JP2011233567A - Voltage nonlinear resistor, and lightning arrester mounted with voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor, and lightning arrester mounted with voltage nonlinear resistor Download PDF

Info

Publication number
JP2011233567A
JP2011233567A JP2010099941A JP2010099941A JP2011233567A JP 2011233567 A JP2011233567 A JP 2011233567A JP 2010099941 A JP2010099941 A JP 2010099941A JP 2010099941 A JP2010099941 A JP 2010099941A JP 2011233567 A JP2011233567 A JP 2011233567A
Authority
JP
Japan
Prior art keywords
voltage
bismuth oxide
oxide phase
area ratio
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010099941A
Other languages
Japanese (ja)
Other versions
JP5388937B2 (en
Inventor
Tomoaki Kato
智明 加東
Iwao Kawamata
巌 河又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010099941A priority Critical patent/JP5388937B2/en
Publication of JP2011233567A publication Critical patent/JP2011233567A/en
Application granted granted Critical
Publication of JP5388937B2 publication Critical patent/JP5388937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a voltage nonlinear resistor having excellent voltage nonlinearity, voltage-applied life characteristics and thermal stability.SOLUTION: The voltage nonlinear resistor includes a sintered body mainly constituted of zinc oxide particles, spinel particles whose main components are zinc and antimony, and a bismuth oxide phase. In the bismuth oxide phase, at least one kind of alkali metal selected from the group consisting of potassium and sodium is included in the range of 0.036 atom% or more and 0.176 atom% or less. An area ratio (A) of the bismuth oxide phase to the cross section of the sintered body is in the range of 2% or more and 8% or less. Also, a ratio (A/B), which is a ratio of the area ratio (A) of the bismuth oxide phase to the area ratio (B) of the spinel particles, to the cross section of the sintered body is in the range of 0.3 or more and 1.5 or less.

Description

本発明は、避雷器、サージアブゾーバーなどに好適に用いられる電圧非直線抵抗体及び電圧非直線抵抗体を搭載した避雷器に関するものである。   The present invention relates to a voltage non-linear resistor suitably used for a lightning arrester, a surge absorber, and the like, and a lightning arrester equipped with the voltage non-linear resistor.

従来、避雷器、サージアブゾーバーなどに用いられる電圧非直線抵抗体は、主成分である酸化亜鉛(ZnO)に電圧非直線性の発現に必須である酸化ビスマスをはじめ、電気特性の改善に有効な添加物を添加した組成物を粉砕、混合、造粒、成形、焼成及び後熱処理の各工程を経た焼結体からなり、この焼結体に電極と側面高抵抗層とを設けることによって構成されている。   Conventionally, voltage non-linear resistors used for lightning arresters, surge absorbers, etc. are effective additions to zinc oxide (ZnO), the main component, for improving electrical characteristics, including bismuth oxide, which is essential for the expression of voltage non-linearity. It is composed of a sintered body that has been subjected to pulverization, mixing, granulation, molding, firing, and post-heat treatment, and is provided with an electrode and a side high resistance layer on the sintered body. Yes.

電圧非直線抵抗体の動作は、サージエネルギーが印加されない待機状態と、サージエネルギーが加わる動作状態に大きく分けられる。現在、電圧非直線抵抗体は、待機時に常に両端に電圧が印加されるギャップレス構造で用いられることが主流である。そのため、待機時に素子を流れる電流(もれ電流)が増加傾向を示さないことが重要である。もれ電流が増加傾向を示さない、すなわち、良好な課電寿命特性を確保するためには、一般的に焼成後の熱処理が不可欠である(例えば、特許文献1及び特許文献2を参照)。この焼成後の熱処理によりもれ電流が増加傾向を示すことが防止され、もれ電流増加に伴う電圧非直線抵抗体の発熱量増加に起因する熱暴走を防ぐことができる。しかし、焼成後の熱処理を実施すると、一般的に電圧非直線抵抗体の電圧非直線性は大幅に悪化する傾向があり、それを防ぐために熱処理を二段階に分けて実施する方法も開示されている(例えば、特許文献3を参照)。   The operation of the voltage non-linear resistor is broadly divided into a standby state where no surge energy is applied and an operation state where surge energy is applied. At present, the voltage non-linear resistor is mainly used in a gapless structure in which a voltage is always applied to both ends during standby. Therefore, it is important that the current (leakage current) flowing through the element during standby does not show an increasing tendency. In order to ensure that the leakage current does not show an increasing tendency, that is, to ensure good electric charge life characteristics, heat treatment after firing is generally indispensable (see, for example, Patent Document 1 and Patent Document 2). This heat treatment after firing prevents the leakage current from increasing, and can prevent thermal runaway caused by an increase in the amount of heat generated by the voltage nonlinear resistor accompanying the increase in leakage current. However, when the heat treatment after firing is performed, the voltage nonlinearity of the voltage nonlinear resistor generally tends to be greatly deteriorated, and a method of performing the heat treatment in two stages is disclosed to prevent this. (For example, see Patent Document 3).

動作時における電圧非直線性の良否を表す指標として平坦率が用いられる。平坦率は、電圧非直線抵抗体に大きさの異なる2つの電流を流した時に電圧非直線抵抗体の両端に発生する電圧の比として定義され、その評価に用いられる電流の大きさは電圧非直線抵抗体の直径によって異なる。例えば、大電流域特性を反映する数値である10kA通電時の電圧値(V10kA)と、1mA通電時のV1mAとの比(V10kA/V1mA)が平坦率として用いられ、電圧非直線抵抗体の電圧非直線性の改善、言い換えれば平坦率の値を小さくするための技術開発が鋭意進められている。 A flat rate is used as an index representing the quality of voltage nonlinearity during operation. The flatness ratio is defined as the ratio of the voltages generated at both ends of the voltage nonlinear resistor when two currents having different sizes are passed through the voltage nonlinear resistor. It depends on the diameter of the linear resistor. For example, the ratio (V 10kA / V 1mA ) of the voltage value (V 10kA ) when energizing 10kA, which is a numerical value that reflects the characteristics of the large current region, and V 1mA when energizing 1mA is used as the flat rate. Technological development for improving the voltage nonlinearity of the resistor, in other words, for reducing the flatness value, has been earnestly advanced.

また、動作状態における熱安定性の改善は、素子の信頼性確保の観点から重要である。サージエネルギーが素子に加えられた場合、ジュール発熱によって素子の温度が上昇する。素子の性質上、素子温度が上昇するともれ電流は大きくなる。このため、仮に素子発熱量が大きく、素子周辺温度との熱的なバランスが保てなくなった場合、素子が熱暴走を起こしてしまうことがあるため、熱安定性に優れた、言い換えれば温度上昇時のもれ電流が小さな素子が必要である。   Further, improvement of the thermal stability in the operating state is important from the viewpoint of ensuring the reliability of the element. When surge energy is applied to the element, the temperature of the element rises due to Joule heat generation. Due to the nature of the element, the current increases as the element temperature rises. For this reason, if the element heat generation is large and the thermal balance with the element ambient temperature cannot be maintained, the element may cause thermal runaway, so it has excellent thermal stability, in other words, temperature rise An element with a small leakage current is required.

