JP5334636B2 - Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor - Google Patents
Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor Download PDFInfo
- Publication number
- JP5334636B2 JP5334636B2 JP2009061786A JP2009061786A JP5334636B2 JP 5334636 B2 JP5334636 B2 JP 5334636B2 JP 2009061786 A JP2009061786 A JP 2009061786A JP 2009061786 A JP2009061786 A JP 2009061786A JP 5334636 B2 JP5334636 B2 JP 5334636B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- voltage
- voltage non
- cro
- linear resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 28
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 23
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 23
- 229910052783 alkali metal Inorganic materials 0.000 claims description 22
- 150000001340 alkali metals Chemical class 0.000 claims description 22
- 239000011734 sodium Substances 0.000 claims description 21
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 19
- 229910052708 sodium Inorganic materials 0.000 claims description 19
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 18
- 229910052700 potassium Inorganic materials 0.000 claims description 18
- 239000011591 potassium Substances 0.000 claims description 18
- 238000002441 X-ray diffraction Methods 0.000 claims description 17
- 239000011787 zinc oxide Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 16
- 238000010304 firing Methods 0.000 claims description 13
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 11
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 8
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 7
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052596 spinel Inorganic materials 0.000 claims description 4
- 239000011029 spinel Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 230000007547 defect Effects 0.000 description 17
- 239000000843 powder Substances 0.000 description 12
- 230000002950 deficient Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 229910000480 nickel oxide Inorganic materials 0.000 description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004110 Zinc silicate Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000003323 beak Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009862 microstructural analysis Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 235000019352 zinc silicate Nutrition 0.000 description 1
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Thermistors And Varistors (AREA)
Description
本発明は、避雷器、サージアブゾーバーなどに好適に用いられる電圧非直線抵抗体、この電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法に関するものである。 The present invention relates to a voltage non-linear resistor suitably used for a lightning arrester, a surge absorber, and the like, a lightning arrester equipped with the voltage non-linear resistor, and a method for manufacturing the voltage non-linear resistor.
従来、避雷器、サージアブゾーバーなどに用いられる電圧非直線抵抗体は、主成分である酸化亜鉛(ZnO)に電圧非直線性の発現に必須である酸化ビスマスをはじめ、電気特性の改善に有効な添加物を添加した組成物を粉砕、混合、造粒、成形、焼成及び後熱処理の各工程を経た焼結体からなり、この焼結体に電極と側面高抵抗層とを設けることによって構成されている。 Conventionally, voltage non-linear resistors used for lightning arresters, surge absorbers, etc. are effective additions to zinc oxide (ZnO), the main component, for improving electrical characteristics, including bismuth oxide, which is essential for the expression of voltage non-linearity. It is composed of a sintered body that has been subjected to pulverization, mixing, granulation, molding, firing, and post-heat treatment, and is provided with an electrode and a side high resistance layer on the sintered body. Yes.
電圧非直線抵抗体の動作は、サージエネルギーが印加されない待機状態と、サージエネルギーが加わる動作状態とに大きく分けられる。動作状態における電圧非直線性の良否を表す指標として平坦率が用いられ、この値を小さくするための技術開発が鋭意進められている。平坦率は、電圧非直線抵抗体に大きさの異なる2つの電流を流した時に電圧非直線抵抗体の両端に発生する電圧の比として定義され、その評価に用いられる電流の大きさは電圧非直線抵抗体の直径によって異なる。例えば、大電流域特性を反映する数値である10kA通電時の電圧値(V10kA)と、2mA通電時の電圧値(V2mA)との比(V10kA/V2mA)が平坦率として用いられる。 The operation of the voltage non-linear resistor is broadly divided into a standby state where no surge energy is applied and an operation state where surge energy is applied. The flatness ratio is used as an index representing the quality of voltage nonlinearity in the operating state, and technological development for reducing this value has been intensively advanced. The flatness ratio is defined as the ratio of the voltages generated at both ends of the voltage nonlinear resistor when two currents having different sizes are passed through the voltage nonlinear resistor. It depends on the diameter of the linear resistor. For example, the ratio (V 10kA / V 2mA ) of the voltage value (V 10kA ) at the time of 10 kA energization and the voltage value (V 2mA ) at the time of 2 mA energization, which is a numerical value reflecting the large current region characteristics, is used as the flat rate. .
電圧非直線抵抗体の平坦率等の電気特性は、焼結体の微細構造に大きく左右される。焼結体は大きく分けて酸化亜鉛粒子、亜鉛とアンチモンとを主成分とするスピネル粒子、粒界の3重点近辺に存在する酸化ビスマス相から構成される。電圧非直線性の発現に必須の添加物であるビスマスは、酸化ビスマス相だけでなく、酸化亜鉛粒子間の粒界に微量ながら存在することが知られている(例えば、非特許文献1を参照)。また、その他にも添加物によってはシリコンを主成分とするケイ酸亜鉛粒子も観察される。 The electrical characteristics such as the flatness of the voltage nonlinear resistor greatly depend on the microstructure of the sintered body. The sintered body is roughly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase existing in the vicinity of the triple point of the grain boundary. It is known that bismuth, which is an additive essential for the expression of voltage non-linearity, exists not only in a bismuth oxide phase but also in a grain boundary between zinc oxide particles in a small amount (for example, see Non-Patent Document 1) ). In addition, zinc silicate particles mainly composed of silicon are also observed depending on the additive.
