JP2002305104A - Voltage nonlinear resistor and manufacturing method therefor - Google Patents

Voltage nonlinear resistor and manufacturing method therefor

Info

Publication number
JP2002305104A
JP2002305104A JP2001108872A JP2001108872A JP2002305104A JP 2002305104 A JP2002305104 A JP 2002305104A JP 2001108872 A JP2001108872 A JP 2001108872A JP 2001108872 A JP2001108872 A JP 2001108872A JP 2002305104 A JP2002305104 A JP 2002305104A
Authority
JP
Japan
Prior art keywords
oxide
glass
manufacturing
linear resistor
voltage non
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001108872A
Other languages
Japanese (ja)
Inventor
Yoshio Takada
良雄 高田
Akio Hori
昭夫 堀
Tomoaki Katou
智明 加東
Iwao Kawamata
巌 河又
Kazuo Kawahara
一雄 河原
Hide Yamashita
秀 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001108872A priority Critical patent/JP2002305104A/en
Publication of JP2002305104A publication Critical patent/JP2002305104A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can simply obtain a voltage nonlinear resistor, in which long service life and high durability are realized, without giving adverse effects on the environment. SOLUTION: In a method for manufacturing the voltage nonlinear resistor where zinc oxide is main component, at least bismuth oxide and antimony oxide are contained as additive, mixed powder of bismuth oxide and antimony oxide is calcinated. Composition, composed of the mixed powder, zinc oxide and other additive, is heated and sintered at 700-1,000 deg.C and cooled down to room temperature. After that, this sintered member is subjected to heat treatment again in the range of 600 deg.C to 750 deg.C. As a result, at least 80% of the whole bismuth oxide contained in the sintered member is inverted to γ-Bi2 O3 of body-centered cubic lattice.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化亜鉛を主成分
とする焼結体から成り、例えば避雷器、サージアブゾー
バーなどに好適に使用しうる電圧非直線抵抗体およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage nonlinear resistor made of a sintered body containing zinc oxide as a main component and suitable for use in, for example, a lightning arrester or a surge absorber, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図2は従来の一般的な酸化亜鉛電圧非直
線抵抗体の形態を示す模式図であり、図3は前記抵抗体
の構造を説明するための断面図である。従来、避雷器、
サージアブゾーバーなどに用いられる酸化亜鉛を主成分
とする電圧非直線抵抗体は、主成分である酸化亜鉛に、
電圧非直線性の発現に必須である酸化ビスマスをはじ
め、電気特性の改善に有効な添加物を添加した組成物を
混合し、造粒、成形、焼成の各工程を経た焼結体1の側
面部に、側面高抵抗層2及び金属アルミニウム溶射など
から成る金属電極3(上下両面)を設けることによって
構成されている。
2. Description of the Related Art FIG. 2 is a schematic view showing a form of a conventional general zinc oxide voltage non-linear resistor, and FIG. 3 is a cross-sectional view for explaining the structure of the resistor. Conventionally, lightning arrester,
Voltage non-linear resistors mainly composed of zinc oxide used for surge absorbers, etc.
A side surface of the sintered body 1 obtained by mixing a composition containing an additive effective for improving electric characteristics, including bismuth oxide, which is indispensable for the expression of voltage non-linearity, and passing through each step of granulation, molding, and firing. This is constituted by providing a side surface high resistance layer 2 and metal electrodes 3 (upper and lower surfaces) made of metal aluminum sprayed or the like.

【0003】図4は、従来の一般的な酸化亜鉛電圧非直
線抵抗体の結晶組織の一部の微細構造を示す模式図であ
る。4は亜鉛及びアンチモンを主成分とするスピネル粒
子、5は酸化亜鉛粒子、6は酸化ビスマス主成分相、7
は酸化亜鉛結晶粒子内の双晶境界である。即ち、亜鉛及
びアンチモンを主成分とするスピネル粒子には、酸化亜
鉛粒子5の内部に取り囲まれて存在するものと、酸化亜
鉛粒子の三重点(多重点)付近に存在するものの2種類
の存在状態があり、酸化ビスマス主成分相6の一部分は
多重点のみならず、酸化亜鉛粒子5の境界に存在してい
る場合もみられる。
FIG. 4 is a schematic diagram showing a fine structure of a part of the crystal structure of a conventional general zinc oxide voltage non-linear resistor. 4 is a spinel particle containing zinc and antimony as main components, 5 is a zinc oxide particle, 6 is a bismuth oxide main component phase, 7
Is the twin boundary in the zinc oxide crystal grains. That is, the spinel particles mainly composed of zinc and antimony have two kinds of existing states, one existing around the inside of the zinc oxide particles 5 and the other existing near the triple point (multiple point) of the zinc oxide particles. In some cases, a part of the bismuth oxide main component phase 6 exists not only at multiple points but also at the boundaries of the zinc oxide particles 5.

【0004】後述のX線回折により検出される酸化ビス
マスの結晶相は、主に酸化亜鉛粒子の三重点(多重点)
付近に存在するものと考えられ、この結晶構造が素子寿
命に対して重要な役割を演ずる。スピネル粒子4は自体
は絶縁粒子であるが酸化亜鉛粒子5の大きさを決めるの
に関与している。
[0004] The crystal phase of bismuth oxide detected by X-ray diffraction, which will be described later, mainly consists of triple points (multipoints) of zinc oxide particles.
This crystal structure plays an important role in the lifetime of the device. The spinel particles 4 are insulating particles themselves, but are involved in determining the size of the zinc oxide particles 5.

【0005】従来の製造方法の本焼成工程は、一般的
に、1200℃付近の温度が要求される。焼結体の密度
が十分に高くなり、適切な電圧非直線性やバリスタ電圧
(通常1mA程度の電流値を流すための電圧)を得るのに
必要なためである。また焼成後の適切な温度での熱処理
により素子に含まれる酸化ビスマスが体心立方晶の酸化
ビスマス(γ-Bi23)に転化し、このとき寿命特性
が改善されることも公知である(特公平5-22362
号公報:引用文献1)。引用文献1では通常500〜6
00℃付近の熱処理により体心立方晶の酸化ビスマスが
20〜80%含まれかつその時に寿命特性が改善されて
いることが示されている。
[0005] The main baking step of the conventional manufacturing method generally requires a temperature around 1200 ° C. This is because the density of the sintered body becomes sufficiently high and it is necessary to obtain appropriate voltage non-linearity and varistor voltage (normally, a voltage for flowing a current value of about 1 mA). It is also known that bismuth oxide contained in the device is converted into body-centered cubic bismuth oxide (γ-Bi 2 O 3 ) by heat treatment at an appropriate temperature after firing, and the life characteristics are improved at this time. (Tokuhei 5-22362
Publication: Reference 1). In Reference 1, usually 500 to 6
It is shown that the heat treatment at about 00 ° C. contained 20 to 80% of body-centered cubic bismuth oxide, and at that time the life characteristics were improved.