これまで述べた待機時及び動作時の電圧非直線抵抗体の性能は、焼結体の微細構造に大きく左右される。焼結体は、大きく分けて酸化亜鉛粒子、亜鉛とアンチモンとを主成分とするスピネル粒子、粒界の3重点近辺に存在する酸化ビスマス相から構成される。その他にも添加物によってはシリコンを主成分とするケイ酸亜鉛粒子も観察される。電圧非直線性発現に必須の添加物であるビスマスは、酸化ビスマス相だけでなく、酸化亜鉛粒子間の粒界に微量ながら存在することがよく知られており(例えば非特許文献1)、その構造解明や粒界の界面準位の測定など鋭意行われている。   The performance of the voltage nonlinear resistor during standby and during operation described so far greatly depends on the microstructure of the sintered body. The sintered body is roughly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase existing in the vicinity of the triple point of the grain boundary. In addition, zinc silicate particles mainly composed of silicon are also observed depending on the additive. It is well known that bismuth, which is an additive essential for the expression of voltage non-linearity, exists not only in the bismuth oxide phase but also in the grain boundary between zinc oxide particles in a slight amount (for example, Non-Patent Document 1). Efforts such as structure elucidation and measurement of interface states at grain boundaries have been carried out.

特開昭52−53295号公報JP 52-53295 A 特開昭50−131094号公報Japanese Patent Laid-Open No. 50-131094 特開昭58−200508号公報JP 58-200508 A

Kei-Iciro Kobayashi, Journal of American Ceramic Society, "Continuous Existence of Bismuth at Grain Boundaries of Zinc Oxide Varistor without Intergranular Phase", 81, [8], 2071-2076(1998)Kei-Iciro Kobayashi, Journal of American Ceramic Society, "Continuous Existence of Bismuth at Grain Boundaries of Zinc Oxide Varistor without Intergranular Phase", 81, [8], 2071-2076 (1998)

電圧非直線抵抗体において、待機時の課電寿命特性を改善するためには、焼成後に500℃程度の熱処理が必要である。しかし、従来技術では、焼成後の熱処理により課電寿命特性は改善されるものの、電圧非直線性が大幅に悪化するという欠点があった。
また、従来技術では、熱安定性に優れた素子を得ることは困難であり、素子の放熱を向上させるために素子を挟み込む金属電極を大型化する必要があった。しかし、このような電圧非直線抵抗体を搭載した避雷器は、その内部構造が複雑になるという欠点があった。
このように、従来技術では、優れた電圧非直線性、課電寿命特性及び熱安定性を兼ね備えた電圧非直線抵抗体が得られないという課題があった。
従って、本発明は、上記のような課題を解決するためになされたものであり、優れた電圧非直線性、課電寿命特性及び熱安定性を兼ね備えた電圧非直線抵抗体を提供することを目的とする。
In the voltage non-linear resistor, heat treatment at about 500 ° C. is necessary after firing in order to improve the charging life characteristic during standby. However, the conventional technique has a drawback that the voltage nonlinearity is greatly deteriorated, although the electric life characteristic is improved by the heat treatment after firing.
Further, in the prior art, it is difficult to obtain an element having excellent thermal stability, and it is necessary to increase the size of the metal electrode that sandwiches the element in order to improve the heat dissipation of the element. However, a lightning arrester equipped with such a voltage non-linear resistor has a drawback that its internal structure becomes complicated.
As described above, the conventional technique has a problem that a voltage non-linear resistor having excellent voltage non-linearity, electric charging life characteristics and thermal stability cannot be obtained.
Therefore, the present invention has been made to solve the above-described problems, and provides a voltage non-linear resistor having excellent voltage non-linearity, electric charging life characteristics, and thermal stability. Objective.

本発明は、酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相とから主として構成される焼結体からなる電圧非直線抵抗体であって、酸化ビスマス相中に、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で含まれ、焼結体断面中に占める酸化ビスマス相の面積割合(A)が2%以上8%以下の範囲であり、且つ焼結体断面中に占める酸化ビスマス相の面積割合(A)とスピネル粒子の面積割合(B)との比(A/B)が0.3以上1.5以下の範囲であることを特徴とする電圧非直線抵抗体である。   The present invention is a voltage non-linear resistor composed of a sintered body mainly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase, and in the bismuth oxide phase, The area ratio of the bismuth oxide phase occupying in the cross section of the sintered body is contained in the range of 0.036 atomic% or more and 0.176 atomic% or less of at least one alkali metal selected from the group consisting of potassium and sodium (A ) Is in the range of 2% to 8%, and the ratio (A / B) of the area ratio (A) of the bismuth oxide phase to the area ratio (B) of the spinel particles in the cross section of the sintered body is 0.00. The voltage non-linear resistor is in the range of 3 to 1.5.

本発明によれば、優れた電圧非直線性、課電寿命特性及び熱安定性を兼ね備えた電圧非直線抵抗体を提供することができる。また、本発明による電圧非直線抵抗体を用いることで、保護特性と寿命性能に優れ、信頼性の高い避雷器及びサージアブソーバーといった過電圧保護装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the voltage non-linear resistor which has the outstanding voltage non-linearity, the electrical charging lifetime characteristic, and thermal stability can be provided. Further, by using the voltage nonlinear resistor according to the present invention, it is possible to realize an overvoltage protection device such as a lightning arrester and surge absorber having excellent protection characteristics and life performance and high reliability.

実施の形態1に係る電圧非直線抵抗体の微細構造の模式図である。3 is a schematic diagram of a fine structure of a voltage nonlinear resistor according to Embodiment 1. FIG. 実施例及び比較例で用いた評価用試料の模式断面図である。It is a schematic cross section of the sample for evaluation used by the Example and the comparative example. 実施例で得られた電圧非直線抵抗体の反射電子像の一例である。It is an example of the reflected electron image of the voltage nonlinear resistor obtained in the Example. 実施例で得られたA/Bが小さい焼結体からなる電圧非直線抵抗体の反射電子像の一例である。It is an example of the reflected electron image of the voltage nonlinear resistor which consists of a sintered compact with small A / B obtained in the Example. 実施例で得られたA/Bが大きい焼結体からなる電圧非直線抵抗体の反射電子像の一例であるIt is an example of the backscattered electron image of the voltage nonlinear resistor which consists of a sintered compact with large A / B obtained in the Example. 実施例及び比較例で得られた焼結体の断面中に占める酸化ビスマス相の面積割合(A)ともれ電流(mA)との関係を示すグラフである。It is a graph which shows the relationship with the area ratio (A) of the bismuth oxide phase which occupies in the cross section of the sintered compact obtained by the Example and the comparative example, and a leakage current (mA). 実施例及び比較例で得られた焼結体の断面中に占める酸化ビスマス相の面積割合(A)及びスピネル粒子の面積割合(B)の比(A/B)ともれ電流(mA)との関係を示すグラフである。The ratio of the area ratio (A) of the bismuth oxide phase and the area ratio (B) of the spinel particles (A / B) to the leakage current (mA) in the cross sections of the sintered bodies obtained in Examples and Comparative Examples It is a graph which shows a relationship.

