1:30 and kneaded uniformly. In the present invention, the paste for the side high resistance layer is made of SiO2, Sb
There are two types: one for the lower layer made of 2Os and one for the upper layer mainly composed of SiO2.

前述の仮焼体側面に下層用のペーストを塗布し、乾燥さ
せてから、上層用のペーストを塗布し、再度乾燥後、空
気中において1200°Cで焼結させた。このようにし
て得られた焼結体の両端面を研磨し、アルミニウムの溶
射電極を形成した。
A paste for the lower layer was applied to the side surface of the calcined body and dried, then a paste for the upper layer was applied, and after drying again, it was sintered at 1200°C in air. Both end faces of the sintered body thus obtained were polished to form sprayed aluminum electrodes.

第1図は上述したようにして得た電圧非直線抵抗体素子
の断面図であり、1はZnOf主成分とする焼結体、2
はZn7Sb2O12を主成分とする側面高抵抗層第1
層(下層)、3はzn2sio4  を主成分とする側
面高抵抗層第2層(上層)、4はアルミニウム溶射によ
り形成された電極である。なお、側面高抵抗層2,3の
成分はX線回折により確認された。また、X線マイクロ
アナライザーによる分析から、第1層(下層)2にはM
n 、 Go 、 Grなどが固溶し、第2層(上層)
3には主としてGo が固溶していることが確認された
FIG. 1 is a cross-sectional view of the voltage nonlinear resistor element obtained as described above, in which 1 is a sintered body mainly composed of ZnOf, 2
The first side high resistance layer is mainly composed of Zn7Sb2O12.
The layer (lower layer), 3 is a side high resistance layer second layer (upper layer) mainly composed of zn2sio4, and 4 is an electrode formed by aluminum spraying. The components of the side high resistance layers 2 and 3 were confirmed by X-ray diffraction. Furthermore, analysis using an X-ray microanalyzer revealed that the first layer (lower layer) 2 contains M.
n, Go, Gr, etc. are dissolved in solid solution, and the second layer (upper layer)
It was confirmed that Go was mainly dissolved in solid solution in No. 3.

下記の第1表は、側面高抵抗層第1層および第2層用の
側面剤の組成表である。第1層用側面剤はSiO2 、
Sb2O3からなり、第2層用側面剤はSiO2 、 
Bi2O5からなる。
Table 1 below is a composition table of side additives for the first and second layers of the side high resistance layer. The side material for the first layer is SiO2,
It consists of Sb2O3, and the side surface agent for the second layer is SiO2,
Consists of Bi2O5.

(以下 余 白) 9   。(Left below) 9.

ベーン 〈第 1 表〉 単位:モル% この側面剤を仮焼体に第1層用側面剤、第2層用側面剤
の順に塗布し、焼結させた後、Aβメタリコン電極を付
け、v1mA/mm 、 V+mA/V1o72x +
 外観などを調べた。この結果を下記の第2表に示す。
Vane <Table 1> Unit: mol% This side surface agent is applied to the calcined body in the order of the side surface agent for the first layer and the side surface agent for the second layer, and after sintering, an Aβ metallicon electrode is attached and the v1mA/ mm, V+mA/V1o72x+
I checked the appearance etc. The results are shown in Table 2 below.

比較のため従来例1とLテBi2O5+ Zn7Sb2
O12+SiO2をそれぞれ10モル%、10モル%、
80モル%含む側面剤を含む側面剤を仮焼体に塗布した
場合、従来例2としてBi2O5、Sb2O5をそれぞ
れ10モル%、90モル%含む塗布剤を焼成容器内に配
置し気−固相反応にょシ側面高抵抗層を形成した場合の
データを追記した。
For comparison, conventional example 1 and LteBi2O5+ Zn7Sb2
10 mol% and 10 mol% of O12+SiO2, respectively.
When a surfacing agent containing 80 mol% of a surfacing agent is applied to a calcined body, as in Conventional Example 2, coating agents containing 10 mol% and 90 mol% of Bi2O5 and Sb2O5, respectively, are placed in the firing container and a gas-solid phase reaction is performed. Added data when a high resistance layer is formed on the side surface.