【0006】図5は、従来の酸化亜鉛電圧非直線抵抗体
のアニール(再加熱)条件と電流の経時変化を示す特性
図である。酸化ビスマス0.5mol%、酸化アンチモ
ン1.0mol%、酸化マンガン、酸化コバルト、酸化
ニッケルをそれぞれ0.5mol%、酸化硼素0.04
mol%、硝酸アルミニウム0.004mol%、残部
酸化亜鉛として配合しこれらを通常のセラミックプロセ
スで作製し、大気中1200℃で5hr焼成した焼結体
を、480℃〜600℃の温度でアニールし、酸化ビス
マスの体心立方晶への転化率も図には示している。最適
なアニール条件は480℃〜520℃付近の温度領域で
あり、比較的狭い温度域であり体心立方晶への転化率は
高々50%程度である。
FIG. 5 is a characteristic diagram showing annealing (reheating) conditions of a conventional zinc oxide voltage non-linear resistor and a change in current with time. Bismuth oxide 0.5 mol%, antimony oxide 1.0 mol%, manganese oxide, cobalt oxide, nickel oxide 0.5 mol% each, boron oxide 0.04
mol%, 0.004 mol% of aluminum nitrate, and the balance of zinc oxide, these were prepared by a normal ceramic process, and a sintered body fired at 1200 ° C for 5 hours in air was annealed at a temperature of 480 ° C to 600 ° C, The conversion of bismuth oxide to body-centered cubic is also shown in the figure. The optimum annealing condition is a temperature range of about 480 ° C. to 520 ° C., a relatively narrow temperature range, and a conversion to a body-centered cubic crystal is at most about 50%.

【0007】図6は、従来の酸化亜鉛電圧非直線抵抗体
のアニール条件とX線回折法で求まる体心立方晶の生成
(転化)量との関係を示す特性図である。焼き上がった
ままでは正方晶または単純立方のいずれか、正方晶と単
純立方の混晶であるが約500℃から体心立方晶に転化
が始まりし、最大値700〜800℃を経て900℃で
消滅(逆に体心立方晶から正方晶と単純立方の混晶か又
は正方晶又は単純立方晶へ再変化)する。寿命安定化領
域は体心立方の酸化ビスマス量から見れば図6から明ら
かなように30%〜60%の間である。またこの配合に
希土類酸化物の添加等、組成のことなる素子でも120
0℃付近で焼成すれば、ほぼ同様な転化率と寿命安定化
領域を示すことは実験的にも確認している。
FIG. 6 is a characteristic diagram showing the relationship between the annealing conditions of a conventional zinc oxide voltage non-linear resistor and the amount of formation (conversion) of a body-centered cubic crystal determined by X-ray diffraction. As-baked, either tetragonal or simple cubic, it is a mixed crystal of tetragonal and simple cubic, but the conversion starts from about 500 ° C to body-centered cubic, and reaches 900 ° C through the maximum value of 700-800 ° C. Annihilation (conversely, a change from body-centered cubic to a mixed crystal of tetragonal and simple cubic, or to tetragonal or simple cubic). The life stabilizing region is between 30% and 60% as apparent from FIG. 6 when viewed from the body-centered cubic bismuth oxide amount. In addition, an element having a different composition such as the addition of a rare earth oxide to
It has been experimentally confirmed that if the sintering is performed at about 0 ° C., substantially the same conversion ratio and life stabilizing region are exhibited.

【0008】近年、少量添加する酸化ビスマス等を中心
とする添加物の一部を400〜700℃付近の温度であ
らかじめ焼成(部分仮焼き)し、主成分酸化亜鉛に添加
することにより最終焼成(本焼成)温度を1000℃以
下900℃前後にまで低下させうることが明らかになっ
てきた。例えば特開平9−67161号公報(引用文献
2)に示されるような方法であるが、この方法によって
本焼成温度を低下できることから、素子製造時の省エネ
ルギ、酸化亜鉛の欠陥減少による電気特性の安定化、酸
化ビスマスの蒸発の低減とそれに起因する環境改善の効
果が期待でき、本産業上極めて有用な方式になり得る。
In recent years, a part of additives, such as bismuth oxide, to be added in small amounts are preliminarily calcined (partially calcined) at a temperature of about 400 to 700 ° C., and finally calcined (Zinc oxide) by adding to the main component zinc oxide. It has been clarified that the temperature of the main firing can be lowered to 1000 ° C. or lower to around 900 ° C. For example, this method is disclosed in Japanese Patent Application Laid-Open No. 9-67161 (Cited Document 2). However, since the main firing temperature can be reduced by this method, energy saving at the time of element production and electrical characteristics due to a reduction in zinc oxide defects are reduced. The effect of stabilization, reduction of the evaporation of bismuth oxide and improvement of the environment resulting therefrom can be expected, which can be a very useful method in the industry.

【0009】これに関しては例えば伊賀篤志「ZnOバ
リスタの低温焼結(850〜950℃)のメカニズム」
及び「ZnOバリスタの電気的性質」 粉体及び粉末冶
金Vol.44 No.12 p1069〜1077
(1997)(引用文献3、4)に詳細が述べられてい
るが、本明細書中では添加物仮焼きにより焼成温度の低
下を可能とする焼成法を低温焼成(法)、またこの様な
製法で作られた素子を低温焼成素子と呼ぶことにする。
Regarding this, for example, Atsushi Iga, “Mechanism of low-temperature sintering (850-950 ° C.) of ZnO varistors”
And "Electrical Properties of ZnO Varistor" Powder and Powder Metallurgy Vol. 44 No. 12 p1069-1077
(1997) (Cited Documents 3 and 4), but in the present specification, a calcination method capable of lowering the calcination temperature by additive calcination is a low-temperature calcination (method). The element manufactured by the manufacturing method is referred to as a low-temperature firing element.

【0010】[0010]

【発明が解決しようとする課題】この様に製作された低
温焼成酸化亜鉛素子は、従来の1200℃付近で焼成し
た素子と比較して焼結密度やV−I特性には遜色ないこ
とも判明しているものの、ギャップレス避雷器への適用
時には素子に常時電圧が印加されるため、いわゆる漏れ
電流の経時変化(寿命特性)については従来素子と同様
極めて重要な評価項目になっている。
It has also been found that the low-temperature fired zinc oxide device manufactured in this way has no inferior in the sintered density and VI characteristics as compared with the conventional device fired at around 1200 ° C. However, when applied to a gapless surge arrester, a voltage is constantly applied to the element, so that the so-called change in leakage current with time (lifetime characteristic) is an extremely important evaluation item like the conventional element.

【0011】すでに述べたように従来素子ではこの点の
解決を焼成後のアニール処理の適正化すなわち体心立方
晶酸化ビスマスへの転化量として捉え、寿命特性の改善
が可能であることを示したが、重要な低温焼成素子の寿
命、すなわち一定の電圧ストレス下における漏れ電流の
経時変化についてはまだ従来素子ほど十分な検討は行わ
れておらず最適条件についての知見や酸化ビスマスにつ
いての情報も殆ど無いと言うのが現状である。
As described above, in the conventional device, the solution of this point is regarded as optimization of the annealing treatment after firing, that is, conversion into body-centered cubic bismuth oxide, and it is shown that the life characteristics can be improved. However, the life of the important low-temperature fired device, that is, the change over time of the leakage current under a constant voltage stress, has not yet been sufficiently studied as compared with the conventional device, and there is little knowledge about the optimal conditions or information on bismuth oxide. At present, there is no such thing.