以下、本発明の実施の形態について説明する。
実施の形態1.
本発明の実施の形態による電圧非直線抵抗体は、図1に示すように、酸化亜鉛粒子1と亜鉛及びアンチモンを主成分とするスピネル粒子2と、酸化ビスマス相3とから主として構成され、酸化亜鉛結晶粒子内には双晶境界4が存在している焼結体からなる。更に、酸化ビスマス相中には、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で存在することが、微細構造分析により分かっており、この一定の割合で酸化ビスマス相中に存在するアルカリ金属が、課電寿命特性の改善及び後熱処理よる電圧非直線性の悪化の抑制に大きく寄与しているものと考えられる。そして、この焼結体の断面中に占める酸化ビスマス相3の面積割合(A)が2%以上8%以下の範囲となっており、且つ焼結体の断面中に占める酸化ビスマス相3の面積割合(A)とスピネル粒子2の面積割合(B)との比(A/B)が0.3以上1.5以下の範囲となっている。酸化ビスマス相3の面積割合(A)及び酸化ビスマス相3の面積割合(A)とスピネル粒子2の面積割合(B)との比(A/B)が上記範囲外であると、温度上昇時のもれ電流が著しく増大する。酸化ビスマス相3の面積割合A及び酸化ビスマス相3の面積割合Aとスピネル粒子2の面積割合Bとの比は、焼成される原料組成物の組成、焼成温度及び焼成時間を適宜変えることにより、上記所定の範囲に調整することができる。
このような電圧非直線抵抗体は、酸化亜鉛を主成分とし、ビスマスと、アンチモンと、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属とを含有する原料組成物を900℃以上で焼成した後、400℃以上600℃以下の熱処理(以下、後熱処理と呼ぶ)を施すことにより得られるものである。
Embodiments of the present invention will be described below.
Embodiment 1 FIG.
As shown in FIG. 1, the voltage nonlinear resistor according to the embodiment of the present invention is mainly composed of zinc oxide particles 1, spinel particles 2 mainly composed of zinc and antimony, and a bismuth oxide phase 3. It consists of a sintered body in which twin boundaries 4 exist in the zinc crystal particles. Furthermore, the microstructure analysis shows that the bismuth oxide phase contains at least one alkali metal selected from the group consisting of potassium and sodium in the range of 0.036 atomic% to 0.176 atomic%. It is known that the alkali metal present in the bismuth oxide phase at a certain ratio is considered to contribute greatly to the improvement of the electric charge lifetime characteristics and the suppression of the deterioration of the voltage nonlinearity due to the post heat treatment. The area ratio (A) of the bismuth oxide phase 3 occupying in the cross section of the sintered body is in the range of 2% to 8%, and the area of the bismuth oxide phase 3 occupying in the cross section of the sintered body. The ratio (A / B) between the ratio (A) and the area ratio (B) of the spinel particles 2 is in the range of 0.3 to 1.5. When the area ratio (A) of the bismuth oxide phase 3 and the ratio (A / B) of the area ratio (A) of the bismuth oxide phase 3 to the area ratio (B) of the spinel particles 2 are outside the above ranges, The leakage current increases significantly. The ratio of the area ratio A of the bismuth oxide phase 3 and the area ratio A of the bismuth oxide phase 3 to the area ratio B of the spinel particles 2 is appropriately changed by changing the composition of the raw material composition to be fired, the firing temperature, and the firing time. The predetermined range can be adjusted.
Such a voltage non-linear resistor comprises a raw material composition containing at least one alkali metal selected from the group consisting of zinc oxide as a main component, bismuth, antimony, and potassium and sodium at 900 ° C. or more. After being fired, a heat treatment (hereinafter referred to as post-heat treatment) at 400 ° C. or more and 600 ° C. or less is obtained.

酸化亜鉛は、電圧非直線性の改善、熱安定性の向上、エネルギー耐量の向上及び長寿命化の総合的観点から、原料組成物中に、90モル%以上98モル%以下の範囲で含まれることが望ましく、95モル%以上98モル%以下の範囲で含まれることが更に望ましい。酸化亜鉛としては、通常、平均粒子径が1μm以下の粉末を用いることが好ましい。   Zinc oxide is contained in the raw material composition in the range of 90 mol% or more and 98 mol% or less from the comprehensive viewpoints of improvement of voltage nonlinearity, improvement of thermal stability, improvement of energy resistance and extension of life. It is desirable that it is contained in the range of 95 mol% or more and 98 mol% or less. As zinc oxide, it is usually preferable to use a powder having an average particle diameter of 1 μm or less.

ビスマス及びアンチモンは、電圧非直線性の改善及び熱安定性の向上の観点から、原料組成物中に、総量で0.5モル%以上2モル%以下の範囲で含まれることが好ましく、0.6モル%以上1.5モル%以下の範囲で含まれることが更に好ましい。ビスマス及びアンチモンは、酸化物、塩化物等の形態のものを用いることができ、通常、平均粒子径が1μm以下の粉末を用いることが好ましい。   Bismuth and antimony are preferably contained in the raw material composition in the range of 0.5 mol% or more and 2 mol% or less in total from the viewpoint of improving voltage nonlinearity and improving thermal stability. More preferably, it is contained in the range of 6 mol% or more and 1.5 mol% or less. Bismuth and antimony can be used in the form of oxides, chlorides, etc. Usually, it is preferable to use powder having an average particle diameter of 1 μm or less.