上述したような焼結体の微細構造は、添加物の種類や添加量及び焼成を中心とする製造条件に大きく依存することが知られており、これまで、電圧非直線抵抗体の電気特性を改善するための様々な検討がなされている。
例えば、特許文献1には、酸化亜鉛、酸化アンチモン及び酸化ビスマスを特定の割合で配合した組成物を1000℃以下の温度で焼成することで、平坦率(V2.5kA/V1mA)が1.80未満である電圧非直線性に優れた電圧非直線抵抗体を低コストで得る方法が開示されている。また、特許文献2には、酸化亜鉛を主成分とし、酸化ビスマス等を含む電圧非直線抵抗体に、酸化ナトリウムを添加物として添加することで、サージ印加後の制限電圧変化率及び吸湿特性が改善されることが記載されている。
It is known that the microstructure of the sintered body as described above largely depends on the type and amount of additive and the manufacturing conditions centering on firing, and so far, the electrical characteristics of the voltage nonlinear resistor are Various studies have been made to improve the situation.
For example, Patent Document 1 discloses that a flattening ratio (V 2.5 kA / V 1 mA ) is 1. by baking a composition containing zinc oxide, antimony oxide and bismuth oxide in a specific ratio at a temperature of 1000 ° C. or lower. A method of obtaining a voltage non-linear resistor excellent in voltage non-linearity that is less than 80 at low cost is disclosed. In addition, Patent Document 2 discloses that the voltage change rate and moisture absorption characteristics after surge application are increased by adding sodium oxide as an additive to a voltage nonlinear resistor containing zinc oxide as a main component and containing bismuth oxide or the like. It is described that it is improved.
電圧非直線抵抗体を低コストで製造するには、特許文献1に開示されるように1000℃以下で焼成を行う必要があるが、1000℃以下の焼成で得られる従来の電圧非直線抵抗体は、1000℃を超える焼成で得られる電圧非直線抵抗体と比較して、電圧非直線抵抗体間で平坦率等の電気特性のばらつきが大きいという課題があった。特に、平坦率、動作開始電圧(バリスタ電圧)等に関する規格値が厳しい場合、電圧非直線抵抗体の製造過程において、電気特性不良品が大量に発生することとなり、不良率を低減できない、言い換えれば歩留まりを上げることができないという課題があった。
従って、本発明は、上記のような課題を解決するためになされたものであり、優れた電圧非直線性を有する電圧非直線抵抗体を低不良率で提供することを目的とする。
In order to manufacture a voltage nonlinear resistor at low cost, it is necessary to perform firing at 1000 ° C. or less as disclosed in Patent Document 1, but a conventional voltage nonlinear resistor obtained by firing at 1000 ° C. or less. There is a problem that variation in electrical characteristics such as a flat rate is large between voltage non-linear resistors as compared with a voltage non-linear resistor obtained by firing exceeding 1000 ° C. In particular, when the standard values for flatness ratio, operation start voltage (varistor voltage), etc. are severe, in the process of manufacturing voltage nonlinear resistors, a large number of defective electrical characteristics occur, and the defect rate cannot be reduced. There was a problem that the yield could not be increased.
Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide a voltage non-linear resistor having excellent voltage non-linearity with a low defect rate.
これまで、例えば、特開平8−138910号公報に開示されるように、電圧非直線抵抗体中のナトリウムやカリウムの量が増大すると、電気特性は悪化するものと認識されており、その混入量を極力少なくすることによって優れた電圧非直線性を達成しようとする試みがなされてきた。しかしながら、本発明者らが、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン及び酸化クロムを必須成分として含む組成物の配合や焼成温度について種々検討した結果、1000℃以下で焼成を行う場合、ナトリウム等のアルカリ金属を組成物に添加すると、電圧非直線抵抗体間で平坦率のばらつきに大きな差異が生じることが分かった。更に、その現象を分析機器により詳細に調査した結果、平坦率のばらつきが大きいものでは、立方晶Bi38CrO60が正方晶Bi16CrO27に対して或る比率以上存在すること、言い換えれば平坦率のばらつきが小さいものでは、正方晶Bi16CrO27に対する立方晶Bi38CrO60の存在比率が或る値未満であること、及びその存在比率は、アルカリ金属の添加量を調整することにより制御可能であることを見出し、本発明を完成させるに至った。 Until now, for example, as disclosed in Japanese Patent Laid-Open No. 8-138910, it has been recognized that when the amount of sodium or potassium in the voltage non-linear resistor increases, the electrical characteristics deteriorate, Attempts have been made to achieve excellent voltage non-linearity by minimizing. However, as a result of various studies on the composition and firing temperature of the composition containing zinc oxide as a main component and containing bismuth oxide, antimony oxide and chromium oxide as essential components, the inventors have conducted firing at 1000 ° C. or lower. It has been found that when an alkali metal such as sodium is added to the composition, there is a large difference in variation in flatness ratio between voltage nonlinear resistors. Further, as a result of examining the phenomenon in detail with an analytical instrument, when the variation in flatness is large, cubic Bi 38 CrO 60 is present in a certain ratio or more with respect to tetragonal Bi 16 CrO 27 , in other words, flatness. In the case where the variation in the rate is small, the abundance ratio of cubic Bi 38 CrO 60 to tetragonal Bi 16 CrO 27 is less than a certain value, and the abundance ratio is controlled by adjusting the addition amount of alkali metal. The inventors have found that this is possible and have completed the present invention.