【0012】一般的には寿命特性改善のための熱処理条
件は、素子の特別な配合のみならず素子作製方法にも大
きく依存しその最適化が図られる必要がある。つまり従
来素子と同じ条件がそのまま低温焼成素子に適用できる
とは限らず新たな検討が必要である。
Generally, the heat treatment conditions for improving the life characteristics greatly depend not only on the special composition of the device but also on the device manufacturing method, and it is necessary to optimize the condition. That is, the same conditions as those of the conventional element are not always applicable to the low-temperature fired element, and a new study is required.

【0013】一方素子側面に適切な高抵抗層を形成する
ことで側面部での閃絡を防止することは可能で、従来ス
ピネル、珪酸亜鉛からなる多結晶高抵抗層を付与した
り、更にその上にガラス層を形成することで素子の耐量
(サージエネルギ吸収能力)向上が図られてきた。
On the other hand, by forming an appropriate high-resistance layer on the side surface of the element, it is possible to prevent flashover on the side surface portion. Conventionally, a polycrystalline high-resistance layer made of spinel and zinc silicate is provided, and furthermore, By forming a glass layer thereon, the withstand capacity (surge energy absorbing ability) of the element has been improved.

【0014】また側面層としてガラス層を単層で設ける
ことでも十分に耐量は向上することが分かってきたた
め、従来素子に対して長寿命化のための適切な熱処理と
ガラス層形成を同時に行うことにより工程を簡素化する
ことが提案されている(特公平4−4723号公報;引
用文献5)。
It has been found that the provision of a single glass layer as the side layer can sufficiently improve the resistance, and therefore, it is necessary to simultaneously perform appropriate heat treatment and glass layer formation on the conventional element to extend the life. Has been proposed to simplify the process (Japanese Patent Publication No. 4-4723; cited document 5).

【0015】要はアニール時の加熱条件とガラス層の形
成や、焼き付け型の電極形成に必要な加熱条件との整合
を図ることが工程の簡素化、省エネにとっては重要であ
る。
In short, it is important for the simplification of the process and the energy saving to match the heating conditions at the time of annealing with the heating conditions required for forming the glass layer and for forming the baking type electrode.

【0016】また従来法による1200℃付近の焼成で
作製された素子は500℃付近に長寿命に対応するアニ
ール条件があったために、低温で封着可能とするために
は必然的に鉛成分を多く含むガラスの採用が必要とな
る。そのため膨張係数が大きくなりこの値を小さくする
ため別に膨張係数の小さいフィラーを加える必要が生じ
るなどのガラス自体の複雑な組成になりまた価格も高価
になる等の問題もある。加えて鉛成分が多いなど環境に
対しても望ましい材料で無いのは云うまでもない。
[0016] In addition, since a device manufactured by firing at about 1200 ° C according to the conventional method had annealing conditions corresponding to a long life at about 500 ° C, a lead component was inevitably required to enable sealing at a low temperature. It is necessary to use glass containing a large amount. For this reason, the expansion coefficient increases, and the glass itself has a complicated composition, such as the necessity of adding a filler having a low expansion coefficient to reduce this value. In addition, it is needless to say that the material is not desirable for the environment because of a large amount of lead.

【0017】本発明の目的は、長寿命化と高耐量化を実
現する電圧非直線抵抗体を、簡易かつ環境上悪影響を及
ぼすことなく得ることのできる製造方法を提供すること
にある。
An object of the present invention is to provide a manufacturing method capable of obtaining a voltage non-linear resistor realizing a long life and high withstand voltage easily and without adversely affecting the environment.

【0018】[0018]

【課題を解決するための手段】請求項1の発明は、酸化
亜鉛を主成分とし、添加物として少なくとも酸化ビスマ
スとおよび酸化アンチモンを含む電圧非直線抵抗体の製
造方法において、酸化ビスマスおよび酸化アンチモンの
混合粉を仮焼きし、前記混合粉、酸化亜鉛および他の添
加物からなる組成物を700〜1000℃で加熱焼結
し、室温まで冷却した後、この焼結体を再度600℃〜
750℃の範囲で再加熱処理することにより、前記焼結
体中に含まれる全酸化ビスマスのうち80%以上を体心
立方晶のγ-Bi23に転化することを特徴とする電圧
非直線抵抗体の製造方法である。請求項2の発明は、再
加熱処理時に、焼結体と±20%の範囲内の膨張係数を
有するガラス物質を前記焼結体の側面部に同時に焼き付
け、絶縁層を形成することを特徴とする請求項1に記載
の電圧非直線抵抗体の製造方法である。請求項3の発明
は、側面部に焼き付けるガラス物質は、硼珪酸亜鉛ガラ
ス、硼珪酸ビスマスガラス、硼珪酸アルカリガラスまた
は硼酸亜鉛ガラスであり、焼き付け後に得られる厚みを
少なくとも20μm以上にすることを特徴とする請求項
1または2に記載の電圧非直線抵抗体の製造方法であ
る。請求項4の発明は、請求項1ないし3のいずれか1
項に記載の製造方法により製造された電圧非直線抵抗体
である。
According to a first aspect of the present invention, there is provided a method for manufacturing a voltage non-linear resistor comprising zinc oxide as a main component and at least bismuth oxide and antimony oxide as additives. Is calcined, the composition comprising the mixed powder, zinc oxide and other additives is heated and sintered at 700 to 1000 ° C., and cooled to room temperature.
By performing a reheating treatment in the range of 750 ° C., 80% or more of the total bismuth oxide contained in the sintered body is converted into body-centered cubic γ-Bi 2 O 3. This is a method for manufacturing a linear resistor. The invention according to claim 2 is characterized in that, during the reheating treatment, an insulating layer is formed by simultaneously baking a sintered body and a glass material having an expansion coefficient within a range of ± 20% on side surfaces of the sintered body. The method for manufacturing a voltage non-linear resistor according to claim 1. The invention according to claim 3 is characterized in that the glass material to be baked on the side portion is zinc borosilicate glass, bismuth borosilicate glass, alkali borosilicate glass or zinc borate glass, and the thickness obtained after baking is at least 20 μm or more. The method for manufacturing a voltage non-linear resistor according to claim 1 or 2. According to a fourth aspect of the present invention, in any one of the first to third aspects,
It is a voltage non-linear resistor manufactured by the manufacturing method of item.

【0019】上記の構成によれば、再加熱処理時の加熱
温度を特定範囲としたため、体心立方晶の酸化ビスマス
の転化量範囲を確定することができ、優れた寿命特性を
持つ電圧非直線抵抗体を得ることができる。また、焼結
体の側面のガラスの絶縁層を再加熱処理時に同時に設け
ることができるため、生産性に優れた製造方法を提供す
ることができる。
According to the above configuration, since the heating temperature at the time of the reheating treatment is set to the specific range, the conversion range of the body-centered cubic bismuth oxide can be determined, and the voltage nonlinearity having excellent life characteristics can be determined. A resistor can be obtained. In addition, since the glass insulating layer on the side surface of the sintered body can be provided at the same time as the reheating treatment, a manufacturing method excellent in productivity can be provided.

