JP2001006904A - Voltage nonlinear resistor - Google Patents
Voltage nonlinear resistorInfo
- Publication number
- JP2001006904A JP2001006904A JP11175521A JP17552199A JP2001006904A JP 2001006904 A JP2001006904 A JP 2001006904A JP 11175521 A JP11175521 A JP 11175521A JP 17552199 A JP17552199 A JP 17552199A JP 2001006904 A JP2001006904 A JP 2001006904A
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- added
- voltage
- ratio
- atm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電圧非直線抵抗体、
詳しくは過電圧保護用素子として用いられる酸化亜鉛
(ZnO )を主成分とした電圧非直線抵抗体に関する。The present invention relates to a voltage non-linear resistor,
More specifically, the present invention relates to a voltage non-linear resistor mainly composed of zinc oxide (ZnO 2) used as an overvoltage protection element.
【0002】[0002]
【従来の技術】酸化亜鉛(ZnO )を主成分とした電圧非
直線抵抗体は一般に制限電圧が低く、電圧非直線指数が
大きいなどの特徴を有している。そのため半導体素子の
ような過電流耐量の小さいもので構成される機器の過電
圧に対する保護、もしくは電力機器の保護を目的とする
アレスタ素子として広く利用されている。2. Description of the Related Art A voltage non-linear resistor mainly composed of zinc oxide (ZnO) has characteristics such as a low limiting voltage and a large voltage non-linear index. Therefore, it is widely used as an arrester element for the purpose of protection against overvoltage of a device constituted by a device having a small overcurrent capability such as a semiconductor device or protection of a power device.
【0003】これに関連して、酸化亜鉛(ZnO )を主成
分とし、これに副成分として少なくとも一種の稀土類元
素を総量で0.08〜5.0 原子% 、コバルト(Co)を0.1 〜
10.0原子% 、カルシウム(Ca)を0.01〜5.0 原子% 、カ
リウム(K )、セシウム(Cs)、ルビジウム(Rb)のう
ち少なくとも一種を総量で0.01〜1.0 原子% 、クロム
(Cr)を0.01〜1.0 原子% 、アルミニウム(Al)、ガリ
ウム(Ga)、インジウム(In)のうち少なくとも一種を
総量で1 ×10-4〜5 ×10-2原子% 、ビスマス(Bi)を0.
7 〜1.1 原子% およびアンチモン(Sb)をBiとの添加比
でSb/Bi=0.8 〜1.2 の範囲で添加し、焼成することによ
り優れた電圧非直線抵抗体を製造できる。また、上記の
組成にさらにホウ素(B )を5 ×10-4〜1 ×10-1原子%
添加して焼成することによっても優れた電圧非直線抵抗
体を製造できることも特願平10-66760号公報に提案され
ている。[0003] In this connection, zinc oxide (ZnO) is a main component, and at least one rare earth element as a subcomponent is 0.08 to 5.0 atomic% in total, and cobalt (Co) is 0.1 to 0.1 atomic%.
10.0 at%, calcium (Ca) 0.01-5.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01-1.0 at% in total, chromium (Cr) 0.01-1.0 Atomic%, at least one of aluminum (Al), gallium (Ga), and indium (In) in a total amount of 1 × 10 −4 to 5 × 10 −2 atomic%, and bismuth (Bi) of 0.1%.
An excellent voltage non-linear resistor can be manufactured by adding 7 to 1.1 atomic% and antimony (Sb) in an addition ratio of Bi to Sb / Bi = 0.8 to 1.2 and firing. Further, boron (B) is further added to the above composition in an amount of 5 × 10 -4 to 1 × 10 -1 atomic%.
It is also proposed in Japanese Patent Application No. 10-66760 that an excellent voltage non-linear resistor can be produced by adding and firing.
【0004】微量のB 添加は、ZnO 抵抗体の焼成後の結
晶粒度分布を変え、周辺部の粒径を小さくして応力分布
を滑らかにし、ZnO 抵抗体のサージ耐量を増大させる効
果がある。[0004] The addition of a small amount of B has the effect of changing the grain size distribution of the ZnO resistor after firing, reducing the grain size at the periphery, smoothing the stress distribution, and increasing the surge withstand capability of the ZnO resistor.
【0005】[0005]
【発明が解決しようとする課題】しかし、このような電
圧非直線抵抗体にも以下に述べるような問題がある。電
圧非直線抵抗体は1100〜1400℃程度の温度で数時間焼成
されるが、通常は焼成の温度を調節するという簡単な方
法を用いV1mA/tを所望の値に設定している。前記V1mA/t
は、単位厚さ当たりのV1mAであり、V1mAは抵抗分電流1m
A を流したときの電圧である。V1mA/tは、焼成の温度を
1 ℃下げると、1 〜2 V/mm増加するので、容易に所望の
値に設定することができる。However, such a voltage non-linear resistor also has the following problems. The voltage non-linear resistor is fired at a temperature of about 1100 to 1400 ° C. for several hours. Usually, V1 mA / t is set to a desired value by using a simple method of adjusting the firing temperature. V1mA / t
Is V1mA per unit thickness, and V1mA is the resistance current 1m
This is the voltage when A flows. V1mA / t is the firing temperature
When the temperature is lowered by 1 ° C., the voltage increases by 1 to 2 V / mm, so that the desired value can be easily set.
【0006】このことから、高い電圧で動作するような
V1mAの大きい電圧非直線抵抗体を得るためには、焼成温
度を低くしZnO の粒成長を抑えてV1mA/tを大きくするこ
とが一般的に考えられる。上記の特願平10-66760号公報
に記されている組成の原料粉末を用いて成形体を作り、
電圧非直線抵抗体を焼成し、電圧非直線抵抗体の特性を
調べた。図7は従来の電圧非直線抵抗体のV1mA/tと2 ms
サージ耐量との関係を示すグラフである。グラフから判
るように、低温で焼成した電圧非直線抵抗体では、V1mA
/tを400V/mm と大きくすることができるが、サージ耐量
は約200J/cm3となり、V1mA/tが200V/mm の素子で得られ
ていた約600J/cm3の1/3 程度と極端に低くなり、サージ
耐量の優れた素子を得ることができなかった。[0006] From this, it is difficult to operate at a high voltage.
In order to obtain a non-linear resistor having a large voltage of V1mA, it is generally considered that the firing temperature is lowered, the grain growth of ZnO is suppressed, and V1mA / t is increased. Forming a molded body using the raw material powder having the composition described in Japanese Patent Application No. 10-66760,
The voltage non-linear resistor was fired, and the characteristics of the voltage non-linear resistor were examined. Figure 7 shows V1mA / t and 2 ms of a conventional voltage nonlinear resistor.
It is a graph which shows the relationship with surge withstand. As can be seen from the graph, the voltage non-linear resistor fired at low temperature has V1 mA
/ t can be increased to 400 V / mm, but the surge withstand capability is about 200 J / cm 3 , and V1mA / t is about 1/3 of about 600 J / cm 3 obtained with the 200 V / mm element. , And it was not possible to obtain an element having excellent surge withstand capability.