即ち、本発明は、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、並びにカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を含む組成物を1000℃以下で焼成する電圧非直線抵抗体の製造方法であって、アルカリ金属の添加量を調整することによって、得られる焼結体における正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する立方晶Bi38CrO60の(321)面のX線回折ピーク強度(B)の比(B/A)が0以上0.2以下の範囲となるように調整することを特徴とする電圧非直線抵抗体の製造方法である。アルカリ金属の添加により立方晶Bi38CrO60の生成が抑制されるメカニズムは不明であるが、立方晶Bi38CrO60と正方晶Bi16CrO27との存在比率が平坦率のばらつきに影響を及ぼすことは明らかである。
また、本発明者らは、上記製造方法により得られる焼結体の微細構造を分析したところ、正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する立方晶Bi38CrO60の(321)面のX線回折ピーク強度(B)の比(B/A)が0以上0.2以下の範囲である電圧非直線抵抗体は、酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相とから主として構成され、酸化ビスマス相中にカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が存在することも見出した。
That is, the present invention bakes a composition containing zinc oxide as a main component and containing at least one alkali metal selected from the group consisting of bismuth oxide, antimony oxide, chromium oxide, and potassium and sodium at 1000 ° C. or lower. A method for producing a voltage non-linear resistor, which is obtained by adjusting the amount of alkali metal added to the (123) plane X-ray diffraction peak intensity (A) of tetragonal Bi 16 CrO 27 in the obtained sintered body. A voltage nonlinearity characterized by adjusting the ratio (B / A) of the X-ray diffraction peak intensity (B) of the (321) plane of cubic Bi 38 CrO 60 to be in the range of 0 to 0.2. It is a manufacturing method of a resistor. The mechanism by which the formation of cubic Bi 38 CrO 60 is suppressed by the addition of alkali metal is unknown, but the abundance ratio of cubic Bi 38 CrO 60 and tetragonal Bi 16 CrO 27 affects the variation in flatness. It is clear.
In addition, the inventors analyzed the microstructure of the sintered body obtained by the above production method, and found that cubic Bi 38 with respect to the X-ray diffraction peak intensity (A) of the (123) plane of tetragonal Bi 16 CrO 27. The voltage nonlinear resistor in which the ratio (B / A) of the X-ray diffraction peak intensity (B) of the (321) plane of CrO 60 is in the range of 0 to 0.2 is the zinc oxide particles, zinc and antimony. It has also been found that at least one alkali metal selected mainly from the group consisting of potassium and sodium is present in the bismuth oxide phase mainly composed of spinel particles as main components and a bismuth oxide phase.
本発明によれば、優れた電圧非直線性を有する電圧非直線抵抗体を低不良率で提供することができる。また、本発明による電圧非直線抵抗体を用いることで、優れた保護性能を有する避雷器及びサージアブソーバーといった過電圧保護装置を低コストで実現することができる。 According to the present invention, a voltage nonlinear resistor having excellent voltage nonlinearity can be provided with a low defect rate. Moreover, by using the voltage non-linear resistor according to the present invention, an overvoltage protection device such as a lightning arrester and a surge absorber having excellent protection performance can be realized at low cost.
以下、本発明の実施の形態について説明する。
実施の形態1.
本発明の実施の形態による電圧非直線抵抗体は、酸化亜鉛(ZnO)を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、並びにカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を含む組成物を1000℃以下で焼成したことにより得られるものである。このようにして得られる焼結体は、図1に示すように、酸化亜鉛粒子1と、亜鉛及びアンチモンを主成分とするスピネル粒子2と、酸化ビスマス相3とから主として構成され、酸化亜鉛結晶粒子内には双晶境界4が存在している。更に、酸化ビスマス相中には、添加されたアルカリ金属が存在することが、微細構造分析により確認されている。更に、酸化ビスマス相中に存在するアルカリ金属により立方晶Bi38CrO60の生成が抑制されているため、焼結体中に立方晶Bi38CrO60は存在しないか、又は正方晶Bi16CrO27に比べてかなり少ない量で存在しており、具体的には、X線回折法による分析で、正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する立方晶Bi38CrO60の(321)面のX線回折ピーク強度(B)の比(B/A)が0以上0.24未満の範囲となるような量である。立方晶Bi38CrO60の存在量をこの数値範囲に規定した理由は、立方晶Bi38CrO60の存在量が0.24以上になると電圧非直線抵抗体の電気特性のばらつきが極端に大きくなり、不良率を低減することができないためである。
Embodiments of the present invention will be described below.
Embodiment 1 FIG.
The voltage non-linear resistor according to the embodiment of the present invention is composed of zinc oxide (ZnO) as a main component and at least one alkali metal selected from the group consisting of bismuth oxide, antimony oxide, chromium oxide, and potassium and sodium. It is obtained by calcining a composition containing no more than 1000 ° C. The sintered body thus obtained is mainly composed of zinc oxide particles 1, spinel particles 2 mainly composed of zinc and antimony, and
本実施の形態において、焼成される組成物は、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、並びにカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を含有するものである。 In the present embodiment, the composition to be fired contains zinc oxide as a main component and contains at least one alkali metal selected from the group consisting of bismuth oxide, antimony oxide, chromium oxide, and potassium and sodium. It is.