【0020】図7は、このようにして作製された電圧非
直線抵抗体の一例の断面図である。抵抗体の構成自体は
従来(図3)と同じであるが、低温焼成した酸化亜鉛セ
ラミクス本体8、絶縁層例えば非鉛ガラス系側面高抵抗
層9を有することに実質的な差がある。
FIG. 7 is a sectional view of an example of the voltage non-linear resistor thus manufactured. Although the structure of the resistor itself is the same as that of the related art (FIG. 3), there is a substantial difference in having the zinc oxide ceramic body 8 fired at a low temperature and an insulating layer such as a non-lead glass-based side high resistance layer 9.

【0021】[0021]

【発明の実施の形態】本発明の製造方法は、まず酸化ビ
スマスおよび酸化アンチモンの混合粉を仮焼きする。こ
のとき、他の添加物も仮焼きすることができる。具体的
には、たとえば第一に酸化アンチモンと酸化ビスマスの
混合粉末、第二に酸化ビスマスと酸化クロムの混合粉
末、第三に酸化硼素と酸化ビスマス混合粉の三者をそれ
ぞれ仮焼きすることができる。その後、これらを酸化亜
鉛および遷移元素酸化物等の他の添加物と混合し組成物
を調製し、該組成物を低温焼成(700〜1000℃)
し、室温まで冷却した後、この焼結体を再度600℃〜
750℃の範囲で再加熱処理する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the production method of the present invention, first, a mixed powder of bismuth oxide and antimony oxide is calcined. At this time, other additives can be calcined. Specifically, for example, first, a mixed powder of antimony oxide and bismuth oxide, first, a mixed powder of bismuth oxide and chromium oxide, and third, a mixed powder of boron oxide and bismuth oxide can be calcined. it can. Thereafter, these are mixed with other additives such as zinc oxide and transition element oxide to prepare a composition, and the composition is fired at a low temperature (700 to 1000 ° C.).
After cooling to room temperature, the sintered body was
Reheating treatment is performed in the range of 750 ° C.

【0022】再加熱処理条件は、焼結体を大気中または
酸素中で500℃以上の温度で加熱し冷却した後、加速
寿命試験、すなわち焼結体を100℃以上の高温で高い
課電率(=印加電圧/V1mA)下大気中で長期課電を行
い、AC抵抗分漏れ電流の経時変化を観察し電流漸減、
または明らかな減少傾向を示す条件を明確化し、求める
ことができた。
The conditions for the reheating treatment are as follows: after the sintered body is heated in air or oxygen at a temperature of 500 ° C. or more and cooled, an accelerated life test is performed, that is, the sintered body is subjected to a high power application rate at a high temperature of 100 ° C. or more. (= Applied voltage / V 1mA ) Under long-term power application in the air, observe the change over time of leakage current due to AC resistance, gradually decrease the current,
Alternatively, the conditions showing a clear decreasing tendency were clarified and found.

【0023】またX線回折法により、再加熱処理後の体
心立方晶の酸化ビスマスへの転化量を計測した。なお転
化率に関する具体的計測方法は公知であり、例えば特公
平5-22362号公報(引用文献1)に記載されてい
る。
The amount of conversion of the body-centered cubic crystal to bismuth oxide after the reheating treatment was measured by X-ray diffraction. A specific method for measuring the conversion is known, and is described in, for example, Japanese Patent Publication No. 22362/1993 (Cited Document 1).

【0024】従来法による1200℃付近の焼成で作製
された電圧非直線抵抗体は長寿命に対応する最適アニー
ル条件は約500℃付近にがあった(図5)が、本発明
では700〜1000℃、例えば900℃前後で加熱焼
結した焼結体の場合、図1に示すように、加熱焼結温度
より約200℃低い温度域の再加熱処理により長寿命化
が達成可能であることを見いだした。
In the voltage nonlinear resistor manufactured by firing at about 1200 ° C. according to the conventional method, the optimum annealing condition corresponding to long life was about 500 ° C. (FIG. 5), but in the present invention, 700 to 1000 ° C. For example, in the case of a sintered body heated and sintered at around 900 ° C., for example, around 900 ° C., as shown in FIG. I found it.

【0025】またこのときの体心立方晶酸化ビスマスの
生成(転化)率は、従来素子の寿命最適転化量はほぼ8
0%〜100%であることも判明した(表2参照)。
In this case, the formation (conversion) rate of the body-centered cubic bismuth oxide is about 8%.
It was also found to be 0% to 100% (see Table 2).

【0026】ただ、図1に示すように、700℃加熱等
加熱温度が高いほど低電流側の平坦性(V1mA
10 μ A)は若干悪化(大きくなり)し、t=0での初
期漏れ電流値i0は確実に増加するが、その後の電流の
経時変化は減少の一途をたどった。この挙動は従来の電
圧非直線抵抗体の熱処理の場合にも見られるが、従来の
700℃での熱処理では、初期漏れ電流値は大幅に増加
するのみならず、急激な漏れ電流増加傾向を示すなど経
時変化は大きく異なるものであることは確認している。
However, as shown in FIG. 1, as the heating temperature such as heating at 700 ° C. becomes higher, the flatness on the low current side (V 1 mA /
V 10 mu A) is slightly worse (increases), the initial leakage current value i 0 at t = 0 is certainly increasing, aging of the subsequent current was steadily reduced. This behavior is also observed in the case of the conventional heat treatment of the voltage non-linear resistor. However, in the conventional heat treatment at 700 ° C., not only does the initial leakage current value significantly increase, but also the leakage current increases rapidly. For example, it has been confirmed that changes over time are greatly different.

【0027】この様に低温焼成した電圧非直線抵抗体と
従来のそれとには明らかに長寿命化のための条件が異な
り、その作製工程の違い、特に酸化ビスマスおよび酸化
アンチモン、必要に応じてその他添加物の仮焼き工程の
導入と、その結果の低温の加熱焼結工程の導入が、再加
熱処理条件の差を反映しているものと推察される。
The conditions for extending the life are clearly different from those of the voltage non-linear resistor fired at a low temperature and the conventional non-linear resistor, and the manufacturing process thereof is different, especially bismuth oxide and antimony oxide, and if necessary. It is presumed that the introduction of the additive calcination step and the resulting introduction of the low-temperature heat sintering step reflect the difference in the reheating conditions.

【0028】再加熱処理温度の明確化により膨張係数が
焼結体と±20%の範囲内にあり、焼結体の側面部に封
着可能と判断され選定されたガラス物質、例えば無鉛ガ
ラス粉末(表1参照)は、適当なバインダ、溶剤と共に
封着後約20μm以上、好ましくは50μm以上の厚さ
となるよう塗布することにより、再加熱処理の条件下で
加熱ガラス化し、側面高抵抗層(絶縁層)とすることが
できる。
A glass material selected from the group consisting of a sintered body having a coefficient of expansion within the range of ± 20% due to clarification of the reheating temperature and determined to be sealable on the side surface of the sintered body, for example, a lead-free glass powder (See Table 1) is coated with an appropriate binder and solvent so as to have a thickness of about 20 μm or more, preferably 50 μm or more after sealing. Insulating layer).