【0007】これは低温で焼成すると酸化亜鉛の焼結が
十分に進まず、添加元素の拡散が不十分となって素子内
の粒径分布が一様でなくなったものと考えられる。その
結果、V1mA/tが200V/mm の時に優れたサージ耐量を持つ
組成でもV1mA/tを400V/mm と高くするとサージ耐量が低
下するのである。つまりある程度の高い温度で焼成しな
いと酸化亜鉛の焼結が進まず、添加元素の素子内分布が
一様でなくなり素子特性が素子内でばらつくことによっ
て特性が低下していると考えられる。従ってV1mA/tが大
きくしかもサージ耐量に優れた素子を得るためには、V1
mA/tを大きくするために低い温度で焼成し、粒径分布、
素子内の特性を均一化するためにある程度の高い温度で
焼成する、といった矛盾した焼成条件を要求されること
になる。このため、従来技術ではV1mA/tが大きい素子で
はサージ耐量の優れた素子を得ることが困難であった。This is considered to be due to the fact that when fired at a low temperature, the sintering of zinc oxide did not proceed sufficiently, and the diffusion of the added element became insufficient, and the particle size distribution in the device became non-uniform. As a result, when V1mA / t is as high as 400 V / mm, the surge withstand capability decreases even if the composition has excellent surge withstand capability when V1mA / t is 200 V / mm. In other words, it is considered that the sintering of zinc oxide does not proceed unless firing at a certain high temperature, the distribution of the added element in the device becomes nonuniform, and the characteristics of the device vary within the device, thus deteriorating the characteristics. Therefore, in order to obtain a device with a large V1mA / t and excellent surge withstand capability, V1
firing at low temperature to increase mA / t, particle size distribution,
Inconsistent baking conditions such as baking at a certain high temperature in order to make the characteristics in the device uniform are required. For this reason, in the prior art, it was difficult to obtain an element having an excellent surge resistance with an element having a large V1 mA / t.
【0008】本発明は上述の点に鑑みてなされたもので
あり、V1mA/tが400V/mm 以上と高く、素子内の電圧分布
の均一性の良く、またサージ耐量の大きい電圧非直線抵
抗体を提供することにある。The present invention has been made in view of the above points, and has a high V1mA / t of 400 V / mm or more, a uniform voltage distribution in the device, and a large voltage non-linear resistor having a large surge withstand capability. Is to provide.
【0009】[0009]
【課題を解決するための手段】目的を達成するために、
ZnO を主成分とし、これに副成分として、いずれも金属
元素の原子比で、少なくとも一種の稀土類元素を総量で
0.08〜5.0 原子% 、Coを0.1 〜10.0原子% 、Caを0.01〜
1.0 原子% 、K 、Cs、Rbのうち少なくとも一種を総量で
0.01〜1.0 原子% 、Crを0.01〜1.0 原子% 、Al、Ga、In
のうち少なくとも一種を総量で1 ×10-4〜5 ×10-2原子
% 、Biを0.7 〜1.1 原子% およびSbをBiとの添加比でSb
/Bi=0.8 〜1.2 の範囲で添加し、さらにMnを0.1 〜1.0
原子% 添加し焼成してなることとする。また、前記副成
分に、さらにB を金属元素の原子比で5 ×10-4〜1 ×10
-1原子% 添加して焼成すると良い。[MEANS FOR SOLVING THE PROBLEMS] To achieve the object,
ZnO as the main component, and as a sub-component, at least one rare earth element in total in the atomic ratio of metal elements
0.08-5.0 atomic%, Co 0.1-10.0 atomic%, Ca 0.01-
1.0 atomic%, at least one of K, Cs, and Rb in total
0.01-1.0 atomic%, Cr 0.01-1.0 atomic%, Al, Ga, In
At least one of them is 1 × 10 -4 to 5 × 10 -2 atoms in total
%, Bi is 0.7 to 1.1 atomic%, and Sb is Sb in an addition ratio with Bi.
/Bi=0.8 to 1.2, and further add Mn to 0.1 to 1.0
Atomic% is added and fired. Further, B is further added to the subcomponent in an atomic ratio of a metal element of 5 × 10 −4 to 1 × 10
It is better to add -1 atomic% and bake.
【0010】ZnO を主成分とし、これに副成分として、
いずれも金属元素の原子比で、少なくとも一種の稀土類
元素を総量で0.08〜5.0 原子% 、Coを0.1 〜10.0原子%
、Caを0.01〜1.0 原子% 、K 、Cs、Rbのうち少なくと
も一種を総量で0.01〜1.0 原子% 、Crを0.01〜1.0 原子
% 、Al、Ga、Inのうち少なくとも一種を総量で1 ×10-4
〜5 ×10-2原子% 、Biを0.7 〜1.1 原子% およびSbをBi
との添加比でSb/Bi=0.8〜1.2 の範囲で添加し、さらにS
iを0.1 〜1.0 原子% の範囲で添加し焼成してなること
とする。また、前記副成分に、さらにB を金属元素の原
子比で5 ×10-4〜1 ×10-1原子% 添加して焼成してなる
と良い。[0010] ZnO as a main component, and as a sub-component,
In each case, the atomic ratio of the metal elements is 0.08 to 5.0 atomic% in total of at least one rare earth element, and 0.1 to 10.0 atomic% of Co.
, Ca is 0.01 to 1.0 atomic%, K, Cs, and Rb are at least one of 0.01 to 1.0 atomic% in total, and Cr is 0.01 to 1.0 atomic%.
%, At least one of Al, Ga, and In in a total amount of 1 × 10 -4
~ 5 × 10 -2 atomic%, Bi 0.7 to 1.1 atomic% and Sb Bi
Sb / Bi = 0.8 to 1.2 in the addition ratio of
i is added in the range of 0.1 to 1.0 atomic% and fired. Further, it is preferable that B is added to the subcomponent in an atomic ratio of 5 × 10 −4 to 1 × 10 −1 atomic% in terms of a metal element, followed by firing.
【0011】ZnO を主成分とし、これに副成分として、
いずれも金属元素の原子比で、少なくとも一種の稀土類
元素を総量で0.08〜5.0 原子% 、Coを0.1 〜10.0原子%
、Caを0.01〜1.0 原子% 、K 、Cs、Rbのうち少なくと
も一種を総量で0.01〜1.0 原子% 、Crを0.01〜1.0 原子
% 、Al、Ga、Inのうち少なくとも一種を総量で1 ×10-4
〜5 ×10-2原子% 、Biを0.7 〜1.1 原子% およびSbをBi
との添加比でSb/Bi=0.8〜1.2 の範囲で添加し、さらにS
iを0.1 〜1.0 原子% およびMnを0.1 〜1.0 原子% 添加
し焼成してなることとする。また、前記副成分に、さら
にB を金属元素の原子比で5 ×10-4〜1 ×10-1原子% 添
加して焼成してなると良い。前記希土類元素はPrである
と良い。[0011] ZnO as a main component, and as a sub-component,
In each case, the atomic ratio of the metal elements is 0.08 to 5.0 atomic% in total of at least one rare earth element, and 0.1 to 10.0 atomic% of Co.