原料組成物には、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属は、電圧非直線性の改善及び課電寿命特性の向上の観点から、原料組成物中に、0.013モル%以上0.026モル%以下の範囲で添加される。このアルカリ金属の添加量が、0.013モル%未満であると、後熱処理後の電圧非直線性及び課電寿命特性が著しく低下し、0.026モル%を超えると、課電寿命特性が不十分となる。このアルカリ金属は、通常、平均粒子径が1μm以下のNa2CO3粉末及びK2CO3粉末として配合するか、又はこれらを溶かした水溶液として配合することが好ましい。この範囲で原料組成物中にアルカリ金属を添加すれば、得られる焼結体の酸化ビスマス相中にはカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で存在させることができる。従来、電圧非直線抵抗体中のナトリウムやカリウムの量が増大すると、電気特性は悪化するものと認識されており、その混入量を極力少なくすることによって優れた電圧非直線性を達成しようとする試みがなされてきた。しかしながら、本発明者らは、酸化亜鉛を主成分とし、ビスマス及びアンチモンを含む組成物の配合や焼成温度について種々検討した結果、意外なことに、ナトリウム等のアルカリ金属を0.013モル%以上0.026モル%以下の範囲で添加した原料組成物を900℃以上、好ましくは900℃以上1000℃以下で焼成することで、焼成後の500℃程度の後熱処理による電圧非直線性の悪化を顕著に抑制することができることを見出している。 In the raw material composition, at least one alkali metal selected from the group consisting of potassium and sodium is contained in the raw material composition in an amount of 0.013 from the viewpoint of improving the voltage non-linearity and improving the electric charging life characteristics. It is added in a range of from mol% to 0.026 mol%. When the addition amount of the alkali metal is less than 0.013 mol%, the voltage nonlinearity and the electric charging life characteristic after the post-heat treatment are remarkably deteriorated, and when it exceeds 0.026 mol%, the electric charging life characteristic is reduced. It becomes insufficient. This alkali metal is usually preferably blended as an Na 2 CO 3 powder and K 2 CO 3 powder having an average particle size of 1 μm or less, or as an aqueous solution in which these are dissolved. If an alkali metal is added to the raw material composition in this range, at least one alkali metal selected from the group consisting of potassium and sodium is 0.036 atomic% or more in the bismuth oxide phase of the obtained sintered body. It can exist in the range of 0.176 atomic% or less. Conventionally, it has been recognized that as the amount of sodium or potassium in the voltage nonlinear resistor increases, the electrical characteristics deteriorate, and it is attempted to achieve excellent voltage nonlinearity by reducing the amount of contamination as much as possible. Attempts have been made. However, as a result of various studies on the composition and firing temperature of a composition containing zinc oxide as a main component and containing bismuth and antimony, the present inventors have surprisingly found that an alkali metal such as sodium is 0.013 mol% or more. By firing the raw material composition added in the range of 0.026 mol% or less at 900 ° C. or higher, preferably 900 ° C. or higher and 1000 ° C. or lower, deterioration of voltage non-linearity due to post-heat treatment at about 500 ° C. after baking is reduced. It has been found that it can be significantly suppressed.

本実施の形態における原料組成物には、熱安定性、電圧非直線性及び課電寿命をより向上させるため、上記した成分以外に、酸化ニッケル、二酸化マンガン、酸化クロム、酸化コバルト、二酸化珪素等を添加してもよい。これらの成分の添加量は、通常、組成物中に0.1モル%以上2モル%以下の範囲である。また、これらの酸化物としては、通常、平均粒子径が1μm以下の粉末を用いることが好ましい。電圧非直線性をより向上させるため、組成物中に、0.001モル%以上0.01モル%以下の範囲で硝酸アルミニウムを添加してもよい。また、電圧非直線性をより向上させ、焼結体中の微細孔(ポア)を減じエネルギー耐量をより向上させるため、組成物中に、0.01モル%以上0.2モル%以下の範囲でホウ酸を配合してもよい。   In addition to the above-described components, the raw material composition in the present embodiment further improves thermal stability, voltage nonlinearity, and electrical charging life, such as nickel oxide, manganese dioxide, chromium oxide, cobalt oxide, silicon dioxide, etc. May be added. The amount of these components added is usually in the range of 0.1 mol% to 2 mol% in the composition. Moreover, as these oxides, it is usually preferable to use a powder having an average particle diameter of 1 μm or less. In order to further improve the voltage nonlinearity, aluminum nitrate may be added to the composition in the range of 0.001 mol% to 0.01 mol%. Further, in order to further improve the voltage nonlinearity, to reduce the fine pores (pores) in the sintered body and to further improve the energy resistance, the range of 0.01 mol% or more and 0.2 mol% or less in the composition. Boric acid may be added.

次に、本発明の実施の形態による電圧非直線抵抗体の製造方法について具体的に説明する。上記した原料から構成される原料組成物を調製した後、これに水、分散剤及びポリビニルアルコール等の結合剤(バインダー)を添加し、粉砕・混合を十分に行って均一な組成のスラリーを作製する。このスラリーをスプレードライヤーで乾燥・造粒して造粒物を得る。得られた造粒物を、例えば200kgf/cm2以上500kgf/cm2以下の成形圧で成形して所定形状の成形体を得る。次に、成形体を、大気中又は酸素雰囲気中で、450℃程度に加熱してバインダーを除去し、続いて900℃以上、好ましくは900℃以上1000℃以下で焼成した後、400℃以上600℃以下で後熱処理して焼結体を得る。必要に応じて、この焼結体に、例えばアルミニウム溶射等により電極を形成したり、ガラスの焼き付けや抵抗値の高い拡散層の導入等により側面高抵抗層を形成してもよい。 Next, a method for manufacturing the voltage nonlinear resistor according to the embodiment of the present invention will be specifically described. After preparing a raw material composition composed of the above-mentioned raw materials, a binder (binder) such as water, a dispersing agent and polyvinyl alcohol is added thereto, and the mixture is sufficiently pulverized and mixed to produce a slurry having a uniform composition. To do. This slurry is dried and granulated with a spray dryer to obtain a granulated product. The obtained granules to obtain a molded body having a predetermined shape by molding, for example, 200 kgf / cm 2 or more 500 kgf / cm 2 or less of the molding pressure. Next, the molded body is heated to about 450 ° C. in the air or oxygen atmosphere to remove the binder, and subsequently fired at 900 ° C. or higher, preferably 900 ° C. or higher and 1000 ° C. or lower, and then 400 ° C. or higher and 600 ° C. A post-heat treatment is performed at a temperature below ℃ to obtain a sintered body. If necessary, an electrode may be formed on the sintered body by, for example, aluminum spraying, or a side high resistance layer may be formed by baking a glass or introducing a diffusion layer having a high resistance value.

更に、本実施の形態によって得られる電圧非直線抵抗体を単体で又は積層して避雷器に搭載すれば、保護特性と寿命性能に優れ、信頼性の高い避雷器を得ることができる。   Furthermore, if the voltage non-linear resistor obtained by this embodiment is mounted on a lightning arrester as a single body or stacked, it is possible to obtain a lightning arrester with excellent protection characteristics and life performance and high reliability.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1〜5及び比較例1〜4>
表1に示すような、0.5モル%〜2.5モル%の酸化ビスマス(Bi23)粉末、0.3モル%〜1.0モル%の酸化アンチモン(Sb23)粉末、0.5モル%の酸化ニッケル(NiO)粉末、0.5モル%の二酸化マンガン(MnO2)粉末、0.1モル%の酸化クロム(Cr23)粉末、0.4モル%の酸化コバルト(Co34)粉末、0.004モル%の硝酸アルミ(Al(NO33・9H2O)、0.16モル%のホウ酸(H3BO3)、0.026モル%の炭酸ナトリウム(Na2CO3)、残部が酸化亜鉛(ZnO)粉末である原料組成物1〜9を調製した。なお、それぞれの原料には、工業用原料又は試薬を用い、粉末原料についてはすべて平均粒子径が1μm以下のものを使用した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
<Examples 1-5 and Comparative Examples 1-4>
0.5 mol% to 2.5 mol% bismuth oxide (Bi 2 O 3 ) powder, 0.3 mol% to 1.0 mol% antimony oxide (Sb 2 O 3 ) powder as shown in Table 1 0.5 mol% nickel oxide (NiO) powder, 0.5 mol% manganese dioxide (MnO 2 ) powder, 0.1 mol% chromium oxide (Cr 2 O 3 ) powder, 0.4 mol% Cobalt oxide (Co 3 O 4 ) powder, 0.004 mol% aluminum nitrate (Al (NO 3 ) 3 .9H 2 O), 0.16 mol% boric acid (H 3 BO 3 ), 0.026 mol % Sodium carbonate (Na 2 CO 3 ), and the raw material compositions 1 to 9 with the balance being zinc oxide (ZnO) powder were prepared. In addition, industrial raw materials or reagents were used for the respective raw materials, and all powder raw materials having an average particle diameter of 1 μm or less were used.