【0029】再加熱処理条件の差は、当然側面高抵抗層
を再加熱処理と同時に形成するガラス物質の選択範囲を
異なるものとした。従来作業温度が高すぎて使用困難で
あった無鉛系のガラス物質の使用にも選択の幅が広が
り、例えば硼珪酸亜鉛、硼珪酸ビスマス、硼酸亜鉛ガラ
ス、硼珪酸アルカリガラスの使用が可能となった。
The difference in the conditions of the reheating treatment naturally changed the selection range of the glass material for forming the side high-resistance layer simultaneously with the reheating treatment. The range of options for use of lead-free glass materials, which had been difficult to use because the working temperature was too high in the past, has been expanded.For example, zinc borosilicate, bismuth borosilicate, zinc borate glass, and alkali borosilicate glass can be used. Was.

【0030】膨張係数が焼結体より20%未満の低い膨
張係数を有するガラス物質に対しては、焼結体に過度の
引っ張り応力が働き焼結体に悪影響を与えること、また
膨張係数が大き過ぎるガラス物質はガラス側に大きな引
っ張り応力が生じガラス自体の破壊が生じるために、焼
結体と±20%の範囲内の膨張係数という範囲を設定し
た。
With respect to a glass material having an expansion coefficient lower than that of the sintered body by less than 20%, an excessive tensile stress acts on the sintered body and adversely affects the sintered body. Excessive glass material causes a large tensile stress on the glass side and breaks of the glass itself. Therefore, the range of the expansion coefficient of the sintered body and the range of ± 20% was set.

【0031】実際これらのガラス物質の焼結体側面部へ
の形成は各封着温度で、30〜60分加熱を行っても十
分に側面部に付着し、断面を顕微鏡等で観察しても何ら
ヒビ、剥離、欠け等の欠陥は見いだされなかった。この
±20%の範囲であれば膨張係数の差は絶縁層付着形成
に何ら影響もなく、かつ重要な機能であるところのイン
パルス耐量を何ら低下させるものでは無いことを確認し
た。なおインパルス耐量は規格に従い4×10μsの波
形とし、波高値20kAから5kAずつ上昇させ、5分
間隔で閃絡または破壊するまで通電し最終破壊電流値で
評価した。
In practice, the formation of these glass materials on the side surface of the sintered body is sufficiently adhered to the side surface even after heating for 30 to 60 minutes at each sealing temperature, and the cross section is observed with a microscope or the like. No defects such as cracks, peeling and chipping were found. It was confirmed that within the range of ± 20%, the difference in the expansion coefficient had no effect on the formation of the insulating layer, and did not lower the impulse withstand capability, which is an important function. The impulse withstand voltage was set to a waveform of 4 × 10 μs in accordance with the standard, was increased by 5 kA from the peak value of 20 kA, was energized at intervals of 5 minutes until flashing or breaking, and the final breaking current value was evaluated.

【0032】以上の様に、特定添加物の仮焼き混合粉を
他添加物と共に混合し低温焼成して得られた焼結体の長
寿命化処理(再加熱処理)の条件が明らかになり、その
温度条件で膨張係数が±20%の範囲の無鉛ガラスを封
着することで、側面部にガラス層を形成出来るようにな
った。この様に熱処理と側面層同時形成が可能となるこ
とで、工程簡略化や環境に配慮した無鉛ガラスの採用に
成功した。
As described above, the conditions for extending the life (reheating treatment) of the sintered body obtained by mixing the calcined mixed powder of the specific additive with other additives and firing at a low temperature are clarified. By sealing the lead-free glass having an expansion coefficient in the range of ± 20% under the temperature condition, a glass layer can be formed on the side surface. As described above, since the heat treatment and the side layer can be simultaneously formed, the simplification of the process and the adoption of environment-friendly lead-free glass have been successfully achieved.

【0033】[0033]

【実施例】以下実施例および比較例により本発明を説明
するが、本発明は係る例に限定されるものではない。 実施例1〜5および比較例1〜2 まず低温焼成酸化亜鉛電圧非直線抵抗体の製造方法につ
いて具体的に説明する。バルクは以下のように作製し
た。仮焼き工程(図8)に示すように所定量の酸化アン
チモンと酸化ビスマスを乾式混合機やボールミルで良く
混合した後、アルミナ坩堝に移し仮焼きを行った(A
粉)。仮焼き温度は550℃で6時間行った後再度ボー
ルミルを行い、十分に粉砕した。酸化クロムと酸化ビス
マス(仮焼き温度は550℃6時間:B粉)、酸化硼素
と酸化ビスマス(仮焼き温度は400℃6時間:C粉)
等も同様に仮焼き後粉砕工程を経て、最終的にこれらを
酸化亜鉛粉末、酸化マンガン、酸化ニッケル、酸化コバ
ルト、硝酸アルミニウム9水塩の水溶液と十分に混合し
た。配合は図9に示す量を基準とした。これをポリビニ
ールアルコール(PVA)、分散材と混ぜスラリーを作
製、ディスク型スプレイドライヤ(ディスク回転数10
000rpm、胴径1.5m、乾燥温度210℃)で造
粒した。約φ40×t12程度の大きさに一軸プレス機
で成形後、900℃で約10時間焼成した。昇降温速度
は50℃/hrとし、大気中又は酸素気流中で行った。
またインパルス耐量測定には電圧非直線抵抗体のサイズ
効果もあるため実機大の電圧非直線抵抗体も併せて作製
しこれをもって評価することとした。成形体の大きさは
約φ40×t65の大きさの長尺物である。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Examples 1 to 5 and Comparative Examples 1 and 2 First, a method for producing a low-temperature fired zinc oxide voltage non-linear resistor will be specifically described. The bulk was prepared as follows. As shown in the calcining step (FIG. 8), predetermined amounts of antimony oxide and bismuth oxide were mixed well by a dry mixer or a ball mill, and then transferred to an alumina crucible and calcined (A).
powder). After calcining at 550 ° C. for 6 hours, the ball mill was performed again and pulverized sufficiently. Chromium oxide and bismuth oxide (calcination temperature is 550 ° C for 6 hours: B powder), boron oxide and bismuth oxide (calcination temperature is 400 ° C for 6 hours: C powder)
Similarly, after calcination and a pulverizing step, these were finally mixed sufficiently with an aqueous solution of zinc oxide powder, manganese oxide, nickel oxide, cobalt oxide and aluminum nitrate nonahydrate. The formulation was based on the amounts shown in FIG. This is mixed with polyvinyl alcohol (PVA) and a dispersing agent to prepare a slurry, and a disk type spray dryer (disk rotation speed 10
000 rpm, body diameter 1.5 m, drying temperature 210 ° C.). After being formed into a size of about φ40 × t12 by a uniaxial press machine, it was baked at 900 ° C. for about 10 hours. The temperature was raised and lowered at a rate of 50 ° C./hr and performed in the air or in an oxygen stream.
Since the impulse withstand voltage measurement also has a size effect of the voltage non-linear resistor, an actual-sized voltage non-linear resistor was also manufactured and evaluated using the resistor. The size of the molded body is a long object having a size of about φ40 × t65.

【0034】得られた焼成体に表1に示した実施例5種
の粉末ガラスにバインダ(エチルセルロース系)と溶剤
を加えペースト化したものを塗布、約120℃で乾燥後
再度炉に入れ、気中600℃〜720℃の適切な封着温
度でで30〜60分程度加熱を行い冷却後金属アルミニ
ウムを溶射して電極とした。
The obtained fired body was coated with a paste obtained by adding a binder (ethyl cellulose) and a solvent to the five types of powdered glass shown in Table 1 in Table 1, dried at about 120 ° C., and then put again in a furnace. Heating was performed at an appropriate sealing temperature of medium 600 ° C. to 720 ° C. for about 30 to 60 minutes, and after cooling, metallic aluminum was sprayed to form electrodes.