, Ca is 0.01 to 1.0 atomic%, K, Cs, and Rb are at least one of 0.01 to 1.0 atomic% in total, and Cr is 0.01 to 1.0 atomic%.
%, At least one of Al, Ga, and In in a total amount of 1 × 10 -4
~ 5 × 10 -2 atomic%, Bi 0.7 to 1.1 atomic% and Sb Bi
Sb / Bi = 0.8 to 1.2 in the addition ratio of
i is added at 0.1 to 1.0 at% and Mn is added at 0.1 to 1.0 at%, followed by firing. Further, it is preferable that B is added to the subcomponent in an atomic ratio of 5 × 10 −4 to 1 × 10 −1 atomic% in terms of a metal element, followed by firing. The rare earth element is preferably Pr.
【0012】[0012]
【発明の実施の形態】酸化亜鉛を主成分とし、これに上
記の副成分(金属元素)を添加した電圧非直線抵抗体
は、酸化亜鉛粉末(ZnO )と上記の金属元素の酸化物粉
末およびバインダーを混合し、加圧成形し、焼結するこ
とによって製造される。添加成分は金属酸化物以外に
も、焼成過程で酸化物になり得る化合物、例えば炭酸
塩、水酸化物、弗化物およびその溶液なども用いること
ができ、あるいは単体元素の形で用い、焼成過程で酸化
物にすることもできる。 実施例1 酸化亜鉛(ZnO )粉末に、以下全て金属元素の原子比
で、酸化プラセオジム(Pr6O11)を0.5 原子% 、酸化コ
バルト(Co3O4 )を5.0 原子% 、炭酸カルシウム(CaCO
3 )を0.3 原子% 、炭酸カリウム(K2CO3 )を0.1 原子
% 、酸化クロム(Cr2O3 )を0.1 原子% 、酸化アルミニ
ウム(Al2O3 )を0.005 原子% 、酸化ビスマス(Bi
2O3 )、酸化アンチモン(Sb2O3 )粉末を、1.0 原子%
添加し(以上を基本組成という)に、さらに酸化マンガ
ン(MnO2)を0.1 原子% から0.1 原子%の範囲で添加し
た実施例の組成に、それぞれバインダーを加えて十分に
混合した後、直径16mmの円盤状に加圧成形し、1050〜13
00℃の空気中で2 時間焼成して焼結体を得た。比較のた
め、基本組成を用いても同様に焼結体を得た。BEST MODE FOR CARRYING OUT THE INVENTION A voltage non-linear resistor having zinc oxide as a main component and the above-mentioned subcomponent (metal element) added thereto includes zinc oxide powder (ZnO 2), oxide powder of the above metal element and It is manufactured by mixing a binder, pressing and sintering. In addition to metal oxides, compounds that can become oxides during the firing process, such as carbonates, hydroxides, fluorides and their solutions, can be used as the additional components. Can be turned into an oxide. Example 1 In a zinc oxide (ZnO 2) powder, praseodymium oxide (Pr 6 O 11 ) was 0.5 atom%, cobalt oxide (Co 3 O 4 ) was 5.0 atom%, and calcium carbonate (CaCO 2 ) was an atomic ratio of all metal elements.
3 ) 0.3 atom%, potassium carbonate (K 2 CO 3 ) 0.1 atom
%, Chromium oxide (Cr 2 O 3 ) 0.1 atomic%, aluminum oxide (Al 2 O 3 ) 0.005 atomic%, bismuth oxide (Bi
2 O 3 ) and antimony oxide (Sb 2 O 3 ) powder at 1.0 atomic%
After adding a binder to each of the compositions of Examples in which manganese oxide (MnO 2 ) was added in the range of 0.1 atomic% to 0.1 atomic%, and then mixed well, the mixture was added to the mixture (the above is referred to as a basic composition). Press-formed into a disk shape of 1050-13
It was fired in the air at 00 ° C. for 2 hours to obtain a sintered body. For comparison, a sintered body was similarly obtained using the basic composition.
【0013】得られた燒結体を厚さ1mm に研磨した後、
電気特性(主としてサージ耐量)測定用の素子として
は、両端面に直径11mmの電極を設け、電圧分布測定用の
素子としては、一方の端面には直径11mmの電極を、もう
一方の端面には1mm 角のスポット電極をスポット電極中
心間隔2mm で37ヶ設けた。これらの電極はAg焼き付けに
より形成した。After polishing the obtained sintered body to a thickness of 1 mm,
As an element for measuring electrical characteristics (mainly surge withstand capability), electrodes with a diameter of 11 mm are provided on both end faces, and as an element for measuring voltage distribution, an electrode with a diameter of 11 mm is provided on one end face and on the other end face. 37 spot electrodes of 1 mm square were provided with a center electrode spacing of 2 mm. These electrodes were formed by baking Ag.
【0014】先ず電気特性としてサージ耐量の測定を行
った。2ms 幅の方形波電流を10A ステップで増加させな
がら流して、貫通破壊、沿面破壊のない最大電流値から
サージ耐量を算出した。算出式は以下の通りである。First, the surge resistance was measured as an electrical characteristic. Surge withstand was calculated from the maximum current value without penetrating and creeping breakdowns by flowing a 2ms-wide square wave current in 10A steps while increasing it. The calculation formula is as follows.
【0015】[0015]
【数1】サージ耐量[J/cm3]=最大電流[A] ×V50A[V] ×
0.002[s]/素子の体積[cm3] 但し、V50Aは50A の電流を流したときの電極間電圧であ
るサージ耐量は従来の素子では200 J/cm3 程度である。[Equation 1] Surge tolerance [J / cm 3 ] = Maximum current [A] × V50A [V] ×
0.002 [s] / volume of element [cm 3 ] However, V50A has a surge withstand voltage, which is a voltage between electrodes when a current of 50 A flows, is about 200 J / cm 3 in a conventional element.
【0016】図1は本発明に係る電圧非直線抵抗体のサ
ージ耐量のMn添加量依存性を示すグラフである。これら
の試料ではV1mA/tを焼成温度の調節で350 ないし400V/m
m に設定した。図1から、サージ耐量が600 J/cm3 以上
であるものは、Mn添加量が0.1 〜1.0 原子% の範囲内の
ものであることがわかる。FIG. 1 is a graph showing the dependency of the surge resistance of the voltage nonlinear resistor according to the present invention on the amount of added Mn. For these samples, V1mA / t was adjusted to 350 to 400 V / m by adjusting the firing temperature.
set to m. From FIG. 1, it can be seen that those having a surge withstand capability of 600 J / cm 3 or more have a Mn addition amount in the range of 0.1 to 1.0 atomic%.