(以下余 白) 15、。(Left below) 15.

第2表よりわかるように、v1mA/mmは、第2層用
側面剤中のBi2O5濃度が増加するにつれて低下傾向
を示し、逆にV’+mA/V+o□A は向上する傾向
がある。しかし、第2層側面剤中のBi2O5濃度が4
0モル%を越えると側面剤の流れが発生し、V+ mA
/ V+ o tIA は逆にわずかに上昇する。また
、第1層側面剤中のSb2O3濃度が増すにつれ、V1
mA/v1o□Aは向」二している。
As can be seen from Table 2, v1mA/mm shows a decreasing tendency as the Bi2O5 concentration in the second layer side surface material increases, whereas V'+mA/V+o□A tends to increase. However, the Bi2O5 concentration in the second layer side surface agent was 4
If it exceeds 0 mol%, a flow of lateral agent will occur, and V + mA
/V+ o tIA, on the contrary, increases slightly. In addition, as the Sb2O3 concentration in the first layer sidewall agent increases, V1
mA/v1o□A is in the opposite direction.

第2図〜第9図に本発明の製造方法による電圧非直線抵
抗体素子の放電耐量特性1課電寿命特性の結果を示す。
FIGS. 2 to 9 show the results of the discharge withstand characteristics 1 and the energized life characteristics of voltage nonlinear resistor elements produced by the manufacturing method of the present invention.

ここで、放電耐量試験はJll−187−1973に規
定された4×10μsの衝撃電流を同一方向に5分間隔
で2回印加し、外観異常などをチェックした。試験は1
0KA毎のステップアップ方式で行い、図中には黒丸印
の実線で示した。壕だ、2回の衝撃電流に耐えなかった
試料に関しては印加電流からSKAを減じて示した。さ
らに、課電寿命試験は周囲温度130°C1課電率96
%(60f(zAG )の条件で行い、漏れ電流が10
mAに達した時点で熱暴走と判定し、それに要した時間
を図中に白丸印の点線で示した。
Here, in the discharge endurance test, an impact current of 4×10 μs specified in Jll-187-1973 was applied twice in the same direction at 5-minute intervals, and appearance abnormalities were checked. The test is 1
It was performed in a step-up manner for every 0KA, and is indicated by a solid line with black circles in the figure. However, for samples that did not withstand two shock currents, the SKA was subtracted from the applied current. Furthermore, the charging life test was conducted at an ambient temperature of 130°C and a charging rate of 96°C.
% (60f(zAG)), and the leakage current is 10
Thermal runaway was determined to have occurred when mA was reached, and the time required for this is indicated by a dotted line marked with a white circle in the figure.

下記の第3表に従来例1および2の放電耐量特性2課電
寿命特性を示した。
Table 3 below shows the discharge withstand characteristics and energized life characteristics of Conventional Examples 1 and 2.

(以下 余 白) 17   。(Left below) 17.

ベー/ 第3表よりわかるように、Bi2O3、Zn7Sb20
12 。
Bi/ As seen from Table 3, Bi2O3, Zn7Sb20
12.

SiO2系側面剤塗布方式(従来例1)では、放電耐量
50KA1回9課電寿命29時間、 Bi2O3。
The SiO2-based side surface agent application method (Conventional Example 1) has a discharge resistance of 50 KA, a single charge life of 29 hours, and Bi2O3.

Sb2O6  気−固相反応系(従来例2)では、放電
耐量50KA2回9課電寿命31時間の性能を有してい
た。第2図〜第9図をこれらと比較すると、第1層側面
剤中のSb2031M度が0,1モル%より低い領域と
、30モル%より高い領域で放電耐量。
The Sb2O6 gas-solid phase reaction system (Conventional Example 2) had a discharge capacity of 50 KA and a life of 31 hours when charged 9 times twice. Comparing FIGS. 2 to 9 with these, the discharge withstand capacity is found in the region where the degree of Sb2031M in the first layer side surface material is lower than 0.1 mol% and in the region where it is higher than 30 mol%.