【0035】使用したこれらのガラス、焼結体の膨張係
数を表1に同時にまとめたが、これらの数値の比較から
も分かるように、焼結体よりも大きいもの(硼珪酸ビス
マスガラス、硼珪酸アルカリガラス)、小さいもの(硼珪
酸亜鉛ガラス)が含まれる。
The expansion coefficients of these glasses and sintered bodies used are summarized in Table 1. As can be seen from a comparison of these values, those having a larger size than the sintered bodies (bismuth borosilicate glass, borosilicate Alkali glass) and small ones (zinc borosilicate glass).

【0036】[0036]

【表1】 [Table 1]

【0037】素子の基本的なV−I特性はガラス封着
(熱処理)前後で若干異なり(表2)、小電流域の平坦
性(V1mA/V10 μ A)はこの加熱により大きくなる。こ
のことは課電寿命試験時の初期電流値i0が大きくなる
ことを示唆する。
The basic V-I characteristic glass sealing element (heat treatment) varies slightly before and after (Table 2), the flatness of the small-current region (V 1mA / V 10 μ A ) is increased by the heating. This suggests that the initial current value i0 at the time of the application life test becomes large.

【0038】[0038]

【表2】 [Table 2]

【0039】これらの素子を加熱オーブンに入れ120
℃に加熱し、課電率80%(V1mA×0.8の電圧)の
電圧を印加した時の典型的電流の経時変化を調べた結果
を図10に示しているが、熱処理なし、510℃(従来
素子の条件、比較例1のガラスf、フィラー入りの鉛ガ
ラス)、700℃(実施例1のガラスa硼珪酸亜鉛ガラ
ス)の場合である。この図から700℃の場合のみ電流
減少傾向が見られ、長寿命化は期待できる一方、510
℃の場合にはむしろ加熱しない場合より電流増加率はや
や大きく、望ましくない傾向である。これらはすべて焼
結体の単純な再加熱処理と結果的には全く一致し(図
1)、かつ従来素子の場合の寿命特性との比較で大きく
異なる点でもある(図5とも比較)。
These elements were placed in a heating oven for 120 minutes.
FIG. 10 shows the result of examining the change over time of a typical current when heated to 80 ° C. and applied with a voltage of 80% (voltage of 1 mA × 0.8). C. (conventional element conditions, glass f of comparative example 1, lead glass with filler) and 700.degree. C. (glass a zinc borosilicate glass of example 1). It can be seen from the figure that the current tends to decrease only at 700 ° C.
In the case of ° C., the rate of current increase is rather larger than in the case of no heating, which is an undesirable tendency. All of these are completely the same as a simple reheat treatment of the sintered body as a result (FIG. 1), and are also significantly different from the life characteristics of the conventional element (also compare FIG. 5).

【0040】次に上記の例以外に表1の他のガラス組成
で、膨張係数も異なる実施例2、3、4、5のガラス
b、c、d、eをそれぞれ封着用焼成温度を720℃、
650℃と600℃として封着後寿命特性を調べたのが
図11であり、600℃ではほぼフラットな経時変化を
示し、650℃と720℃は漸減傾向を示した。なお比
較例2であるガラスg(鉛含有ガラス)も同様に封着温
度に支配され漏れ電流漸減傾向を示している。
Next, glass b, c, d, and e of Examples 2, 3, 4, and 5 having different expansion coefficients and other glass compositions in Table 1 in addition to the above examples were respectively sealed at a firing temperature of 720 ° C. ,
FIG. 11 shows the life characteristics after sealing at 650 ° C. and 600 ° C., showing a nearly flat change with time at 600 ° C. and a gradual decrease at 650 ° C. and 720 ° C. In addition, the glass g (lead-containing glass) of Comparative Example 2 is similarly governed by the sealing temperature and shows a gradual decrease in leakage current.

【0041】寿命試験後の各封着条件の異なる素子をX
線回折法により体心立方晶生成量を計測した。結果を表
2にまとめて示す。この生成(転化)量と電流の経時変
化を併せて考慮すると減少傾向を示すのは、転化量が8
0〜100%であることは表2と図10、11から明確
である。
The elements having different sealing conditions after the life test are denoted by X
The amount of body-centered cubic crystals produced was measured by X-ray diffraction. The results are summarized in Table 2. When the amount of generation (conversion) and the time-dependent change of current are considered together, the tendency of decrease is that the amount of conversion is 8
It is clear from Table 2 and FIGS.

【0042】次にインパルス耐量を調べた結果を表3に
示す。今回作製したガラス厚みは約50μmであり全ガ
ラスほぼ同等の耐量値40kA程度を有しており十分実
用に耐えることを確認した。今回使用したガラスは低温
焼成素子本体と十分良くなじんでおり、この範囲の膨張
係数差では問題なくその役目を十分果たしている。
Next, the results of examination of the impulse withstand capability are shown in Table 3. The thickness of the glass produced this time is about 50 μm, and has a withstand value of about 40 kA, which is almost the same as that of all the glasses. The glass used this time is well adapted to the low-temperature fired element body, and the difference in expansion coefficient within this range is sufficient to fulfill its role without any problem.

【0043】[0043]

【表3】 [Table 3]

【0044】ただインパルス耐量については、ガラス層
の厚さ依存性があり20μm以下であればガラスの種類
にもよるが耐量低下が見られ、逆に厚さも100μm以
上になるとやはり剥離等を起こし耐量低下の原因にな
る。
However, the impulse withstand capability depends on the thickness of the glass layer. If it is 20 μm or less, the withstand capability is reduced depending on the type of the glass. May cause a drop.

【0045】その他の低温焼成は上述以外にも特に酸化
ビスマス、酸化アンチモンの混合粉のみの仮焼き(図8
で酸化クロム、酸化硼素は仮焼きせずに添加する、すな
わちA粉のみ作製、B、C粉は生粉のまま添加)でも可
能である。全く同様な工程で低温焼成後実施例1〜5に
述べたのと同様にガラス層を作製すると寿命特性及びイ
ンパルス特性もほぼ同様であった。
Other low-temperature calcinations are, in addition to those described above, especially calcination of only a mixed powder of bismuth oxide and antimony oxide (FIG. 8).
Chromium oxide and boron oxide can be added without calcining, that is, only A powder is prepared, and B and C powders are added as raw powder). When the glass layer was prepared in the same manner as described in Examples 1 to 5 after firing at a low temperature, the life characteristics and the impulse characteristics were almost the same.

【0046】再加熱処理時の雰囲気として大気中のみ記
したが、酸素中で再加熱処理する場合小電流域平坦性
(V1mA/V10 μ A)に差が生じる。この値はやや小さく
なり改善方向を示し、かつ初期漏れ電流値i0は小さく
なる傾向を示すが、電流漸減の傾向は温度因子にのみ関
係し再加熱処理雰囲気では変化はない。
[0046] Although marked only the atmosphere as the atmosphere during reheating, the difference in the small current region flatness (V 1mA / V 10 μ A ) when re-heated in oxygen occurs. This value becomes slightly smaller, indicating an improvement direction, and the initial leakage current value i 0 tends to decrease. However, the tendency of the current gradual decrease is related only to the temperature factor and does not change in the reheating atmosphere.