【0017】次に、各スポットに10μA の電流を流した
ときの各電極間電圧( V10μA )を測定し、素子の端面
内の電圧分布を求めた。図2は本発明に係るMn添加量が
0.5 原子% の電圧非直線抵抗体素子の端面内の電圧分布
を示すグラフである。図8は従来の(組成の)電圧非直
線抵抗体素子の端面内の電圧分布を示すグラフである。
電圧分布は全スポットの V10μA の平均に対する偏差を
百分率で示している。これより明らかなように本発明に
よる電圧非直線抵抗体の面内電圧分布はほぼフラットな
分布をしており、従来の電圧非直線抵抗体に比較して格
段に均一性が良いことがわかる。 実施例2 上記実施例1の組成に、さらにB を5 ×10-4〜1 ×10-1
原子% 添加し、焼成して電圧非直線抵抗体を試作し、電
気特性を評価したところ、実施例1にくらべ面内電圧分
布の均一性が向上し、これに伴ってサージ耐量は実施例
1よりやや向上した。また、8/20μs のインパルスサー
ジ電流に対する差ー次耐量は約10% 向上した。Next, a voltage (V10 μA) between the electrodes when a current of 10 μA was applied to each spot was measured, and a voltage distribution in the end face of the element was obtained. FIG. 2 shows that the amount of added Mn according to the present invention is
6 is a graph showing a voltage distribution in an end face of a voltage non-linear resistor element of 0.5 at%. FIG. 8 is a graph showing a voltage distribution in an end face of a conventional (composition) voltage nonlinear resistor element.
The voltage distribution shows the deviation from the average of V10μA of all spots as a percentage. As is clear from this, the in-plane voltage distribution of the voltage non-linear resistor according to the present invention has a substantially flat distribution, indicating that the voltage non-linear resistor has much better uniformity than the conventional voltage non-linear resistor. Example 2 B was further added to the composition of Example 1 above at 5 × 10 -4 to 1 × 10 -1.
Atomic% was added and baked to produce a voltage non-linear resistor as a prototype, and its electrical characteristics were evaluated. As a result, the uniformity of the in-plane voltage distribution was improved as compared with Example 1, and the surge withstand capability was accordingly reduced. Slightly improved. In addition, the difference-tolerance against impulse surge current of 8 / 20μs was improved by about 10%.
【0018】なお、実施例1および2として、副成分の
配合組成の1例(基本組成)のみを示したが、コバルト
(Co)を0.1 〜10.0原子% 、カルシウム(Ca)を0.01〜
1.0原子% 、カリウム(K )、セシウム(Cs)、ルビジ
ウム(Rb)のうち少なくとも一種を総量で0.01〜1.0 原
子% 、クロム(Cr)を0.01〜1.0 原子% 、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)のうち少な
くとも一種を総量で1×10-4〜5 ×10-2原子% 、ビスマ
ス(Bi)を0.7 〜1.1 原子% およびアンチモン(Sb)を
ビスマス(Bi)との添加比でSb/Bi=0.8 〜1.2 の範囲で
添加し、さらにマンガン(Mn)を0.1 〜1.0 原子% の範
囲においても別途実験の結果、実施例1および2と同様
の効果を確認した。また、稀土類元素としてPrのみを示
したが、Pr以外の稀土類元素を0.08〜5.0 原子% の範囲
で用いても良い。なお、Prを典型例とする稀土類元素の
添加は、大電流域における高制限電圧、急峻波応答性が
良い。また大比誘電率のため静電容量が大きく電圧分担
補正のためのシールドリングの簡略化またはコンデンサ
が不要とできるなどの特長を有しており、上記の新たな
添加物が共存してもこれは失われない。また、K はこの
他にCsやRb、またはK 、Cs、Rbの同時添加、Alはこの他
にGaやIn、またはAl、Ga、Inの同時添加としてもよい。
このような組成系においても、本発明の主眼である上述
と同様の効果が得られることを、別途実験し確かめた。 実施例3 酸化亜鉛(ZnO )粉末に、酸化プラセオジム(Pr6O11)
を0.5 原子% 、酸化コバルト(Co3O4 )を5.0 原子% 、
炭酸カルシウム(CaCO3 )を0.3 原子% 、炭酸カリウム
(K2CO3 )を0.1 原子% 、酸化クロム(Cr2O3 )を0.1
原子% 、酸化アルミニウム(Al2O3 )を0.005 原子% 、
酸化ビスマス(Bi2O3 )、酸化アンチモン(Sb2O3 )を
各1.0 原子% (以上基本組成)にさらに酸化珪素(Si
O2)を0.1〜1.0 原子% に相当する量で添加し、バイン
ダーを加えて十分に混合した後、直径15.85mm の円盤状
に加圧成形し、V1mA/tが約400 (V/mm)となるように焼
成温度を調節し、空気中で2 時間焼成して焼結体を得
た。得られた焼結体を実施例1と同様に、素子化し、電
極付けを行い、素子の面内電圧分布およびサージ耐量を
測定した。In Examples 1 and 2, only one example (basic composition) of the sub-components was shown, but cobalt (Co) was 0.1 to 10.0 at% and calcium (Ca) was 0.01 to 0.01%.
1.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01 to 1.0 at% in total, chromium (Cr) 0.01 to 1.0 at%, aluminum (Al), gallium (Ga) ), At least one of indium (In) is added in a total amount of 1 × 10 −4 to 5 × 10 −2 at %, bismuth (Bi) is added at 0.7 to 1.1 at%, and antimony (Sb) is added to bismuth (Bi). The same effect as in Examples 1 and 2 was confirmed by adding Sb / Bi in a ratio of 0.8 to 1.2 in a ratio and further adding manganese (Mn) in a range of 0.1 to 1.0 atomic% as a result of another experiment. Although only Pr is shown as a rare earth element, a rare earth element other than Pr may be used in the range of 0.08 to 5.0 atomic%. It should be noted that addition of a rare earth element, typically of Pr, has good high-limit voltage and steep-wave response in a large current range. In addition, it has features such as large capacitance due to large relative permittivity, simplification of the shield ring for voltage sharing correction and the need for a capacitor, etc., even if the above-mentioned new additives coexist. Is not lost. In addition, K may be Cs or Rb, or K, Cs, or Rb, and Al may be Ga, In, or Al, Ga, or In.
Separate experiments confirmed that the same effects as described above, which is the main feature of the present invention, can be obtained even in such a composition system. Example 3 Zinc oxide (ZnO 2) powder was mixed with praseodymium oxide (Pr 6 O 11 ).
0.5 at%, cobalt oxide (Co 3 O 4 ) at 5.0 at%,
0.3 at% of calcium carbonate (CaCO 3 ), 0.1 at% of potassium carbonate (K 2 CO 3 ), 0.1 of chromium oxide (Cr 2 O 3 )
Atomic%, aluminum oxide (Al 2 O 3 ) 0.005 atomic%,
Bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) were each added to 1.0 atomic% (basic composition) and silicon oxide (Si
O 2 ) is added in an amount equivalent to 0.1 to 1.0 atomic%, a binder is added and mixed well, and then pressed into a disc having a diameter of 15.85 mm, V1mA / t is about 400 (V / mm) The sintering temperature was adjusted so that sintering was performed, and sintering was performed in air for 2 hours to obtain a sintered body. The obtained sintered body was formed into a device in the same manner as in Example 1, electrodes were attached, and the in-plane voltage distribution and surge withstand capability of the device were measured.