Figure 2011233567
Figure 2011233567

各原料組成物に、純水、分散剤及び結合剤(バインダー)を加え、粉砕・混合を十分行って均一な組成を持つスラリーを作製した。作製したスラリーをスプレードライヤーで造粒し、得られた造粒粉を成形圧500kgf/cm2で成形して直径40mm、厚さ10mm程度のディスク状の成形体を得た。 Pure water, a dispersant, and a binder (binder) were added to each raw material composition, and pulverization and mixing were sufficiently performed to prepare a slurry having a uniform composition. The produced slurry was granulated with a spray dryer, and the obtained granulated powder was molded at a molding pressure of 500 kgf / cm 2 to obtain a disk-shaped molded body having a diameter of about 40 mm and a thickness of about 10 mm.

成形体を大気中にて450℃で5時間加熱処理した(脱バインダー工程)後、焼成温度1000℃で5時間焼成を行った(焼成工程)。昇温及び降温速度は50℃/時間とした。こうして得られた焼結体5の側面に、インパルス電圧印加時の側面閃絡防止用の側面高抵抗層6(樹脂)を塗布し、ディスク両面にはアルミニウム溶射によりアルミニウム電極7を形成して、評価用の試料とした。試料の模式断面図を図2に示す。   The molded body was heat-treated at 450 ° C. for 5 hours in the atmosphere (debinding step), and then fired at a firing temperature of 1000 ° C. for 5 hours (firing step). The temperature increase and decrease rate was 50 ° C./hour. A side high resistance layer 6 (resin) for preventing side flashing when an impulse voltage is applied is applied to the side surface of the sintered body 5 thus obtained, and aluminum electrodes 7 are formed on both sides of the disk by aluminum spraying. A sample for evaluation was used. A schematic cross-sectional view of the sample is shown in FIG.

作製した試料の熱安定性は、試料を120℃に加熱し、温度が一定となったところで、課電率が90%となる電圧を印加した時に流れる電流値を評価した。結果を表2に示す。また、温度特性評価後の試料は、焼結体の微細構造を観察するために、5mm角程度に切断、表面を研磨した後、粒界を明瞭にするために、塩酸で10秒程度エッチングを行った。純水で洗浄の後、チャージアップ防止のためにカーボン膜をコーティングし、観察領域内で酸化ビスマス相が占める面積割合(A)及びスピネル粒子が占める面積割合(B)を画像解析を用いて計測し、さらにそれらの結果からA/Bを算出した。結果を表2に示す。観察の結果、得られた焼結体は、大まかに酸化亜鉛粒子、スピネル粒子、粒界の3重点付近に存在する酸化ビスマス相から構成される微細構造を有していた。特に1000℃で焼成しているため、添加した酸化ビスマスが焼成中に蒸発することを抑制でき、酸化ビスマス相が3重点付近に多く存在していた。実際の分析に用いた箇所の反射電子像(COMPO像)の一例を図3に示した。白く光っている部分が酸化ビスマス相である。また、A/Bが小さい焼結体からなる電圧非直線抵抗体の反射電子像(COMPO像)の一例を図4に示し、A/Bが大きい焼結体からなる電圧非直線抵抗体の反射電子像(COMPO像)の一例を図5に示す。   The thermal stability of the prepared sample was evaluated by measuring the value of the current that flows when the sample is heated to 120 ° C. and a voltage at which the electric rate is 90% is applied when the temperature becomes constant. The results are shown in Table 2. In addition, the sample after the temperature characteristic evaluation was cut to about 5 mm square to observe the fine structure of the sintered body, the surface was polished, and then etched with hydrochloric acid for about 10 seconds to clarify the grain boundaries. went. After washing with pure water, a carbon film is coated to prevent charge-up, and the area ratio (A) occupied by the bismuth oxide phase and the area ratio (B) occupied by the spinel particles in the observation region are measured using image analysis. Furthermore, A / B was calculated from the results. The results are shown in Table 2. As a result of observation, the obtained sintered body had a fine structure roughly composed of zinc oxide particles, spinel particles, and a bismuth oxide phase existing near the triple point of the grain boundary. In particular, since the baking was performed at 1000 ° C., it was possible to suppress the added bismuth oxide from evaporating during the baking, and many bismuth oxide phases existed in the vicinity of the triple point. An example of the reflected electron image (COMPO image) of the part used for the actual analysis is shown in FIG. The part shining white is the bismuth oxide phase. FIG. 4 shows an example of a reflected electron image (COMPO image) of a voltage non-linear resistor made of a sintered body having a small A / B, and the reflection of the voltage non-linear resistor made of a sintered body having a large A / B. An example of an electronic image (COMPO image) is shown in FIG.

Figure 2011233567
Figure 2011233567

また、実施例1〜5及び比較例1〜4における面積割合A(%)ともれ電流(mA)との関係を図6に示し、面積比A/Bともれ電流(mA)との関係を図7に示す。図6及び7から明らかなように、面積割合A(%)及び面積比A/Bのいずれか一方が本発明で規定される数値範囲外であると、もれ電流が増加し温度特性は悪化傾向にあることが分かる。120℃におけるもれ電流が1.5mAを超えると、素子の発熱量が増大し、さらにもれ電流が増加する。それを抑制するためには避雷器内部に放熱フィンなどの放熱対策を施す必要があり、避雷器の構造が複雑になる。一方、面積割合A(%)及び面積比A/Bが本発明で規定される数値範囲内であると、粒界準位の安定性が高まり、高温時の熱安定性が高まったものと考えられる。   Further, FIG. 6 shows the relationship between the area ratio A (%) and the leakage current (mA) in Examples 1 to 5 and Comparative Examples 1 to 4, and the relationship between the area ratio A / B and the leakage current (mA). As shown in FIG. As apparent from FIGS. 6 and 7, when either the area ratio A (%) or the area ratio A / B is outside the numerical range defined in the present invention, the leakage current increases and the temperature characteristics deteriorate. It turns out that there is a tendency. When the leakage current at 120 ° C. exceeds 1.5 mA, the amount of heat generated by the element increases, and the leakage current further increases. In order to suppress this, it is necessary to take heat dissipation measures such as heat dissipation fins inside the lightning arrester, which complicates the structure of the lightning arrester. On the other hand, when the area ratio A (%) and the area ratio A / B are within the numerical ranges defined in the present invention, it is considered that the stability of the grain boundary level is increased and the thermal stability at high temperature is increased. It is done.