課電寿命特性とも低レベルにあるが、0.1〜30モル
%の領域では非常に秀れていることがわかる。
It can be seen that the charged life characteristics are both at a low level, but are very excellent in the range of 0.1 to 30 mol %.

一方、第4図〜第6図より第2層側面剤中のBi20d
!度が増加するにつれ課電寿命特性が向上し、20〜3
0モル%でピークに達し、40モル%以上では再び低下
する。これは、側面高抵抗層が焼結反応の過程で、Zn
2SiO4相を形成する部分の一部がB12C)5過多
により流れ落ち、逆にバリスタ素子からのBi2O3が
飛散し易くなるためと考えられる。−力、放電耐量特性
はBi2O5濃度が20〜30モル%は一定で、その後
、急激に低下することがわかる。これは、Bi2O5が
高くなると19、。
On the other hand, from FIGS. 4 to 6, Bi20d in the second layer side surface agent
! As the temperature increases, the energized life characteristics improve, 20~3
It reaches a peak at 0 mol%, and decreases again at 40 mol% or more. This is because the high-resistance layer on the side is exposed to Zn during the sintering reaction process.
This is thought to be because a part of the portion forming the 2SiO4 phase flows down due to excessive B12C)5, and conversely Bi2O3 from the varistor element becomes more likely to scatter. It can be seen that the power and discharge capacity characteristics are constant when the Bi2O5 concentration is 20 to 30 mol%, and then rapidly decrease. This is 19 when Bi2O5 increases.

側面高抵抗層の上層に形成されるZn2SiO4の粒界
にBi2O5が残存するため、その強度が低下し、放電
耐量特性が悪化するものと考えられる。第1層側面剤に
A 6 (Sb2O3: 10モル%、S工02:9゜
モ/l/%)、第2層側面剤にB2 (Bi2O3: 
10モル%、 SiO2 190モル%)を用いた場合
、放電耐量は96KA1課電寿命は320時間の性能を
有し、従来例と比較し著しく高性能化していることがわ
かる。
It is thought that since Bi2O5 remains in the grain boundaries of Zn2SiO4 formed in the upper layer of the side high resistance layer, its strength decreases and the discharge withstand characteristics deteriorate. A 6 (Sb2O3: 10 mol%, S-02: 9゜mol/l/%) was used as the side surface agent for the first layer, and B2 (Bi2O3:
10 mol % and SiO2 190 mol %), the discharge capacity was 96 KA1 and the charging life was 320 hours, which shows that the performance is significantly improved compared to the conventional example.

以上のように、本発明の製造方法による電圧非直線抵抗
体素子が、放電耐量特性1課電寿命特性ともに高性能を
示す理由は、以下のように推定される。従来のBi2O
3、Zn7Sb2012 (Sb2O5 ) 。
As described above, the reason why the voltage nonlinear resistor element manufactured by the manufacturing method of the present invention exhibits high performance in both the discharge withstand characteristic and the charged life characteristic is presumed as follows. Conventional Bi2O
3. Zn7Sb2012 (Sb2O5).

SiO2三成分単層側面剤を用いた場合、その生成物は
Zn7Sb2O12とZn2SiO4の混在系であるの
に対し、二層塗布方式の側面剤を用いた場合、第1層(
下層)にZn7Sb2012 相が生成し、第2層(上
層)にZn2SiO4相が生成して構造が極めて安が高
く放電耐量の向上に寄与し、上層のZn25iOa相は
バリスタ素子からのBi2O5飛牧を軽減し課電寿命特
性の向上に寄与していると考えられる。
When a SiO2 three-component single-layer side surface agent is used, the product is a mixed system of Zn7Sb2O12 and Zn2SiO4, whereas when a two-layer coating type side surface agent is used, the product is
A Zn7Sb2012 phase is generated in the second layer (upper layer), and a Zn2SiO4 phase is generated in the second layer (upper layer), resulting in an extremely cheap structure that contributes to improving discharge durability, and the Zn25iOa phase in the upper layer reduces Bi2O5 drift from the varistor element. It is thought that this contributes to improving the charging life characteristics.