【0019】図3は本発明に係る電圧非直線抵抗体のサ
ージ耐量のSi添加量依存性を示すグラフである。図3か
ら、Si添加量が0.1 〜1.0 原子% の場合にサージ耐量が
550[J/cm3]以上になることが判る。また、Si添加量が0.
1 原子% 未満のもの、および1.0 原子% を越えるものの
サージ耐量は従来程度か大きくても300 J/cm3 程度であ
った。FIG. 3 is a graph showing the dependency of the surge resistance of the voltage nonlinear resistor according to the present invention on the amount of Si added. From Fig. 3, it is clear that the surge withstand capability is obtained when the Si addition amount is 0.1 to 1.0 atomic%.
It turns out that it becomes 550 [J / cm 3 ] or more. Also, the amount of Si added is 0.
The surge withstand capability of less than 1 at.% And more than 1.0 at.% Was about 300 J / cm 3 at the conventional level or at most.
【0020】図4は本発明に係る0.5 原子% のSi添加の
電圧非直線抵抗体素子の面内電圧分布を示すグラフであ
る。従来の素子(図8)に比べ面内分布の均一性が向上
していることが判る。 実施例4 上記実施例3の組成に、さらにB を5 ×10-4〜1 ×10-1
原子% 添加し、焼成して電圧非直線抵抗体を試作し、電
気特性を評価したところ、サージ耐量は実施例3よりや
や向上し、また、実施例3と同様の面内電圧分布の均一
性が確認できた。FIG. 4 is a graph showing an in-plane voltage distribution of the voltage non-linear resistor element according to the present invention to which 0.5 atomic% of Si is added. It can be seen that the uniformity of the in-plane distribution is improved as compared with the conventional element (FIG. 8). Example 4 B was added to the composition of Example 3 above in an amount of 5 × 10 -4 to 1 × 10 -1.
Atomic% was added and baked to produce a voltage non-linear resistor as a prototype, and its electrical characteristics were evaluated. The surge withstand voltage was slightly improved compared to Example 3, and the uniformity of the in-plane voltage distribution was the same as in Example 3. Was confirmed.
【0021】なお、実施例3および4として、副成分の
配合組成の1例(基本組成)のみを示したが、コバルト
(Co)を0.1 〜10.0原子% 、カルシウム(Ca)を0.01〜
1.0原子% 、カリウム(K )、セシウム(Cs)、ルビジ
ウム(Rb)のうち少なくとも一種を総量で0.01〜1.0 原
子% 、クロム(Cr)を0.01〜1.0 原子% 、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)のうち少な
くとも一種を総量で1×10-4〜5 ×10-2原子% 、ビスマ
ス(Bi)を0.7 〜1.1 原子% およびアンチモン(Sb)を
ビスマス(Bi)との添加比でSb/Bi=0.8 〜1.2 の範囲で
添加し、さらにマンガン(Mn)を0.1 〜1.0 原子% の範
囲においても別途実験の結果、実施例1および2と同様
の効果を確認した。また、稀土類元素としてPrのみを示
したが、Pr以外の稀土類元素を0.08〜5.0 原子% の範囲
で用いても良い。なお、Prを典型例とする稀土類元素の
添加は、大電流域における高制限電圧、急峻波応答性が
良い。また大比誘電率のため静電容量が大きく電圧分担
補正のためのシールドリングの簡略化またはコンデンサ
が不要とできるなどの特長を有しており、上記の新たな
添加物が共存してもこれは失われない。また、K はこの
他にCsやRb、またはK 、Cs、Rbの同時添加、Alはこの他
にGaやIn、またはAl、Ga、Inの同時添加としてもよい。
このような組成系においても、本発明の主眼である上述
と同様の効果が得られることを、別途実験し確かめた。 実施例5 酸化亜鉛(ZnO )粉末に、酸化プラセオジム(Pr6O11)
を0.5 原子% 、酸化コバルト(Co3O4 )を5.0 原子% 、
炭酸カルシウム(CaCO3 )を0.3 原子% 、炭酸カリウム
(K2CO3 )を0.1 原子% 、酸化クロム(Cr2O3 )を0.1
原子% 、酸化アルミニウム(Al2O3 )を0.005 原子% 、
酸化ビスマス(Bi2O3 )、酸化アンチモン(Sb2O3 )粉
末を1.0 原子% 添加した基本組成に、さらに酸化シリコ
ン(SiO2)および酸化マンガン(MnO2)をそれぞれ0.1
〜1.0 原子% に相当する量で添加し、バインダーを加え
て十分に混合した後、直径15.85mm の円盤状に加圧成形
し、1050〜1300℃の空気中で2 時間焼成して焼結体を得
た。得られた焼結体を実施例1と同様に、素子化し、電
極付けを行い、素子の面内電圧分布およびサージ耐量を
測定した。In Examples 3 and 4, only one example (basic composition) of the sub-component composition was shown. However, cobalt (Co) was 0.1 to 10.0 atomic% and calcium (Ca) was 0.01 to 0.01 atomic%.
1.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01 to 1.0 at% in total, chromium (Cr) 0.01 to 1.0 at%, aluminum (Al), gallium (Ga) ), At least one of indium (In) is added in a total amount of 1 × 10 −4 to 5 × 10 −2 at %, bismuth (Bi) is added at 0.7 to 1.1 at%, and antimony (Sb) is added to bismuth (Bi). The same effect as in Examples 1 and 2 was confirmed by adding Sb / Bi in a ratio of 0.8 to 1.2 in a ratio and further adding manganese (Mn) in a range of 0.1 to 1.0 atomic% as a result of another experiment. Although only Pr is shown as a rare earth element, a rare earth element other than Pr may be used in the range of 0.08 to 5.0 atomic%. It should be noted that addition of a rare earth element, typically of Pr, has good high-limit voltage and steep-wave response in a large current range. In addition, it has features such as large capacitance due to large relative permittivity, simplification of the shield ring for voltage sharing correction and the need for a capacitor, etc., even if the above-mentioned new additives coexist. Is not lost. In addition, K may be Cs or Rb, or K, Cs, or Rb, and Al may be Ga, In, or Al, Ga, or In.
Separate experiments confirmed that the same effects as described above, which is the main feature of the present invention, can be obtained even in such a composition system. Example 5 Zinc oxide (ZnO 2) powder was mixed with praseodymium oxide (Pr 6 O 11 ).
0.5 at%, cobalt oxide (Co 3 O 4 ) at 5.0 at%,
0.3 at% of calcium carbonate (CaCO 3 ), 0.1 at% of potassium carbonate (K 2 CO 3 ), 0.1 of chromium oxide (Cr 2 O 3 )
Atomic%, aluminum oxide (Al 2 O 3 ) 0.005 atomic%,
Bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) powder were added at 1.0 atomic% to the basic composition, and silicon oxide (SiO 2 ) and manganese oxide (MnO 2 ) were added at 0.1% each.