【0047】低温焼成を可能とする詳細なメカニズムは
十分には把握されていないが、要するに低温焼成と通常
の高温で焼成した場合の酸化ビスマスの受ける熱履歴が
大きく異なることが再加熱処理条件に違いを生じさせる
ことを意味する。従って他の方法で低温焼成して作製さ
れた場合にも基本的には同様な結果が得られる。
Although the detailed mechanism that enables low-temperature firing is not fully understood, the fact that the heat histories of bismuth oxide when firing at low temperature and when firing at normal high temperature are greatly different is important for the reheating conditions. It means making a difference. Therefore, basically the same result can be obtained also in the case where it is manufactured by firing at a low temperature by another method.

【0048】[0048]

【発明の効果】請求項1の発明は、酸化亜鉛を主成分と
し、添加物として少なくとも酸化ビスマスとおよび酸化
アンチモンを含む電圧非直線抵抗体の製造方法におい
て、酸化ビスマスおよび酸化アンチモンの混合粉を仮焼
きし、前記混合粉、酸化亜鉛および他の添加物からなる
組成物を700〜1000℃で加熱焼結し、室温まで冷
却した後、この焼結体を再度600℃〜750℃の範囲
で再加熱処理することにより、前記焼結体中に含まれる
全酸化ビスマスのうち80%以上を体心立方晶のγ-B
23に転化することを特徴とする電圧非直線抵抗体の
製造方法であるので、長寿命化と高耐量化を実現する電
圧非直線抵抗体を、簡易かつ環境上悪影響を及ぼすこと
なく得ることができる。
According to a first aspect of the present invention, there is provided a method for producing a voltage non-linear resistor comprising zinc oxide as a main component and at least bismuth oxide and antimony oxide as additives, wherein a mixed powder of bismuth oxide and antimony oxide is prepared. After calcining, heating and sintering the composition comprising the mixed powder, zinc oxide and other additives at 700 to 1000 ° C and cooling to room temperature, the sintered body is again heated to a temperature in the range of 600 to 750 ° C. By performing the reheating treatment, 80% or more of the total bismuth oxide contained in the sintered body is γ-B
Since it is a method of manufacturing a voltage non-linear resistor characterized by conversion to i 2 O 3 , a voltage non-linear resistor realizing a long life and a high withstand voltage can be easily and without adversely affecting the environment. Obtainable.

【0049】請求項2の発明は、再加熱処理時に、焼結
体と±20%の範囲内の膨張係数を有するガラス物質を
前記焼結体の側面部に同時に焼き付け、絶縁層を形成す
ることを特徴とする請求項1に記載の電圧非直線抵抗体
の製造方法であるので、絶縁層を簡易にかつ生産性よく
形成させることができる。
According to a second aspect of the present invention, at the time of the reheating treatment, a glass material having an expansion coefficient within a range of ± 20% is simultaneously baked on a side surface of the sintered body to form an insulating layer. Since the method for manufacturing a voltage non-linear resistor according to claim 1 is characterized in that the insulating layer can be easily formed with high productivity.

【0050】請求項3の発明は、側面部に焼き付けるガ
ラス物質は、硼珪酸亜鉛ガラス、硼珪酸ビスマスガラ
ス、硼珪酸アルカリガラスまたは硼酸亜鉛ガラスであ
り、焼き付け後に得られる厚みを少なくとも20μm以
上にすることを特徴とする請求項1または2に記載の電
圧非直線抵抗体の製造方法であるので、環境上悪影響を
及ぼすことのない電圧非直線抵抗体を容易に得ることが
できる。
According to a third aspect of the present invention, the glass material to be baked on the side surface is zinc borosilicate glass, bismuth borosilicate glass, alkali borosilicate glass or zinc borate glass, and the thickness obtained after baking is at least 20 μm or more. Since the method for manufacturing a voltage non-linear resistor according to claim 1 or 2 is provided, a voltage non-linear resistor that does not adversely affect the environment can be easily obtained.

【0051】請求項4の発明は、請求項1ないし3のい
ずれか1項に記載の製造方法により製造された電圧非直
線抵抗体であるので、環境上悪影響を及ぼすことのな
い、長寿命化と高耐量化を実現する電圧非直線抵抗体を
提供することができる。
According to a fourth aspect of the present invention, there is provided a voltage non-linear resistor manufactured by the manufacturing method according to any one of the first to third aspects. And a voltage non-linear resistor realizing high withstand voltage can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電圧非直線抵抗体の定電圧印加によ
る電流の経時変化を示す図である。
FIG. 1 is a diagram showing a temporal change of a current caused by applying a constant voltage to a voltage nonlinear resistor of the present invention.

【図2】 従来の一般的な酸化亜鉛電圧非直線抵抗体の
形態を示す模式図である。
FIG. 2 is a schematic view showing a form of a conventional general zinc oxide voltage nonlinear resistor.

【図3】 従来の一般的な酸化亜鉛電圧非直線抵抗体の
構造を示す断面図である。
FIG. 3 is a cross-sectional view showing a structure of a conventional general zinc oxide voltage nonlinear resistor.

【図4】 一般的な酸化亜鉛電圧非直線抵抗体の結晶組
織の一部の微細構造を示す模式図である。
FIG. 4 is a schematic diagram showing a fine structure of a part of a crystal structure of a general zinc oxide voltage nonlinear resistor.

【図5】 従来の酸化亜鉛電圧非直線抵抗体のアニール
条件と電流の経時変化を示す特性図である。
FIG. 5 is a characteristic diagram showing annealing conditions and a change over time of a current of a conventional zinc oxide voltage non-linear resistor.

【図6】 従来の酸化亜鉛電圧非直線抵抗体のアニール
条件とX線回折法で求まる体心立方晶の生成(転化)量
との関係示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between annealing conditions of a conventional zinc oxide voltage non-linear resistor and the amount of formation (conversion) of a body-centered cubic crystal determined by an X-ray diffraction method.

【図7】 本発明による電圧非直線抵抗体の一例の断面
図である。
FIG. 7 is a sectional view of an example of a voltage non-linear resistor according to the present invention.

【図8】 本発明にかかわる添加物の部分仮焼き、混合
粉砕工程を示すプロセス図である。
FIG. 8 is a process diagram showing a step of partially calcining and mixing and pulverizing an additive according to the present invention.

【図9】 本発明にかかわる低温焼成素子の全体的作製
方法を示すプロセス図である。
FIG. 9 is a process diagram showing an overall method for manufacturing a low-temperature fired device according to the present invention.

【図10】 各種ガラスの封着後の電流の経時変化を示
す特性図である。
FIG. 10 is a characteristic diagram showing a time-dependent change in current after sealing various glasses.

【図11】 各種ガラスの封着後の電流の経時変化を示
す特性図である。
FIG. 11 is a characteristic diagram showing a change with time in current after sealing various glasses.