本実施例においては側面高抵抗層用の2種類の側面剤を
仮焼体に塗布した場合についてのみ記載したが、第1層
、第2層用側面剤ともに成形体に塗布した場合、また第
1層用側面剤を成形体に、第2層用側面剤を仮焼体に塗
布した場合にも同様の効果があることを確認した。
In this example, only the case where two types of side surface agents for the side high resistance layer were applied to the calcined body was described, but there was also a case where both the side surface agents for the first layer and the second layer were applied to the molded body. It was confirmed that a similar effect was obtained when the side surface agent for the first layer was applied to the molded body and the side surface agent for the second layer was applied to the calcined body.

発明の効果 以上のように本発明によれば、酸化亜鉛形バリスタ素子
の成形体又は仮焼体の側面にSb2O6゜SiO2から
なる側面剤を塗布し、その上層にBi2O3、SiO2
からなる側面剤を塗布し、焼結させることによシ、放電
耐量特性2課電寿命特性が非常に高性能な電圧非直線抵
抗体素子を製造することができる。
Effects of the Invention As described above, according to the present invention, a side surface agent made of Sb2O6°SiO2 is coated on the side surface of a molded or calcined body of a zinc oxide type varistor element, and a side surface agent made of Sb2O6°SiO2 is applied as an upper layer.
By applying and sintering a side surface agent consisting of the following, it is possible to manufacture a voltage non-linear resistor element with extremely high performance in discharge withstand characteristics 2 and energized life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

21、−。 発明の製造方法による電圧非直線抵抗体素子の放電耐量
特性および課電寿命特性を示す図である。 1・・・・・・酸化亜鉛形バリスタ素子、2・・・・・
・側面高抵抗層第1層(下層)、3・・・・・・側面高
抵抗層第2層(上層)、4・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f−
−−爾イこ亜府合す沖\リスク素チ2−−−り旬禮鶴准
くし令竿1冴(下1)第1図 第2図 第3図 −ルzcb  濃7度(モルメ9 第4図 −に2θ4受(モル2) 第5図 ゆβ石?03 製産(モルり 第6図 →Btz0j渫洩(モル〆) 第7図 −Biz O,3Jレト(モ1し〆) 第8図 −BizoJl (−EIVI、) 第9図
21,-. FIG. 3 is a diagram showing discharge withstand characteristics and energized life characteristics of a voltage nonlinear resistor element produced by the manufacturing method of the invention. 1... Zinc oxide type varistor element, 2...
- Side high resistance layer 1st layer (lower layer), 3... Side high resistance layer 2nd layer (upper layer), 4... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person f-
---Rikoafuusu Oki\Risk Sochi 2---Rishunrei Tsuru Junkushirei-kashi 1 Sae (bottom 1) Figure 1 Figure 2 Figure 3-Lezcb Concentration 7 degrees (Morume 9 Figure 4 - 2θ4 reception (Mole 2) Figure 5 Yu β stone?03 Production (Mole Figure 6 → Btz0j leak (Mole 〆) Figure 7 - Biz O, 3J Reto (Mole 〆) Figure 8-BizoJl (-EIVI,) Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体を700〜1150
℃の温度範囲で仮焼し、得られた仮焼体の側面にSiO
_2を主成分としSb_2O_3を0.1〜30モル%
含む第1の側面剤を塗布し、前記第1の側面剤上部にS
iO_2を主成分としBi_2O_5を0〜30モル%
含む第2の側面剤を塗布した後、焼結し、焼結体側面に
高抵抗層を形成することを特徴とする電圧非直線抵抗体
素子の製造方法。
(1) A molded body containing zinc oxide as the main component and additives added so that the sintered body itself exhibits voltage nonlinearity has a temperature of 700 to 1150
Calcined in the temperature range of ℃, SiO
Main component is _2 and 0.1 to 30 mol% of Sb_2O_3
A first side surface agent containing S
Main component is iO_2 and Bi_2O_5 is 0 to 30 mol%
1. A method for manufacturing a voltage nonlinear resistor element, comprising applying a second side surface agent containing the second side surface agent, and then sintering to form a high resistance layer on the side surface of the sintered body.
(2)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体の側面にSiO_2
を主成分としSb_2O_3を0.1〜30モル%含む
第1の側面剤を塗布し、前記第1の側面剤上部にSiO
_2を主成分としBi_2O_3を0〜30モル%含む
第2の側面剤を塗布した後、焼結し、焼結体側面に高抵
抗層を形成することを特徴とする電圧非直線抵抗体素子
の製造方法。
(2) SiO_2 on the side surface of a molded body whose main component is zinc oxide, with additives added so that the sintered body itself exhibits voltage nonlinearity.
A first side surface agent containing 0.1 to 30 mol% of Sb_2O_3 as a main component is applied, and SiO
A voltage nonlinear resistor element characterized in that a second side surface agent containing _2 as a main component and 0 to 30 mol% of Bi_2O_3 is applied and then sintered to form a high resistance layer on the side surface of the sintered body. Production method.
(3)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体の側面にSiO_2
を主成分としSb_2O_3を0.1〜30モル%含む
第1の側面剤を塗布し、700〜1150℃の温度範囲
で仮焼後、仮焼体の側面にSiO_2を主成分としBi
_2O_5を0〜30モル%含む第2の側面剤を塗布し
た後、焼結し、焼結体側面に高抵抗層を形成することを
特徴とする電圧非直線抵抗体素子の製造方法。
(3) SiO_2 on the side surface of a molded body containing zinc oxide as the main component and additives added so that the sintered body itself exhibits voltage nonlinearity.
A first side agent containing Sb_2O_3 as a main component and 0.1 to 30 mol% is applied, and after calcining in a temperature range of 700 to 1150°C, a side surface agent containing SiO_2 as a main component and Bi as a main component is applied.
A method for producing a voltage nonlinear resistor element, comprising applying a second side surface agent containing 0 to 30 mol% of _2O_5 and then sintering to form a high resistance layer on the side surface of the sintered body.
JP61051156A 1986-03-07 1986-03-07 Manufacture of voltage nonlinear resistance device Pending JPS62208602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051156A JPS62208602A (en) 1986-03-07 1986-03-07 Manufacture of voltage nonlinear resistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051156A JPS62208602A (en) 1986-03-07 1986-03-07 Manufacture of voltage nonlinear resistance device