After adding the binder and mixing well, the mixture was pressed into a disc with a diameter of 15.85 mm and fired in air at 1050-1300 ° C for 2 hours to obtain a sintered body. I got The obtained sintered body was formed into a device in the same manner as in Example 1, electrodes were attached, and the in-plane voltage distribution and surge withstand capability of the device were measured.
【0022】図5は本発明に係る実施例の電圧非直線抵
抗体素子のサージ耐量のSiおよびMnの添加量依存性を示
すグラフである。なお、図5の試料はV1mA/tを焼成温度
の調節で350 ないし400V/mm に設定したものである。サ
ージ耐量は、従来の素子では200 J/cm3 程度、またSiと
Mnをそれぞれ単独で添加した場合は600 〜650 J/cm3程
度である。これに対し、図5から、サージ耐量が、Siお
よびMnをそれぞれ単独で添加した場合(実施例1、3参
照)よりも大きい650 J/cm3 以上であるものは、Si添加
量が0.1 〜1.0 原子% で且つMn添加量が0.1 〜1.0 原子
% の範囲内のものであることが判る。FIG. 5 is a graph showing the dependency of the surge withstand capacity of the voltage nonlinear resistor element of the embodiment according to the present invention on the addition amount of Si and Mn. In the sample of FIG. 5, V1 mA / t was set at 350 to 400 V / mm by adjusting the firing temperature. Surge resistance is, in the conventional device 200 J / cm 3 or so, also the Si
When Mn is added alone, it is about 600 to 650 J / cm 3 . On the other hand, from FIG. 5, it can be seen from FIGS. 5A and 5B that when the surge withstand capability is 650 J / cm 3 or more, which is larger than the case where Si and Mn are individually added (see Examples 1 and 3), the Si addition amount is 0.1 to 0.1%. 1.0 atomic% and the amount of Mn added is 0.1 to 1.0 atomic
It turns out that it is in the range of%.
【0023】図6は本発明に係るSiおよびMnをそれぞれ
0.5 原子% 添加した電圧非直線抵抗体素子の端面方向の
電圧分布を示すグラフである。図6より、本発明に係る
電圧非直線抵抗体の面内電圧分布はほぼフラットな分布
をしており、従来の電圧非直線抵抗体に(図8)比較し
て格段に均一性が良いことがわかる。 実施例6 上記実施例5の組成に、さらにB を5 ×10-4〜1 ×10-1
原子% 添加し、焼成して電圧非直線抵抗体を試作し、電
気特性を評価したところ、サージ耐量は実施例5よりや
や向上し、また、実施例5と同様の面内電圧分布の均一
性が確認できた。FIG. 6 shows Si and Mn according to the present invention, respectively.
5 is a graph showing a voltage distribution in a direction of an end face of a voltage non-linear resistance element to which 0.5 atomic% is added. FIG. 6 shows that the in-plane voltage distribution of the voltage non-linear resistor according to the present invention has a substantially flat distribution, and that the voltage non-linear resistor has much better uniformity than the conventional voltage non-linear resistor (FIG. 8). I understand. Example 6 B was further added to the composition of Example 5 above at 5 × 10 -4 to 1 × 10 -1.
Atomic% was added and baked to produce a voltage non-linear resistor and its electrical characteristics were evaluated. The surge withstand voltage was slightly improved compared to Example 5, and the uniformity of the in-plane voltage distribution was the same as in Example 5. Was confirmed.
【0024】なお、実施例5および6として、副成分の
配合組成の1例(基本組成)のみを示したが、コバルト
(Co)を0.1 〜10.0原子% 、カルシウム(Ca)を0.01〜
1.0原子% 、カリウム(K )、セシウム(Cs)、ルビジ
ウム(Rb)のうち少なくとも一種を総量で0.01〜1.0 原
子% 、クロム(Cr)を0.01〜1.0 原子% 、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)のうち少な
くとも一種を総量で1×10-4〜5 ×10-2原子% 、ビスマ
ス(Bi)を0.7 〜1.1 原子% およびアンチモン(Sb)を
ビスマス(Bi)との添加比でSb/Bi=0.8 〜1.2 の範囲で
添加し、さらにマンガン(Mn)を0.1 〜1.0 原子% の範
囲においても別途実験の結果、実施例1および2と同様
の効果を確認した。また、稀土類元素としてPrのみを示
したが、Pr以外の稀土類元素を0.08〜5.0 原子% の範囲
で用いても良い。なお、Prを典型例とする稀土類元素の
添加は、大電流域における高制限電圧、急峻波応答性が
良い。また大比誘電率のため静電容量が大きく電圧分担
補正のためのシールドリングの簡略化またはコンデンサ
が不要とできるなどの特長を有しており、上記の新たな
添加物が共存してもこれは失われない。また、K はこの
他にCsやRb、またはK 、Cs、Rbの同時添加、Alはこの他
にGaやIn、またはAl、Ga、Inの同時添加としてもよい。
このような組成系においても、本発明の主眼である上述
と同様の効果が得られることを、別途実験し確かめた。In Examples 5 and 6, only one example (basic composition) of the sub-components was shown, but 0.1 to 10.0 atomic% of cobalt (Co) and 0.01 to 10.0 atomic% of calcium (Ca) were used.
1.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01 to 1.0 at% in total, chromium (Cr) 0.01 to 1.0 at%, aluminum (Al), gallium (Ga) ), At least one of indium (In) is added in a total amount of 1 × 10 −4 to 5 × 10 −2 at %, bismuth (Bi) is added at 0.7 to 1.1 at%, and antimony (Sb) is added to bismuth (Bi). The same effect as in Examples 1 and 2 was confirmed by adding Sb / Bi in a ratio of 0.8 to 1.2 in a ratio and further adding manganese (Mn) in a range of 0.1 to 1.0 atomic% as a result of another experiment. Although only Pr is shown as a rare earth element, a rare earth element other than Pr may be used in the range of 0.08 to 5.0 atomic%. It should be noted that addition of a rare earth element, typically of Pr, has good high-limit voltage and steep-wave response in a large current range. In addition, it has features such as large capacitance due to large relative permittivity, simplification of the shield ring for voltage sharing correction and the need for a capacitor, etc., even if the above-mentioned new additives coexist. Is not lost. In addition, K may be Cs or Rb, or K, Cs, or Rb, and Al may be Ga, In, or Al, Ga, or In.
Separate experiments confirmed that the same effects as described above, which is the main feature of the present invention, can be obtained even in such a composition system.
【0025】[0025]
【発明の効果】本発明によれば、ZnO を主成分とし、こ
れに副成分として、いずれも金属元素の原子比で、少な
くとも一種の稀土類元素を総量で0.08〜5.0 原子% 、Co
を0.1〜10.0原子% 、Caを0.01〜1.0 原子% 、K 、Cs、R
bのうち少なくとも一種を総量で0.01〜1.0 原子% 、Cr
を0.01〜1.0 原子% 、Al、Ga、Inのうち少なくとも一種
を総量で1 ×10-4〜5 ×10-2原子% 、Biを0.7 〜1.1 原
子% およびSbをBiとの添加比でSb/Bi=0.8 〜1.2 の範囲
で添加したもの、または前記副成分にさらにB を金属元
素の原子比で5 ×10-4〜1 ×10-1原子% 添加したもの
に、さらにSiまたは/およびMnを0.1 〜1.0 原子% 添加
し焼成してなることとしたため、電圧非直線抵抗体は、
V1mA/tが400V/mm と高く、その面内分布の均一性は向上
した。特にSiとMnを同時添加して焼成した電圧非直線抵
抗体は、SiとMnをそれぞれ単独で添加した場合よりもサ
ージ耐量特性がより向上し、信頼性が優れている。According to the present invention, ZnO is used as a main component, and as a sub-component, at least one rare earth element in a total amount of 0.08 to 5.0 at.