酸化亜鉛(ZnO)は、電圧非直線性の改善、エネルギー耐量の向上及び長寿命化の総合的観点から、組成物中に、90モル%以上98モル%以下の範囲で含まれることが好ましく、95モル%以上98モル%以下の範囲で含まれることが更に好ましい。酸化亜鉛としては、通常、平均粒子径が1μm以下の粉末を用いることが好ましい。 Zinc oxide (ZnO) is preferably contained in the composition in a range of 90 mol% or more and 98 mol% or less from the comprehensive viewpoint of improvement in voltage nonlinearity, improvement in energy resistance and life extension. More preferably, it is contained in the range of 95 mol% or more and 98 mol% or less. As zinc oxide, it is usually preferable to use a powder having an average particle diameter of 1 μm or less.
酸化ビスマス(Bi2O3)は、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.5モル%以上2モル%以下の範囲で含まれることが好ましく、0.7モル%以上1.5モル%以下の範囲で含まれることが更に好ましい。
酸化アンチモン(Sb2O3)は、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で含まれることが好ましく、0.2モル%以上0.8モル%以下の範囲で含まれることが更に好ましい。
また、電圧非直線性及び課電寿命をより向上させるため、酸化ビスマス(Bi2O3)及び酸化アンチモン(Sb2O3)は、組成物中に、総量で0.5モル%以上2モル%以下の範囲で含まれることが好ましく、1.0モル%以上1.5モル%以下の範囲で含まれることが更に好ましい。
Bismuth oxide (Bi 2 O 3 ) is preferably contained in the composition in the range of 0.5 mol% or more and 2 mol% or less in order to further improve the voltage non-linearity and the charging life. More preferably, it is contained in the range of 7 mol% or more and 1.5 mol% or less.
Antimony oxide (Sb 2 O 3 ) is preferably contained in the composition in the range of 0.1 mol% or more and 2 mol% or less in order to further improve the voltage non-linearity and the charging life. More preferably, it is contained in the range of 2 mol% or more and 0.8 mol% or less.
Further, in order to further improve the voltage nonlinearity and the charging life, bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) are added in a total amount of 0.5 mol% or more and 2 mol. %, Preferably in the range of 1.0 mol% or more and 1.5 mol% or less.
酸化クロム(Cr2O3)は、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.05モル%以上0.5モル%以下の範囲で含まれることが好ましく、0.1モル%以上0.3モル%以下の範囲で含まれることが更に好ましい。 Chromium oxide (Cr 2 O 3 ) is preferably contained in the composition in a range of 0.05 mol% or more and 0.5 mol% or less in order to further improve the voltage nonlinearity and the charging life. More preferably, it is contained in the range of 0.1 mol% or more and 0.3 mol% or less.
カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属は、焼結体における正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する立方晶Bi38CrO60の(321)面のX線回折ピーク強度(B)の比(B/A)が0以上0.24未満の範囲となるように適宜調整して添加すればよいが、平坦率の小さい電圧非直線抵抗体を低不良率で得るために、組成物中に0.02モル%以上0.06モル%以下の範囲で添加することが好ましい。このアルカリ金属の添加量が、0.06モル%を超えると、不良率は低減されるものの、平坦率が悪化する傾向にあるため好ましくない。このアルカリ金属は、通常、平均粒子径が1μm以下のNa2CO3粉末及びK2CO3粉末として配合するか、あるいはこれらを溶かした水溶液として配合することが好ましい。 At least one alkali metal selected from the group consisting of potassium and sodium is cubic Bi 38 CrO 60 with respect to the X-ray diffraction peak intensity (A) of the (123) plane of tetragonal Bi 16 CrO 27 in the sintered body. A voltage non-linearity with a small flatness ratio may be added by appropriately adjusting the ratio (B / A) of the X-ray diffraction peak intensity (B) of the (321) plane to be in the range of 0 to less than 0.24. In order to obtain a resistor with a low defect rate, it is preferable to add it in the range of 0.02 mol% or more and 0.06 mol% or less in the composition. If the amount of alkali metal added exceeds 0.06 mol%, the defective rate is reduced, but the flatness tends to deteriorate, which is not preferable. This alkali metal is usually preferably blended as Na 2 CO 3 powder and K 2 CO 3 powder having an average particle size of 1 μm or less, or as an aqueous solution in which these are dissolved.
本実施の形態における組成物には、電圧非直線性及び課電寿命をより向上させるため、上記した成分以外に、酸化ニッケル(NiO)、二酸化マンガン(MnO2)、酸化コバルト(Co3O4)、硝酸アルミニウム(Al(NO3)3)、ホウ酸(H3BO3)、二酸化珪素等を配合してもよい。これらの酸化物は、通常、組成物中に、総量で1モル%以上2モル%以下の範囲である。また、これらの酸化物としては、通常、平均粒子径が1μm以下の粉末を用いることが好ましい。 In the composition of the present embodiment, in order to further improve the voltage non-linearity and the charging life, in addition to the above components, nickel oxide (NiO), manganese dioxide (MnO 2 ), cobalt oxide (Co 3 O 4). ), Aluminum nitrate (Al (NO 3 ) 3 ), boric acid (H 3 BO 3 ), silicon dioxide or the like may be blended. These oxides are usually in the range of 1 mol% to 2 mol% in the total amount in the composition. Moreover, as these oxides, it is usually preferable to use a powder having an average particle diameter of 1 μm or less.