<実施例6〜17及び比較例5〜14>
0.9モル%の酸化ビスマス(Bi23)粉末、0.4モル%の酸化アンチモン(Sb23)粉末、0.5モル%の酸化ニッケル(NiO)粉末、0.5モル%の二酸化マンガン(MnO2)粉末、0.1モル%の酸化クロム(Cr23)粉末、0.4モル%の酸化コバルト(Co34)粉末、0.004モル%の硝酸アルミ(Al(NO33・9H2O)及び0.16モル%のホウ酸(H3BO3)を基本組成とし、これにNa2CO3又はK2CO3を表3に示す割合で添加し、原料組成物を調製した。残部は酸化亜鉛(ZnO)である。なお、それぞれの原料には、工業用原料又は試薬を用い、粉末原料についてはすべて平均粒子径が1μm以下のものを使用した。
<Examples 6 to 17 and Comparative Examples 5 to 14>
0.9 mole% of bismuth oxide (Bi 2 O 3) powder, 0.4 mole% of antimony oxide (Sb 2 O 3) powder, 0.5 mole% of nickel oxide (NiO) powder, 0.5 mol% Manganese dioxide (MnO 2 ) powder, 0.1 mol% chromium oxide (Cr 2 O 3 ) powder, 0.4 mol% cobalt oxide (Co 3 O 4 ) powder, 0.004 mol% aluminum nitrate ( Al (NO 3 ) 3 · 9H 2 O) and 0.16 mol% boric acid (H 3 BO 3 ) are used as the basic composition, and Na 2 CO 3 or K 2 CO 3 is added to the composition shown in Table 3. The raw material composition was prepared. The balance is zinc oxide (ZnO). In addition, industrial raw materials or reagents were used for the respective raw materials, and all powder raw materials having an average particle diameter of 1 μm or less were used.

次いで、実施例1〜5と同様にしてディスク状の成形体を得、成形体を大気中にて450℃で5時間加熱処理した(脱バインダー工程)後、表3に示す焼成温度で5時間焼成を行った(焼成工程)。昇温及び降温速度は50℃/時間とした。さらに焼結体を大気中にて、500℃で5時間加熱処理した(後熱処理工程)。得られた焼結体を用い、実施例1〜5と同様にして評価用の試料を作製した。   Next, a disk-shaped molded body was obtained in the same manner as in Examples 1 to 5, and the molded body was heat-treated in the atmosphere at 450 ° C. for 5 hours (debinding step), and then at the firing temperature shown in Table 3 for 5 hours Firing was performed (firing step). The temperature increase and decrease rate was 50 ° C./hour. Further, the sintered body was heat-treated in the atmosphere at 500 ° C. for 5 hours (post heat treatment step). Using the obtained sintered body, a sample for evaluation was produced in the same manner as in Examples 1-5.

Figure 2011233567
Figure 2011233567

実施例6〜17及び比較例5〜14の試料について、実施例1〜5と同様にして酸化ビスマス相が占める面積割合(A)及びスピネル粒子が占める面積割合(B)を画像解析を用いて計測し、さらにそれらの結果からA/Bを算出した。
電圧非直線性の良否は、平坦率(V2.35kA/V0.46mA)により評価した。V2.35kAは試料に8×20μsのインパルス電圧を印加し、そのピーク値を読み取ってV2.35kAとした。またV0.46mAは60Hzの交流電圧(正弦波)を用いて測定を行った。交流を印加した場合、試料を流れる電流は抵抗性成分(Ir)と容量性成分(Ic)に分かれるが、抵抗分もれ電流抽出装置を用いてIrを抽出した。具体的にはIrが0.46mAとなる印加電圧を読み取りV0.46mAとした。
後熱処理前後の平坦率を比較することで、平坦率の悪化率を評価した。なお、悪化率は、下記の式に従って計算した。
(後熱処理後の平坦率―後熱処理前の平坦率)÷後熱処理前の平坦率×100(%)
また後熱処理後の試料は120℃、課電率90%の条件下で、Irの経時変化を評価し、その増減によって課電寿命特性を評価した。課電寿命の合否判定は、電圧印加時のIrが増加傾向を示さないものを合格とした。
これらの酸化ビスマス相が占める面積割合(A)、酸化ビスマス相が占める面積割合とスピネル粒子が占める面積割合との比(A/B)、熱安定性、平坦率、悪化率及び課電寿命特性の評価結果を表4に示す。
For the samples of Examples 6 to 17 and Comparative Examples 5 to 14, the area ratio (A) occupied by the bismuth oxide phase and the area ratio (B) occupied by the spinel particles were analyzed using image analysis in the same manner as in Examples 1 to 5. Measurement was performed, and A / B was calculated from the results.
The quality of the voltage nonlinearity was evaluated by the flat rate (V 2.35 kA / V 0.46 mA ). For V 2.35 kA, an impulse voltage of 8 × 20 μs was applied to the sample, and the peak value was read as V 2.35 kA . V 0.46 mA was measured using an AC voltage (sine wave) of 60 Hz. When alternating current is applied, the current flowing through the sample is divided into a resistive component (Ir) and a capacitive component (Ic). Ir was extracted using a resistance leakage current extraction device. Specifically, the applied voltage at which Ir becomes 0.46 mA was read and set to V 0.46 mA .
By comparing the flat rate before and after the post heat treatment, the deterioration rate of the flat rate was evaluated. The deterioration rate was calculated according to the following formula.
(Flatness after post-heat treatment-flatness before post-heat treatment) ÷ flatness before post-heat treatment x 100 (%)
The post-heat treatment samples were evaluated for changes in Ir over time under the conditions of 120 ° C. and a charging rate of 90%, and the charging life characteristics were evaluated based on the increase and decrease. The pass / fail judgment of the charging life was determined to pass if the Ir at the time of voltage application did not show an increasing tendency.
The area ratio (A) occupied by these bismuth oxide phases, the ratio (A / B) of the area ratio occupied by the bismuth oxide phase and the area ratio occupied by spinel particles, thermal stability, flatness rate, deterioration rate, and electric charge life characteristics Table 4 shows the evaluation results.

Figure 2011233567
Figure 2011233567

表4より、ナトリウム及びカリウムを添加しない試料(比較例5及び10)では、後熱処理後の課電寿命が不良であり悪化率も大きいことが分かる。ナトリウムやカリウムの添加量を増加させて0.013モル%にすると、課電寿命が良好となり、さらに悪化率が小さくなって、結果的に後熱処理後に1.6前後の良好な平坦率が得られていることが分かる。しかし、ナトリウムやカリウムの添加量を更に増加させて0.052モルモル%にすると、課電寿命特性は不良となることが分かる。即ち、ナトリウム及びカリウムからなる群から選択される少なくとも1種のアルカリ金属を0.013モル%以上0.026モル%以下の範囲で添加することで、優れた電圧非直線性と課電寿命特性とを兼ね備えた電圧非直線抵抗体が得られることが分かる。   From Table 4, it can be seen that in the samples to which sodium and potassium are not added (Comparative Examples 5 and 10), the charging life after post-heat treatment is poor and the deterioration rate is large. When the amount of sodium or potassium added is increased to 0.013 mol%, the electric charging life is improved, and the deterioration rate is further reduced. As a result, a good flatness ratio of about 1.6 is obtained after post-heat treatment. You can see that However, it can be seen that when the addition amount of sodium or potassium is further increased to 0.052 mol%, the electric charging life characteristics become poor. That is, by adding at least one alkali metal selected from the group consisting of sodium and potassium in the range of 0.013 mol% or more and 0.026 mol% or less, excellent voltage non-linearity and charging life characteristics are obtained. It can be seen that a voltage non-linear resistor having both of the above can be obtained.