【符号の説明】[Explanation of symbols]

1 焼結体、2 側面高抵抗層、3 金属電極、4 ス
ピネル粒子、5 酸化亜鉛粒子、6 酸化ビスマス、7
双晶境界、8 低温焼成セラミクス本体、9非鉛ガラ
ス系側面高抵抗層。
Reference Signs List 1 sintered body, 2 side high resistance layer, 3 metal electrode, 4 spinel particles, 5 zinc oxide particles, 6 bismuth oxide, 7
Twin boundary, 8 low temperature fired ceramic body, 9 lead-free glass side high resistance layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加東 智明 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 河又 巌 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 河原 一雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山下 秀 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4G030 AA32 AA42 AA43 BA04 CA01 CA05 GA08 GA25 GA27 GA33 5E034 CC03 DE08 DE12 DE20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoaki Kato 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsui Electric Co., Ltd. (72) Inventor Iwao Kawamata 2-3-2 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Kazuo Kawahara 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Hide Yamashita 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsushi F term (reference) in Denki Co., Ltd. 4G030 AA32 AA42 AA43 BA04 CA01 CA05 GA08 GA25 GA27 GA33 5E034 CC03 DE08 DE12 DE20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とし、添加物として少
なくとも酸化ビスマスとおよび酸化アンチモンを含む電
圧非直線抵抗体の製造方法において、酸化ビスマスおよ
び酸化アンチモンの混合粉を仮焼きし、前記混合粉、酸
化亜鉛および他の添加物からなる組成物を700〜10
00℃で加熱焼結し、室温まで冷却した後、この焼結体
を再度600℃〜750℃の範囲で再加熱処理すること
により、前記焼結体中に含まれる全酸化ビスマスのうち
80%以上を体心立方晶のγ-Bi23に転化すること
を特徴とする電圧非直線抵抗体の製造方法。
1. A method for manufacturing a voltage non-linear resistor comprising zinc oxide as a main component and at least bismuth oxide and antimony oxide as additives, wherein a mixed powder of bismuth oxide and antimony oxide is calcined, and , Zinc oxide and other additives in a composition of 700-10
After sintering at 00 ° C. and cooling to room temperature, the sintered body is reheated again in the range of 600 ° C. to 750 ° C., whereby 80% of the total bismuth oxide contained in the sintered body is A method for producing a voltage non-linear resistor comprising converting the above into body-centered cubic γ-Bi 2 O 3 .
【請求項2】 再加熱処理時に、焼結体と±20%の範
囲内の膨張係数を有するガラス物質を前記焼結体の側面
部に同時に焼き付け、絶縁層を形成することを特徴とす
る請求項1に記載の電圧非直線抵抗体の製造方法。
2. The method according to claim 1, wherein, during the reheating treatment, a glass material having an expansion coefficient within a range of ± 20% is simultaneously baked on the side surface of the sintered body to form an insulating layer. Item 2. The method for producing a voltage non-linear resistor according to Item 1.
【請求項3】 側面部に焼き付けるガラス物質は、硼珪
酸亜鉛ガラス、硼珪酸ビスマスガラス、硼珪酸アルカリ
ガラスまたは硼酸亜鉛ガラスであり、焼き付け後に得ら
れる厚みを少なくとも20μm以上にすることを特徴と
する請求項1または2に記載の電圧非直線抵抗体の製造
方法。
3. The glass material to be baked on the side portion is zinc borosilicate glass, bismuth borosilicate glass, alkali borosilicate glass or zinc borate glass, and is characterized in that the thickness obtained after baking is at least 20 μm or more. A method for manufacturing the voltage non-linear resistor according to claim 1.
【請求項4】 請求項1ないし3のいずれか1項に記載
の製造方法により製造された電圧非直線抵抗体。
4. A voltage non-linear resistor manufactured by the manufacturing method according to claim 1. Description:
JP2001108872A 2001-04-06 2001-04-06 Voltage nonlinear resistor and manufacturing method therefor Pending JP2002305104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108872A JP2002305104A (en) 2001-04-06 2001-04-06 Voltage nonlinear resistor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108872A JP2002305104A (en) 2001-04-06 2001-04-06 Voltage nonlinear resistor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002305104A true JP2002305104A (en) 2002-10-18

Family

ID=18960928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108872A Pending JP2002305104A (en) 2001-04-06 2001-04-06 Voltage nonlinear resistor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002305104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055586A1 (en) * 2008-11-17 2010-05-20 三菱電機株式会社 Voltage nonlinear resistor, lightning arrester loaded with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JP4755648B2 (en) * 2004-09-15 2011-08-24 エプコス アクチエンゲゼルシャフト Barista
JP2011233567A (en) * 2010-04-23 2011-11-17 Mitsubishi Electric Corp Voltage nonlinear resistor, and lightning arrester mounted with voltage nonlinear resistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755648B2 (en) * 2004-09-15 2011-08-24 エプコス アクチエンゲゼルシャフト Barista
US8130071B2 (en) 2004-09-15 2012-03-06 Epcos Ag Varistor comprising an insulating layer produced from a loading base glass
WO2010055586A1 (en) * 2008-11-17 2010-05-20 三菱電機株式会社 Voltage nonlinear resistor, lightning arrester loaded with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JP5264929B2 (en) * 2008-11-17 2013-08-14 三菱電機株式会社 Method for manufacturing voltage nonlinear resistor
US8562859B2 (en) 2008-11-17 2013-10-22 Mitsubishi Electric Corporation Voltage nonlinear resistor, lightning arrester equipped with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
CN102217010B (en) * 2008-11-17 2014-04-02 三菱电机株式会社 Voltage nonlinear resistor, lightning arrester loaded with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JP2011233567A (en) * 2010-04-23 2011-11-17 Mitsubishi Electric Corp Voltage nonlinear resistor, and lightning arrester mounted with voltage nonlinear resistor

Similar Documents

Publication Publication Date Title
JPS63136603A (en) Manufacture of voltage nonlinear resistor
JP2940486B2 (en) Voltage nonlinear resistor, method for manufacturing voltage nonlinear resistor, and lightning arrester
US5610570A (en) Voltage non-linear resistor and fabricating method thereof
JP2002305104A (en) Voltage nonlinear resistor and manufacturing method therefor
JP2933881B2 (en) Voltage nonlinear resistor, method of manufacturing the same, and lightning arrester mounted with the voltage nonlinear resistor
JPH0136684B2 (en)
EP2144256B1 (en) Current/voltage nonlinear resistor
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JP3003374B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2692210B2 (en) Zinc oxide varistor
WO2010055586A1 (en) Voltage nonlinear resistor, lightning arrester loaded with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JP2002217006A (en) Nonlinear resistor
JPH0734403B2 (en) Voltage nonlinear resistor
JPH09205006A (en) Nonlinear voltage resistor and its manufacturing method
JP2001044008A (en) Zinc oxide nonlinear resistor and manufacture method therefor
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JP2002289408A (en) Method for manufacturing voltage nonlinear resistor
JPH09162016A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JP2001052907A (en) Ceramic element and manufacturing method
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2002305105A (en) Method for manufacturing voltage nonlinear resistor
JP5388937B2 (en) Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor
JP2012060003A (en) Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector
JP2020047685A (en) Zinc oxide element
JPH04253301A (en) Manufacture of non-linear varistor