電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で酸化ニッケルを配合してもよい。
電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で二酸化マンガンを配合してもよい。
電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で酸化コバルトを配合してもよい。
電圧非直線性をより向上させるため、組成物中に、0.001モル%以上0.01モル%以下の範囲で硝酸アルミニウムを配合してもよい。
電圧非直線性をより向上させ、焼結体中の微細孔(ポア)を減じエネルギー耐量をより向上させるため、組成物中に、0.01モル%以上0.2モル%以下の範囲でホウ酸を配合してもよい。
In order to further improve the voltage non-linearity and the service life, nickel oxide may be blended in the composition in the range of 0.1 mol% to 2 mol%.
In order to further improve the voltage nonlinearity and the charging life, manganese dioxide may be blended in the composition in the range of 0.1 mol% to 2 mol%.
In order to further improve the voltage non-linearity and the service life, cobalt oxide may be blended in the composition in the range of 0.1 mol% to 2 mol%.
In order to further improve the voltage nonlinearity, aluminum nitrate may be blended in the composition in the range of 0.001 mol% to 0.01 mol%.
In order to further improve the voltage non-linearity, reduce pores in the sintered body and further improve the energy resistance, boron is added in the range of 0.01 mol% to 0.2 mol% in the composition. An acid may be blended.
次に、本発明の実施の形態による電圧非直線抵抗体の製造方法について具体的に説明する。上記した原料から構成される組成物を調製した後、これに水、分散剤及びポリビニルアルコール等の結合剤(バインダー)を添加し、粉砕・混合を十分に行って均一な組成のスラリーを作製する。このスラリーをスプレードライヤーで乾燥・造粒して造粒物を得る。得られた造粒物を、例えば200kgf/cm2以上500kgf/cm2以下の成形圧で成形して所定形状の成形体を得る。次に、成形体を、大気中又は酸素雰囲気中で、450℃程度に加熱してバインダーを除去し、続いて、1000℃以下で焼成して焼結体を得る。必要に応じて、この焼結体に、例えばアルミニウム溶射等により電極を形成したり、ガラスの焼き付けや抵抗値の高い拡散層の導入等により側面高抵抗層を形成してもよい。
本実施の形態による電圧非直線抵抗体の製造方法によれば、優れた電圧非直線性を有する電圧非直線抵抗体を低不良率で得られるにも関わらず、焼成温度が1000℃以下と低いため、焼成時の電力消費量を大幅に削減することができる。このように、本実施の形態による電圧非直線抵抗体の製造方法は、従来の製造方法に比べて製造時のCO2排出量を大幅に削減することができるので、環境に優しい方法といえる。
Next, a method for manufacturing the voltage nonlinear resistor according to the embodiment of the present invention will be specifically described. After preparing the composition composed of the above-mentioned raw materials, water, a dispersant, and a binder (binder) such as polyvinyl alcohol are added thereto, and the mixture is sufficiently pulverized and mixed to prepare a slurry having a uniform composition. . This slurry is dried and granulated with a spray dryer to obtain a granulated product. The obtained granules to obtain a molded body having a predetermined shape by molding, for example, 200 kgf / cm 2 or more 500 kgf / cm 2 or less of the molding pressure. Next, the molded body is heated to about 450 ° C. in air or an oxygen atmosphere to remove the binder, and then fired at 1000 ° C. or lower to obtain a sintered body. If necessary, an electrode may be formed on the sintered body by, for example, aluminum spraying, or a side high resistance layer may be formed by baking a glass or introducing a diffusion layer having a high resistance value.
According to the method for manufacturing a voltage non-linear resistor according to the present embodiment, the firing temperature is as low as 1000 ° C. or lower despite the fact that a voltage non-linear resistor having excellent voltage non-linearity can be obtained with a low defect rate. Therefore, the power consumption during firing can be greatly reduced. Thus, the method for manufacturing a voltage non-linear resistor according to the present embodiment can be said to be an environmentally friendly method because CO 2 emission during manufacturing can be greatly reduced as compared with the conventional manufacturing method.
更に、本実施の形態によって得られる電圧非直線抵抗体を単体で又は積層して避雷器に搭載すれば、優れた保護性能を有する避雷器及びサージアブソーバーといった過電圧保護装置を低コストで提供することができる。 Furthermore, if the voltage non-linear resistor obtained by the present embodiment is singly or stacked and mounted on a lightning arrester, an overvoltage protection device such as a lightning arrester and surge absorber having excellent protection performance can be provided at low cost. .