ナトリウムやカリウムは、通常、電圧非直線抵抗体の電気特性を悪化させる元素であることが知られている。そのため、その混入量を極力少なくすることにより優れた電圧非直線性を得る技術がこれまでに公開されている(例えば、特開平8−138910号公報)。しかしながら、これまで公知となっている技術は焼成温度が少なくとも1100℃以上であることから、本発明で得られた知見は焼成温度が1000℃以下の特有な効果であると考えられる。   Sodium and potassium are generally known to be elements that deteriorate the electrical characteristics of the voltage nonlinear resistor. Therefore, a technique for obtaining excellent voltage non-linearity by minimizing the mixing amount has been disclosed so far (for example, JP-A-8-138910). However, since the technique known so far has a firing temperature of at least 1100 ° C., the knowledge obtained in the present invention is considered to be a unique effect with a firing temperature of 1000 ° C. or less.

また、アルカリ金属であるリチウムを電圧非直線抵抗体に添加すると、酸化亜鉛の抵抗を大幅に増大させ、電圧非直線抵抗体をほぼ絶縁物に近い状態にすることが知られている。ナトリウムやカリウムと同様にリチウム添加実験も実施したが、試料は絶縁物に近い状態となり電気特性の評価ができなかった。即ち、リチウムについては焼成温度に依らず、電圧非直線抵抗体の抵抗を著しく増大させる効果があることを確認した。このことから、優れた電圧非直線性と課電寿命特性とを兼ね備えた電圧非直線抵抗体が、ナトリウム及びカリウムからなる群から選択される少なくとも1種のアルカリ金属を0.013モル%以上0.026モル%以下の範囲で添加し、且つ1000℃以下で焼成した場合に得られる効果は、これまでと全く異なる特有の効果であると考えられる。   In addition, it is known that when lithium, which is an alkali metal, is added to a voltage nonlinear resistor, the resistance of zinc oxide is greatly increased, and the voltage nonlinear resistor is made almost in the state of an insulator. A lithium addition experiment was conducted as in the case of sodium and potassium, but the sample was in a state close to an insulator and the electrical characteristics could not be evaluated. That is, it was confirmed that lithium has an effect of remarkably increasing the resistance of the voltage nonlinear resistor regardless of the firing temperature. From this, the voltage nonlinear resistor having both excellent voltage nonlinearity and charging life characteristic is 0.013 mol% or more of at least one alkali metal selected from the group consisting of sodium and potassium. The effect obtained when added in the range of .026 mol% or less and calcined at 1000 ° C. or less is considered to be a completely unique effect.

このようにナトリウム及びカリウムの添加が課電寿命の良否に大きく影響を及ぼしていることから、ナトリウム及びカリウムは課電寿命を大きく左右する酸化ビスマス相に含まれていると考えられる。そこで、試料の3重点に存在する酸化ビスマス相の定量分析を、場所を変えて(2〜3ヶ所)実施した。   Thus, since the addition of sodium and potassium has a great influence on the quality of the electric life, sodium and potassium are considered to be contained in the bismuth oxide phase that greatly affects the electric life. Therefore, quantitative analysis of the bismuth oxide phase existing at the triple point of the sample was performed at different locations (2 to 3 locations).

具体的には、実施例6〜11及び比較例5〜9の試料を5mm角程度に切断、表面を研磨した後、粒界を明瞭にするために塩酸で10秒程度エッチングを行った。純水で洗浄の後、チャージアップ防止のためにカーボン膜を蒸着によってコーティングし、日本電子製高性能電子プローブマイクロアナライザ(EPMA:Electron Probe Microanalyzer)を用いてナトリウム及びカリウム量の定量分析を行った。分析に用いたEPMAは電界放出型FE(Field Emission)電子銃を備えた装置で、微小領域で微量元素の分析が可能な波長分散型分光器(WDS:Wavelength Dispersive Spectroscopy)を備えている。
酸化ビスマス相中のナトリウム及びカリウムの定量分析結果を表5に示す。
Specifically, the samples of Examples 6 to 11 and Comparative Examples 5 to 9 were cut to about 5 mm square, the surface was polished, and then etched with hydrochloric acid for about 10 seconds in order to clarify the grain boundaries. After washing with pure water, a carbon film was coated by vapor deposition to prevent charge-up, and quantitative analysis of sodium and potassium content was performed using a high performance electron probe microanalyzer (EPMA: Electron Probe Microanalyzer) manufactured by JEOL. . The EPMA used for the analysis is a device equipped with a field emission FE (Field Emission) electron gun, and is equipped with a wavelength dispersive spectrometer (WDS) capable of analyzing trace elements in a minute region.
Table 5 shows the results of quantitative analysis of sodium and potassium in the bismuth oxide phase.

Figure 2011233567
Figure 2011233567

ナトリウム又はカリウムを0.013モル%以上添加した試料において、ナトリウム又はカリウムが検出された。表4の悪化率及び課電寿命特性と照合すると、ナトリウム又はカリウムを0.013モル%以上0.026モル%以下の割合で添加した試料(実施例6〜11)では、酸化ビスマス相中にナトリウム又はカリウムが0.036原子%以上0.176原子%以下の範囲で検出され、課電寿命特性が改善されると共に、悪化率が小さくなっていることが分かる。しかし、ナトリウム又はカリウムを0.052モル%配合した試料(比較例7及び9)では、酸化ビスマス相中にナトリウム又はカリウムが0.222原子%以上検出され、悪化率が大幅に増大すると共に、課電寿命が不良となっている。
この定量分析結果から、悪化率を抑制して後熱処理後の平坦率を小さくし、同時に良好な課電寿命特性が得られた試料においては、焼結体中の微細構造における酸化ビスマス相中にナトリウム又はカリウムが存在し、その量が0.036原子%〜0.176原子%であることが一連の実験と分析の結果から明らかとなった。
Sodium or potassium was detected in the sample to which 0.013 mol% or more of sodium or potassium was added. When collated with the deterioration rate and charging life characteristics of Table 4, in the samples (Examples 6 to 11) to which sodium or potassium was added at a ratio of 0.013 mol% or more and 0.026 mol% or less, It can be seen that sodium or potassium is detected in the range of 0.036 atomic% or more and 0.176 atomic% or less, and the charging lifetime characteristics are improved and the deterioration rate is reduced. However, in the sample (Comparative Examples 7 and 9) containing 0.052 mol% of sodium or potassium, 0.222 atomic% or more of sodium or potassium is detected in the bismuth oxide phase, and the deterioration rate is greatly increased. The charging life is poor.
From the results of this quantitative analysis, in the sample where the deterioration rate was suppressed and the flatness after post-heat treatment was reduced, and at the same time, good electric charge lifetime characteristics were obtained, the bismuth oxide phase in the microstructure in the sintered body was The results of a series of experiments and analyzes revealed that sodium or potassium was present and the amount was 0.036 atomic% to 0.176 atomic%.