0.1 to 10.0 at.%, Ca 0.01 to 1.0 at.%, K, Cs, R
at least one of b is 0.01 to 1.0 atomic% in total, Cr
0.01 to 1.0 at%, at least one of Al, Ga, and In at a total amount of 1 × 10 −4 to 5 × 10 −2 at %, Bi at 0.7 to 1.1 at%, and Sb at an addition ratio of Bi to Sb. /Bi=0.8 to 1.2, or the above-mentioned sub-components further added with B in an atomic ratio of 5 × 10 −4 to 1 × 10 -1 atomic%, and further added Si or / and / or Since Mn was added at 0.1 to 1.0 atomic% and calcined, the voltage nonlinear resistor was
V1mA / t was as high as 400V / mm, and the uniformity of the in-plane distribution was improved. In particular, the voltage non-linear resistor fired with simultaneous addition of Si and Mn has higher surge withstand characteristics and higher reliability than the case where each of Si and Mn is added alone.
【図1】本発明に係る電圧非直線抵抗体のサージ耐量の
Mn添加量依存性を示すグラフFIG. 1 shows the surge withstand capability of a voltage nonlinear resistor according to the present invention.
Graph showing Mn addition amount dependency
【図2】本発明に係るMn添加量が0.5 原子% の電圧非直
線抵抗体素子の端面内の電圧分布を示すグラフFIG. 2 is a graph showing a voltage distribution in an end face of a voltage nonlinear resistor element having an addition amount of Mn of 0.5 at% according to the present invention.
【図3】本発明に係る電圧非直線抵抗体のサージ耐量の
Si添加量依存性を示すグラフFIG. 3 shows the surge withstand capability of the voltage non-linear resistor according to the present invention.
Graph showing dependency of Si addition amount
【図4】本発明に係る0.5 原子% のSi添加の電圧非直線
抵抗体素子の面内電圧分布を示すグラフFIG. 4 is a graph showing an in-plane voltage distribution of a voltage non-linear resistance element to which 0.5 atomic% of Si is added according to the present invention.
【図5】本発明に係る実施例の電圧非直線抵抗体素子の
サージ耐量のSiおよびMnの添加量依存性を示すグラフFIG. 5 is a graph showing the dependency of the surge withstand capacity of the voltage non-linear resistor element according to the embodiment of the present invention on the addition amounts of Si and Mn.
【図6】本発明に係るSiおよびMnをそれぞれ0.5 原子%
添加した電圧非直線抵抗体素子の端面方向の電圧分布を
示すグラフFIG. 6 shows that each of Si and Mn according to the present invention is 0.5 atomic%.
4 is a graph showing the voltage distribution in the direction of the end face of the added voltage nonlinear resistor element;
【図7】従来の電圧非直線抵抗体のV1mA/tと2 msサージ
耐量との関係を示すグラフFIG. 7 is a graph showing the relationship between V1 mA / t of a conventional voltage non-linear resistor and a surge tolerance of 2 ms.
【図8】従来の(組成の)電圧非直線抵抗体素子の端面
内の電圧分布を示すグラフFIG. 8 is a graph showing a voltage distribution in an end face of a conventional (composition) voltage nonlinear resistor element.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 徳久 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 田中 顕紀 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 向江 和郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5E034 CA09 CB01 CC07 DA03 DE07 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tokuhisa Nagata 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Akiki Tanaka 1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 Inside Fuji Electric Co., Ltd. (72) Inventor Kazuo Mukai No. 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term inside Fuji Electric Co., Ltd. 5E034 CA09 CB01 CC07 DA03 DE07
Claims (7)
成分として、いずれも金属元素の原子比で、少なくとも
一種の稀土類元素を総量で0.08〜5.0 原子%、コバルト
(Co)を0.1 〜10.0原子% 、カルシウム(Ca)を0.01〜
1.0 原子% 、カリウム(K )、セシウム(Cs)、ルビジ
ウム(Rb)のうち少なくとも一種を総量で0.01〜1.0 原
子% 、クロム(Cr)を0.01〜1.0 原子% 、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)のうち少な
くとも一種を総量で1 ×10-4〜5 ×10-2原子% 、ビスマ
ス(Bi)を0.7 〜1.1 原子% およびアンチモン(Sb)を
ビスマス(Bi)との添加比でSb/Bi=0.8 〜1.2 の範囲で
添加し、さらにマンガン(Mn)を0.1 〜1.0 原子% 添加
し焼成してなることを特徴とする電圧非直線抵抗体。1. Zinc oxide (ZnO 2) as a main component, and as sub-components, at least one rare earth element in a total amount of 0.08 to 5.0 at% and cobalt (Co) in an atomic ratio of a metal element. 0.1-10.0 atomic%, calcium (Ca) 0.01-
1.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01 to 1.0 at% in total, chromium (Cr) at 0.01 to 1.0 at%, aluminum (Al), gallium (Ga) ), At least one of indium (In) is added in a total amount of 1 × 10 −4 to 5 × 10 −2 atomic%, bismuth (Bi) is added in an amount of 0.7 to 1.1 atomic%, and antimony (Sb) is added to bismuth (Bi). A non-linear voltage resistor characterized by being added in a ratio of Sb / Bi = 0.8 to 1.2 in a ratio, and further added with 0.1 to 1.0 at% of manganese (Mn) and fired.
元素の原子比で5 ×10-4〜1 ×10-1原子% 添加して焼成
してなることを特徴とする請求項1に記載の電圧非直線
抵抗体。2. The method according to claim 1, wherein boron (B) is further added to said subcomponent in an atomic ratio of 5 × 10 -4 to 1 × 10 -1 atomic% of a metal element and fired. 2. The voltage non-linear resistor according to 1.