以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1〜10及び比較例1〜6>
酸化ビスマス(Bi2O3)粉末 0.9モル%、酸化アンチモン(Sb2O3)粉末 0.4モル%、酸化ニッケル(NiO)粉末 0.5モル%、二酸化マンガン(MnO2)粉末 0.5モル%、酸化クロム(Cr2O3)粉末 0.1モル%、酸化コバルト(Co3O4)粉末 0.4モル%、硝酸アルミニウム(Al(NO3)3・9H2O) 0.004モル%及びホウ酸(H3BO3) 0.16モル%を配合したものを基本組成とし、これにNa2CO3又はK2CO3を0モル%〜0.08モル%の範囲で添加し、表1に示す16種の組成物を用意した。残部は酸化亜鉛(ZnO)である。なお、それぞれの原料には工業用原料又は試薬を用い、粉末原料についてはすべて平均粒子径が1μm以下のものを使用した。
表1に示した組成物それぞれに、純水、分散剤及び結合剤を添加し、粉砕・混合を十分に行って均一な組成を持つスラリーを作製した。
作製したスラリーをスプレードライヤーで造粒し、得られた造粒粉を成形圧500kgf/cm2で成形して、直径40mm、厚さ10mm程度のディスク状の成形体を得た。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
<Examples 1-10 and Comparative Examples 1-6>
Bismuth oxide (Bi 2 O 3 ) powder 0.9 mol%, antimony oxide (Sb 2 O 3 ) powder 0.4 mol%, nickel oxide (NiO) powder 0.5 mol%, manganese dioxide (MnO 2 ) powder 0 0.5 mol%, chromium oxide (Cr 2 O 3 ) powder 0.1 mol%, cobalt oxide (Co 3 O 4 ) powder 0.4 mol%, aluminum nitrate (Al (NO 3 ) 3 .9H 2 O) 0 0.004 mol% and boric acid (H 3 BO 3 ) 0.16 mol% are used as the basic composition, and Na 2 CO 3 or K 2 CO 3 ranges from 0 mol% to 0.08 mol%. 16 compositions shown in Table 1 were prepared. The balance is zinc oxide (ZnO). In addition, an industrial raw material or a reagent was used for each raw material, and all powder raw materials having an average particle diameter of 1 μm or less were used.
Pure water, a dispersant, and a binder were added to each of the compositions shown in Table 1, and pulverization and mixing were sufficiently performed to prepare a slurry having a uniform composition.
The produced slurry was granulated with a spray dryer, and the resulting granulated powder was molded at a molding pressure of 500 kgf / cm 2 to obtain a disk-shaped molded body having a diameter of about 40 mm and a thickness of about 10 mm.
成形体を、大気中にて、450℃で5時間加熱処理した(脱バインダー工程)後、950℃の焼成温度で5時間焼成を行った(焼成工程)。昇温及び降温速度は50℃/時間とした。 The molded body was heat-treated in the atmosphere at 450 ° C. for 5 hours (debinding step), and then fired at a firing temperature of 950 ° C. for 5 hours (firing step). The temperature raising and lowering rate was 50 ° C./hour.
〔平坦率の評価及び不良率の計算〕
焼結体5の側面に、インパルス電圧印加時の側面閃絡防止用の側面高抵抗層6(樹脂)を塗布し、ディスク両面にはアルミニウム溶射によりアルミニウム電極7を形成して、評価用の試料とした。試料の模式断面図を図2に示した。
[Evaluation of flatness and calculation of defect rate]
A side high resistance layer 6 (resin) for preventing side flashing when an impulse voltage is applied is applied to the side surface of the
平坦率はV2.35kA/V0.46mAにより評価した。V2.35kAは試料に8×20μsのインパルス電圧を印加し、そのピーク値を読み取ってV2.35kAとした。また、V0.46mAは60Hzの交流電圧(正弦波)を用いて測定を行った。交流を印加した場合、試料を流れる電流は抵抗性成分(Ir)と容量性成分(Ic)に分かれるが、抵抗分もれ電流抽出装置を用いてIrを抽出した。具体的にはIrが0.46mAとなる印加電圧を読み取りV0.46mAとした。
実施例1〜10及び比較例1〜6の試料では焼成後の不良率を評価した。電気特性良品(各実施例、比較例の中でV0.46mAの値が最も大きいもの)と比較して、V0.46mAが20〜30V/mm低下し且つ平坦率が0.1程度大きくなるものを電気特性不良品とし、不良率を下記の式に従って計算した。不良率が0%でないものは、V0.46mAの値の低下が見られないものを良品として、その平坦率を示した。良品の平坦率、不良率の評価結果を表1に示した。
不良率=電気特性不良品の数÷全数×100(%)
The flatness was evaluated based on V 2.35 kA / V 0.46 mA . For V 2.35 kA, an impulse voltage of 8 × 20 μs was applied to the sample, and the peak value was read as V 2.35 kA . V 0.46 mA was measured using an AC voltage (sine wave) of 60 Hz. When alternating current is applied, the current flowing through the sample is divided into a resistive component (Ir) and a capacitive component (Ic). Ir was extracted using a resistance leakage current extraction device. Specifically, the applied voltage at which Ir becomes 0.46 mA was read and set to V 0.46 mA .
In the samples of Examples 1 to 10 and Comparative Examples 1 to 6, the defect rate after firing was evaluated. Compared with non-defective electrical characteristics (the value of V 0.46 mA is the largest among the examples and comparative examples), V 0.46 mA is reduced by 20 to 30 V / mm and the flatness is increased by about 0.1. The defective rate was calculated according to the following formula. Those having a non-defective rate of 0% showed a flat rate as a non-defective product having no decrease in the value of V 0.46 mA . Table 1 shows the evaluation results of the flatness and defect rate of the good products.