Publications (1)

Publication Number Publication Date
JPS62208602A true JPS62208602A (en) 1987-09-12

Family

ID=12878966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051156A Pending JPS62208602A (en) 1986-03-07 1986-03-07 Manufacture of voltage nonlinear resistance device

Country Status (1)

Country Link
JP (1) JPS62208602A (en)

Similar Documents

Publication Publication Date Title
JPS6015127B2 (en) Voltage nonlinear resistor and its manufacturing method
JPS5811084B2 (en) Voltage nonlinear resistor
JPS62208602A (en) Manufacture of voltage nonlinear resistance device
JP2656233B2 (en) Voltage non-linear resistor
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPS62208601A (en) Manufacture of voltage nonlinear resistance device
JPS62208605A (en) Manufacture of voltage nonlinear resistance device
JPS62282407A (en) Manufacture of voltage nonlinear resistance element
JP3830354B2 (en) Method for manufacturing voltage nonlinear resistor
JPH0754763B2 (en) Method of manufacturing voltage non-linear resistor element
JPS62208603A (en) Manufacture of voltage nonlinear resistance device
JPS63146408A (en) Manufacture of voltage nonlinear resistor
JPS62282406A (en) Manufacture of voltage nonlinear resistance element
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JP2003007512A (en) Nonlinear resistor element
JPS62282408A (en) Manufacture of voltage nonlinear resistance element
JPS6236615B2 (en)
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPS634681B2 (en)
JP2001006904A (en) Voltage nonlinear resistor
JPH08203708A (en) Nonlinear resistor
JPS6329801B2 (en)
JPH0374005B2 (en)
JPH07211519A (en) Voltage non-linear resistor
JPS6156843B2 (en)