成分として、いずれも金属元素の原子比で、少なくとも
一種の稀土類元素を総量で0.08〜5.0 原子%、コバルト
(Co)を0.1 〜10.0原子% 、カルシウム(Ca)を0.01〜
1.0 原子% 、カリウム(K )、セシウム(Cs)、ルビジ
ウム(Rb)のうち少なくとも一種を総量で0.01〜1.0 原
子% 、クロム(Cr)を0.01〜1.0 原子% 、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)のうち少な
くとも一種を総量で1 ×10-4〜5 ×10-2原子% 、ビスマ
ス(Bi)を0.7 〜1.1 原子% およびアンチモン(Sb)を
ビスマス(Bi)との添加比でSb/Bi=0.8 〜1.2 の範囲で
添加し、さらにシリコン(Si)を0.1 〜1.0 原子% の範
囲で添加し焼成してなることを特徴とする電圧非直線抵
抗体。3. Zinc oxide (ZnO 2) as a main component, and as an auxiliary component, at least one rare earth element in a total amount of 0.08 to 5.0 at% and cobalt (Co) in an atomic ratio of a metal element. 0.1-10.0 atomic%, calcium (Ca) 0.01-
1.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01 to 1.0 at% in total, chromium (Cr) at 0.01 to 1.0 at%, aluminum (Al), gallium (Ga) ), At least one of indium (In) is added in a total amount of 1 × 10 −4 to 5 × 10 −2 atomic%, bismuth (Bi) is added in an amount of 0.7 to 1.1 atomic%, and antimony (Sb) is added to bismuth (Bi). A non-linear voltage resistor characterized in that Sb / Bi is added in a ratio of 0.8 to 1.2 in a ratio, and silicon (Si) is further added in a range of 0.1 to 1.0 at% and fired.
元素の原子比で5 ×10-4〜1 ×10-1原子% 添加して焼成
してなることを特徴とする請求項3に記載の電圧非直線
抵抗体。4. The method according to claim 3, wherein boron (B) is further added to said auxiliary component in an atomic ratio of 5 × 10 -4 to 1 × 10 -1 atomic% in a metal element, followed by firing. 2. The voltage non-linear resistor according to 1.
成分として、いずれも金属元素の原子比で、少なくとも
一種の稀土類元素を総量で0.08〜5.0 原子%、コバルト
(Co)を0.1 〜10.0原子% 、カルシウム(Ca)を0.01〜
1.0 原子% 、カリウム(K )、セシウム(Cs)、ルビジ
ウム(Rb)のうち少なくとも一種を総量で0.01〜1.0 原
子% 、クロム(Cr)を0.01〜1.0 原子% 、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)のうち少な
くとも一種を総量で1 ×10-4〜5 ×10-2原子% 、ビスマ
ス(Bi)を0.7 〜1.1 原子% およびアンチモン(Sb)を
ビスマス(Bi)との添加比でSb/Bi=0.8 〜1.2 の範囲で
添加し、さらにシリコン(Si)を0.1 〜1.0 原子% およ
びマンガン(Mn)を0.1 〜1.0 原子% 添加し焼成してな
ることを特徴とする電圧非直線抵抗体。5. A zinc oxide (ZnO 2) as a main component, and as a sub-component, at least one rare earth element in a total amount of 0.08 to 5.0 at% and cobalt (Co) in an atomic ratio of a metal element. 0.1-10.0 atomic%, calcium (Ca) 0.01-
1.0 at%, potassium (K), cesium (Cs), rubidium (Rb) at least one of 0.01 to 1.0 at% in total, chromium (Cr) at 0.01 to 1.0 at%, aluminum (Al), gallium (Ga) ), At least one of indium (In) is added in a total amount of 1 × 10 −4 to 5 × 10 −2 atomic%, bismuth (Bi) is added in an amount of 0.7 to 1.1 atomic%, and antimony (Sb) is added to bismuth (Bi). A voltage non-voltage characterized by being added in a ratio of Sb / Bi = 0.8 to 1.2 in a ratio, and further adding 0.1 to 1.0 atomic% of silicon (Si) and 0.1 to 1.0 atomic% of manganese (Mn) and firing. Linear resistor.
元素の原子比で5 ×10-4〜1 ×10-1原子% 添加して焼成
してなることを特徴とする請求項3に記載の電圧非直線
抵抗体。6. The method according to claim 3, wherein boron (B) is further added to the subcomponent in an atomic ratio of 5 × 10 -4 to 1 × 10 -1 atomic% of a metal element, followed by firing. 2. The voltage non-linear resistor according to 1.
あることを特徴とする請求項1ないし6に記載の電圧非
直線抵抗体7. The voltage non-linear resistor according to claim 1, wherein said rare earth element is praseodymium (Pr).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11175521A JP2001006904A (en) | 1999-06-22 | 1999-06-22 | Voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11175521A JP2001006904A (en) | 1999-06-22 | 1999-06-22 | Voltage nonlinear resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001006904A true JP2001006904A (en) | 2001-01-12 |
Family
ID=15997523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11175521A Pending JP2001006904A (en) | 1999-06-22 | 1999-06-22 | Voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001006904A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100960522B1 (en) | 2007-07-10 | 2010-06-03 | 티디케이가부시기가이샤 | Voltage nonlinear resistor porcelain composition, electronic component and laminated chip varistor |
JP2011233567A (en) * | 2010-04-23 | 2011-11-17 | Mitsubishi Electric Corp | Voltage nonlinear resistor, and lightning arrester mounted with voltage nonlinear resistor |
-
1999
- 1999-06-22 JP JP11175521A patent/JP2001006904A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100960522B1 (en) | 2007-07-10 | 2010-06-03 | 티디케이가부시기가이샤 | Voltage nonlinear resistor porcelain composition, electronic component and laminated chip varistor |
JP2011233567A (en) * | 2010-04-23 | 2011-11-17 | Mitsubishi Electric Corp | Voltage nonlinear resistor, and lightning arrester mounted with voltage nonlinear resistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3822798B2 (en) | Voltage nonlinear resistor and porcelain composition | |
EP1150306B2 (en) | Current/voltage non-linear resistor and sintered body therefor | |
US4724416A (en) | Voltage non-linear resistor and its manufacture | |
JPS6015127B2 (en) | Voltage nonlinear resistor and its manufacturing method | |
US6627119B2 (en) | Chip type varistor and method of manufacturing the same | |
JP2001006904A (en) | Voltage nonlinear resistor | |
US8562859B2 (en) | Voltage nonlinear resistor, lightning arrester equipped with voltage nonlinear resistor, and process for producing voltage nonlinear resistor | |
JP2001196206A (en) | Voltage non-linearity type resistor | |
JPS644651B2 (en) | ||
JPS62282410A (en) | Manufacture of voltage nonlinear resistance element | |
EP0660094B1 (en) | NTC thermistor element | |
JPH0754762B2 (en) | Method of manufacturing voltage non-linear resistor element | |
JPH10149904A (en) | Manufacturing method of varistor | |
JPH0258807A (en) | Manufacture of voltage nonlinear resistor | |
JP2687470B2 (en) | Manufacturing method of zinc oxide type varistor | |
JPH10241911A (en) | Nonlinear resistor | |
JPH0754763B2 (en) | Method of manufacturing voltage non-linear resistor element | |
JPS62282407A (en) | Manufacture of voltage nonlinear resistance element | |
JPH10241910A (en) | Nonlinear resistor | |
JPH0439761B2 (en) | ||
JPH11265806A (en) | Voltage nonlinear resistor | |
JPH1036169A (en) | Voltage non-linear resistor and production thereof | |
JPS62208602A (en) | Manufacture of voltage nonlinear resistance device | |
JPH09320815A (en) | Manufacture of zno varistor | |
JPH06251909A (en) | Manufacture of zinc oxide varistor |