Defect rate = number of defective electrical characteristics / total number x 100 (%)
表1に示されるように、実施例1〜10では、試料間で平坦率のばらつきが極めて小さく、不良率が0%であった。これらの中でも、ナトリウムあるいはカリウムを0.02モル%以上0.06モル%以下の範囲で添加した実施例1〜3及び6〜8は、平坦率が小さく、特に優れた非直線性を有していることが分かる。これに対し、比較例1〜6では、試料間で平坦率のばらつきが大きく、不良率が35%〜100%であった。 As shown in Table 1, in Examples 1 to 10, the variation in the flat rate between samples was extremely small, and the defect rate was 0%. Among these, Examples 1 to 3 and 6 to 8 in which sodium or potassium is added in the range of 0.02 mol% or more and 0.06 mol% or less have a small flatness and particularly excellent non-linearity. I understand that On the other hand, in Comparative Examples 1-6, the variation of the flat rate was large between samples, and the defect rate was 35% to 100%.
〔微細構造の解析〕
焼成体を切断した後、メノウ乳ばちで30分程度粉砕し、粉末X線回折法を用いて焼成体に含まれるビスマスの生成物の結晶構造を解析したところ、すべての試料から、α−Bi2O3、Bi16CrO27の存在が確認され、また一部の試料からはBi38CrO60の存在も確認された。更に、ばらつきが発生した中の電気特性不良品の解析を進めたところ、これらの試料では、Bi16CrO27の(123)面のX線回折ピークの強度(A)とし、Bi38CrO60の(321)面のX線回折ピークの強度(B)とした時に、B/Aが0.24以上であることが確認された。また、実施例5及び10では、Bi38CrO60の存在が確認され、B/Aが0.15〜0.20であったが、試料間で平坦率のばらつきが極めて小さく、不良率が0%であった。結果を表1に示した。
更に、ナトリウムあるいはカリウムを添加した試料を高性能電子プローブマイクロアナライザ(EPMA:Electron Probe Microanalyzer)を用いて分析したところ、酸化ビスマス相中に添加したナトリウムあるいはカリウムが存在することが確認された。
[Analysis of microstructure]
After cutting the fired body, it was pulverized with agate milk beak for about 30 minutes, and the crystal structure of the product of bismuth contained in the fired body was analyzed using a powder X-ray diffraction method. The presence of Bi 2 O 3 and Bi 16 CrO 27 was confirmed, and the presence of Bi 38 CrO 60 was also confirmed from some samples. Furthermore, when the analysis of the defective electrical property product in which the variation occurred was advanced, in these samples, the intensity of the X-ray diffraction peak (A) of the (123) plane of Bi 16 CrO 27 was set as Bi 38 CrO 60 . It was confirmed that B / A was 0.24 or more when the intensity (B) of the X-ray diffraction peak of the (321) plane was used. In Examples 5 and 10, the presence of Bi 38 CrO 60 was confirmed, and B / A was 0.15 to 0.20. However, the variation in the flatness ratio between samples was extremely small, and the defect rate was 0. %Met. The results are shown in Table 1.
Furthermore, when a sample to which sodium or potassium was added was analyzed using a high performance electron probe microanalyzer (EPMA), it was confirmed that sodium or potassium added was present in the bismuth oxide phase.
これらのことから、ナトリウムあるいはカリウムには、電気特性不良の原因となると考えられるBi38CrO60の生成を直接抑制する効果があることが分かり、また、ナトリウムあるいはカリウムの添加によりBi38CrO60の生成量を特定量未満に調整することで不良率を著しく低減できることが明らかとなった。ただし、実施例4及び9の結果から分かるように、ナトリウムあるいはカリウムを過剰に添加すると、不良率は0%のままであるが、平坦率が悪化する。このように平坦率が大きくなる理由は、添加したナトリウムあるいはカリウムが酸化ビスマス相だけでなく酸化亜鉛粒子にも固溶し始め、酸化亜鉛粒子の抵抗が大幅に増加するためであると考えられる。 From these, the sodium and potassium, found that there is a direct effect of inhibiting the formation of Bi 38 CrO 60 believed to be responsible for the electrical characteristic failure, also, by adding sodium or potassium Bi 38 CrO 60 It was revealed that the defect rate can be remarkably reduced by adjusting the generation amount to less than a specific amount. However, as can be seen from the results of Examples 4 and 9, when sodium or potassium is added excessively, the defective rate remains 0%, but the flat rate deteriorates. The reason why the flatness is increased in this way is considered to be that the added sodium or potassium starts to dissolve in not only the bismuth oxide phase but also the zinc oxide particles, and the resistance of the zinc oxide particles is greatly increased.
また、ナトリウムやカリウムと同様にリチウムの添加実験も実施したが、試料は絶縁物に近い状態となり電気特性の評価ができなかった。すなわち、アルカリ金属であるリチウムは、酸化亜鉛の抵抗を大幅に増大させ、焼結体をほぼ絶縁物に近い状態にすることも確認した。特開平8−138910号公報にも示唆されているように、これまでは、電圧非直線抵抗体中に含まれるアルカリ金属は電気特性を悪化させるものと認識されていたが、本実施例のようにアルカリ金属を積極的に添加することにより優れた電圧非直線性を有する電圧非直線抵抗体が低不良率で得られるという効果は、これまでと全く異なる特異な効果であると言える。 In addition, an experiment of adding lithium was conducted in the same manner as sodium and potassium, but the sample was in a state close to an insulator, and the electrical characteristics could not be evaluated. That is, it was also confirmed that lithium, which is an alkali metal, greatly increases the resistance of zinc oxide and makes the sintered body almost in the state of an insulator. As suggested in Japanese Patent Application Laid-Open No. 8-138910, the alkali metal contained in the voltage nonlinear resistor has been recognized so far as deteriorating the electrical characteristics. It can be said that the effect that a voltage nonlinear resistor having excellent voltage nonlinearity can be obtained with a low defect rate by positively adding an alkali metal to is a peculiar effect completely different from the conventional one.