以上のことから、酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相から主として構成される焼結体からなる電圧非直線抵抗体であって、酸化ビスマス相中に、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で含まれ、焼結体断面中に占める酸化ビスマス相の面積割合(A)が2%以上8%以下の範囲であり、且つ焼結体断面中に占める酸化ビスマス相の面積割合(A)とスピネル粒子の面積割合(B)との比(A/B)が0.3以上1.5以下の範囲であることによって、後熱処理後の悪化率が抑制され、結果として、優れた電圧非直線性、課電寿命特性及び熱安定性を兼ね備えた電圧非直線抵抗体が実現できた。   From the above, a voltage non-linear resistor composed of a sintered body mainly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase, and in the bismuth oxide phase, The area ratio of the bismuth oxide phase occupying in the cross section of the sintered body is contained in the range of 0.036 atomic% or more and 0.176 atomic% or less of at least one alkali metal selected from the group consisting of potassium and sodium (A ) Is in the range of 2% to 8%, and the ratio (A / B) of the area ratio (A) of the bismuth oxide phase to the area ratio (B) of the spinel particles in the cross section of the sintered body is 0.00. By being in the range of 3 or more and 1.5 or less, the deterioration rate after post-heat treatment is suppressed, and as a result, a voltage nonlinear resistor having excellent voltage nonlinearity, electrical charging life characteristics and thermal stability is obtained. Realized.

1 酸化亜鉛粒子、2 スピネル粒子、3 酸化ビスマス相、4 双晶境界、5 焼結体、6 側面高抵抗層、7 アルミニウム電極。   1 zinc oxide particle, 2 spinel particle, 3 bismuth oxide phase, 4 twin boundary, 5 sintered body, 6 side high resistance layer, 7 aluminum electrode.

Claims (2)

酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相とから主として構成される焼結体からなる電圧非直線抵抗体であって、酸化ビスマス相中に、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で含まれ、焼結体断面中に占める酸化ビスマス相の面積割合(A)が2%以上8%以下の範囲であり、且つ焼結体断面中に占める酸化ビスマス相の面積割合(A)とスピネル粒子の面積割合(B)との比(A/B)が0.3以上1.5以下の範囲であることを特徴とする電圧非直線抵抗体。   A voltage non-linear resistor composed of a sintered body mainly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase, and from potassium and sodium in the bismuth oxide phase. At least one alkali metal selected from the group consisting of 0.036 atomic% and 0.176 atomic% is included, and the area ratio (A) of the bismuth oxide phase in the cross section of the sintered body is 2%. The ratio (A / B) of the area ratio (A) of the bismuth oxide phase and the area ratio (B) of the spinel particles in the cross section of the sintered body is in the range of 0.3 to 1. A voltage non-linear resistor having a range of 5 or less. 請求項1に記載の電圧非直線抵抗体を搭載したことを特徴とする避雷器。   A lightning arrester comprising the voltage nonlinear resistor according to claim 1.
JP2010099941A 2010-04-23 2010-04-23 Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor Active JP5388937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099941A JP5388937B2 (en) 2010-04-23 2010-04-23 Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099941A JP5388937B2 (en) 2010-04-23 2010-04-23 Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JP2011233567A true JP2011233567A (en) 2011-11-17
JP5388937B2 JP5388937B2 (en) 2014-01-15

Family

ID=45322641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099941A Active JP5388937B2 (en) 2010-04-23 2010-04-23 Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JP5388937B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245602A (en) * 1991-01-31 1992-09-02 Ngk Insulators Ltd Nonlinearly voltage-dependent resistor
JPH04253302A (en) * 1991-01-29 1992-09-09 Ngk Insulators Ltd Non-linear varistor
JP2001006904A (en) * 1999-06-22 2001-01-12 Fuji Electric Co Ltd Voltage nonlinear resistor
JP2002217006A (en) * 2001-01-22 2002-08-02 Toshiba Corp Nonlinear resistor
JP2002305104A (en) * 2001-04-06 2002-10-18 Mitsubishi Electric Corp Voltage nonlinear resistor and manufacturing method therefor
JP2004026562A (en) * 2002-06-25 2004-01-29 Tdk Corp Non-linear voltage resistor porcelain composition and electronic component
JP2008162820A (en) * 2006-12-27 2008-07-17 Mitsubishi Electric Corp Voltage nonlinear resistor, and manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253302A (en) * 1991-01-29 1992-09-09 Ngk Insulators Ltd Non-linear varistor
JPH04245602A (en) * 1991-01-31 1992-09-02 Ngk Insulators Ltd Nonlinearly voltage-dependent resistor
JP2001006904A (en) * 1999-06-22 2001-01-12 Fuji Electric Co Ltd Voltage nonlinear resistor
JP2002217006A (en) * 2001-01-22 2002-08-02 Toshiba Corp Nonlinear resistor
JP2002305104A (en) * 2001-04-06 2002-10-18 Mitsubishi Electric Corp Voltage nonlinear resistor and manufacturing method therefor
JP2004026562A (en) * 2002-06-25 2004-01-29 Tdk Corp Non-linear voltage resistor porcelain composition and electronic component
JP2008162820A (en) * 2006-12-27 2008-07-17 Mitsubishi Electric Corp Voltage nonlinear resistor, and manufacturing method of the same

Also Published As

Publication number Publication date
JP5388937B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
TW535173B (en) Current-voltage nonlinear resistor
JPH11340009A (en) Nonlinear resistor
KR100812425B1 (en) Current-voltage nonlinear resistor
JP2017130544A (en) Voltage Nonlinear Resistor
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
JP5065688B2 (en) Current-voltage nonlinear resistor
JP5388937B2 (en) Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JP4282243B2 (en) Non-linear resistor
JP6223076B2 (en) Sintered body, manufacturing method thereof, varistor, and overvoltage protection device
JP2012060003A (en) Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector
EP2144256B1 (en) Current/voltage nonlinear resistor
JP2546726B2 (en) Voltage nonlinear resistor
JP2005097070A (en) Zinc oxide-based sintered compact and zinc oxide varistor
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
JP5995772B2 (en) Voltage non-linear resistor, method for manufacturing the same, and overvoltage protection device including the same
JP2011210878A (en) Voltage nonlinear resistor and method for manufacturing the same
JP2003007512A (en) Nonlinear resistor element
JP2023507608A (en) Metal oxide varistor formulation
JP2004342745A (en) Voltage nonlinear resistor
JP2020047685A (en) Zinc oxide element
JP2002289408A (en) Method for manufacturing voltage nonlinear resistor
JP2014183272A (en) Current-voltage nonlinear resistor
JP2020047686A (en) Zinc oxide element
JPS634681B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250