以上のことから、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、並びにカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を含む組成物を1000℃以下で焼成して電圧非直線抵抗体を製造する際、焼結体における正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する立方晶Bi38CrO60の(321)面のX線回折ピーク強度(B)の比(B/A)が0以上0.24未満の範囲となるようにアルカリ金属の添加量を調整することにより電圧非直線抵抗体間で電気特性のばらつきが小さくなり、不良率を大幅に低減できることが確認された。特に、アルカリ金属を0.02モル%以上0.06モル%以下の範囲で添加することにより、優れた電気特性の電圧非直線抵抗体を低不良率で得ることができる。 From the above, a composition containing zinc oxide as a main component and containing at least one alkali metal selected from the group consisting of bismuth oxide, antimony oxide, chromium oxide, and potassium and sodium is fired at 1000 ° C. or lower. When manufacturing a voltage nonlinear resistor, X-ray diffraction of (321) plane of cubic Bi 38 CrO 60 with respect to (123) plane X-ray diffraction peak intensity (A) of tetragonal Bi 16 CrO 27 in the sintered body By adjusting the addition amount of the alkali metal so that the ratio (B / A) of the peak intensity (B) is in the range of 0 or more and less than 0.24, variation in electrical characteristics between the voltage nonlinear resistors is reduced, It was confirmed that the defect rate can be greatly reduced. In particular, by adding an alkali metal in the range of 0.02 mol% or more and 0.06 mol% or less, a voltage nonlinear resistor having excellent electrical characteristics can be obtained with a low defect rate.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009061786A JP5334636B2 (en) | 2009-03-13 | 2009-03-13 | Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009061786A JP5334636B2 (en) | 2009-03-13 | 2009-03-13 | Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010219154A JP2010219154A (en) | 2010-09-30 |
JP5334636B2 true JP5334636B2 (en) | 2013-11-06 |
Family
ID=42977694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009061786A Expired - Fee Related JP5334636B2 (en) | 2009-03-13 | 2009-03-13 | Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5334636B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012231091A (en) * | 2011-04-27 | 2012-11-22 | Toshiba Corp | Current-voltage nonlinear resistor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329801B2 (en) * | 1980-09-17 | 1988-06-15 | Tokyo Shibaura Electric Co | |
JPH0734401B2 (en) * | 1991-01-29 | 1995-04-12 | 日本碍子株式会社 | Voltage nonlinear resistor |
JP3183933B2 (en) * | 1992-03-13 | 2001-07-09 | 株式会社東芝 | Power resistor |
JPH11340009A (en) * | 1998-05-25 | 1999-12-10 | Toshiba Corp | Nonlinear resistor |
JP3538032B2 (en) * | 1998-08-19 | 2004-06-14 | Tdk株式会社 | Voltage non-linear resistor ceramic composition and voltage non-linear resistor |
JP2003297612A (en) * | 2002-04-03 | 2003-10-17 | Mitsubishi Electric Corp | Voltage nonlinear resistor and its manufacturing method |
JP4292901B2 (en) * | 2002-08-20 | 2009-07-08 | 株式会社村田製作所 | Barista |
-
2009
- 2009-03-13 JP JP2009061786A patent/JP5334636B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010219154A (en) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11340009A (en) | Nonlinear resistor | |
US8535575B2 (en) | Current-voltage non-linear resistor and method of manufacture thereof | |
JPH1012407A (en) | Voltage non-linear resistor, manufacture of voltage non-linear resistor, and lighting arrester | |
JP5334636B2 (en) | Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor | |
JP5264929B2 (en) | Method for manufacturing voltage nonlinear resistor | |
EP2144256B1 (en) | Current/voltage nonlinear resistor | |
JP7242274B2 (en) | voltage nonlinear resistor | |
JP5388937B2 (en) | Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor | |
JP4282243B2 (en) | Non-linear resistor | |
JP2012060003A (en) | Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector | |
JP2008162820A (en) | Voltage nonlinear resistor, and manufacturing method of the same | |
JP2003007512A (en) | Nonlinear resistor element | |
JP6937390B2 (en) | Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods | |
JP2546726B2 (en) | Voltage nonlinear resistor | |
JP2005097070A (en) | Zinc oxide-based sintered compact and zinc oxide varistor | |
JP2001326108A (en) | Voltage nonlinear resistor and its manufacturing method | |
JP5995772B2 (en) | Voltage non-linear resistor, method for manufacturing the same, and overvoltage protection device including the same | |
JP2002305104A (en) | Voltage nonlinear resistor and manufacturing method therefor | |
JP2003297612A (en) | Voltage nonlinear resistor and its manufacturing method | |
JPH01228105A (en) | Manufacture of non-linear voltage resistance | |
WO2020019274A1 (en) | Method for optimizing zinc oxide varistor | |
CN117497267A (en) | Zinc oxide high-gradient nonlinear resistor and preparation method thereof | |
JP2002289408A (en) | Method for manufacturing voltage nonlinear resistor | |
JPH03116902A (en) | Manufacture of varistor | |
KR20040078915A (en) | Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130730 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5334636 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |