JPH01228105A - Manufacture of non-linear voltage resistance - Google Patents

Manufacture of non-linear voltage resistance

Info

Publication number
JPH01228105A
JPH01228105A JP63053677A JP5367788A JPH01228105A JP H01228105 A JPH01228105 A JP H01228105A JP 63053677 A JP63053677 A JP 63053677A JP 5367788 A JP5367788 A JP 5367788A JP H01228105 A JPH01228105 A JP H01228105A
Authority
JP
Japan
Prior art keywords
mol
compound
oxide
voltage
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053677A
Other languages
Japanese (ja)
Inventor
Masami Nakada
中田 正美
Osamu Imai
修 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63053677A priority Critical patent/JPH01228105A/en
Publication of JPH01228105A publication Critical patent/JPH01228105A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the variation in characteristics against a number of lightning surge applications by a method wherein the mixture for insulated layer, consisting of a silicon compound, a zinc compound, a bismuth compound and an antimonial compound for the remaining part, is coated on the side face of a resistor base. CONSTITUTION:The composition of a resistor element, especially the content of silicon oxide is specifically prescribed at 1-4mol% by converting it into SiO2, the composition of the mixture for the insulating coated layer on the side face of the resistor base is set at 50-80mol% by converting the content of silicon compound into SiO2, the content of zinc compound is set at 10-40mol% by converting it into ZnO, the content of bismuth compound is set at 1-5mol% by converting it into Bi2O3, and the remaining part of antimonial compound is specified. Also, the varister voltage of the sintered non-linear voltage resistor is specified at 230-300V per unit length. Accordingly, the adhesion strength of the resistor element and the insulating coated layer at a low temperature can be increased by their synergistic effect, the surface discharge on the side face of the element when lightning surge is impressed, varistor voltage can be maintained high, and a limit voltage ratio can be reduced. As a result, the element having stabilized characteristics even for a number of lightning surge applications can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化亜鉛を主成分とする電圧非直線抵抗体
の製造方法に関し、とくに該電圧非直線抵抗体の電気的
特性の向上を図ろうきするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a voltage non-linear resistor containing zinc oxide as a main component, and in particular aims at improving the electrical characteristics of the voltage non-linear resistor. It is something to wax.

(従来の技術) 通常は絶縁体で、過大な電流が流れたときに導体として
作用する特性を備え、電圧安定素子、す−ジアブソーハ
、アレスタ等に利用される電圧非直線抵抗体は、例えば
所定量の酸化ビスマス、酸化コバルト、酸化マンガン、
酸化アンチモン、酸化クロム、酸化ニッケル等を含有し
残部酸化亜鉛よりなる原料混合物を予め設定された処理
条件に従って加圧成形、焼成し、得られた焼結体に電極
を付設する工程を経て製造され、焼結体のバリスタ電圧
(Vl−a)は180〜200 V/mm程度であツタ
(Prior art) Voltage nonlinear resistors, which are usually insulators and have the property of acting as conductors when an excessive current flows, and are used in voltage stabilizing elements, shock absorbers, arresters, etc., are used for example in certain places. Quantitative amounts of bismuth oxide, cobalt oxide, manganese oxide,
It is manufactured through a process in which a raw material mixture containing antimony oxide, chromium oxide, nickel oxide, etc., with the remainder being zinc oxide, is pressure-formed and fired according to preset processing conditions, and electrodes are attached to the resulting sintered body. The varistor voltage (Vl-a) of the sintered body was approximately 180 to 200 V/mm.

これに関する先行文献として例えば特開昭62−237
703号公報が参照される。
As a prior document related to this, for example, Japanese Patent Application Laid-Open No. 62-237
Reference is made to Publication No. 703.

(発明が解決しようとする課題) 上記公報に開示の技術は、電圧非直線抵抗体を構成する
成分のうちと(にSiO□の含有量を1.0〜3.0モ
ル%の範囲に調整し、B1−3i−5b系酸化物の高抵
抗層を設けることによって電圧非直線抵抗体の特性の改
善を図ろうとするところにある。
(Problems to be Solved by the Invention) The technology disclosed in the above publication adjusts the content of SiO□ in the components constituting the voltage nonlinear resistor to a range of 1.0 to 3.0 mol%. However, attempts are being made to improve the characteristics of the voltage nonlinear resistor by providing a high resistance layer of B1-3i-5b type oxide.

ところで上記の技術は電圧非直線抵抗体素体と絶縁被覆
層との固着力が強く、雷サージ耐量特性の優れた電圧非
直線抵抗体を製造する場合を対象としており、耐量向上
のみならず近年電圧非直線抵抗体を組込むアレスター等
の機器が小型化される中で、このような機器に適合し得
る、より高いバリスタ電圧(V、□)を有し、制限電圧
比が小さく、多数回の雷サージ印加に対して特性変化の
小さい電圧非直線抵抗体が望まれていた。
By the way, the above technology is aimed at manufacturing a voltage non-linear resistor that has strong adhesion between the voltage non-linear resistor element and the insulating coating layer and has excellent lightning surge withstand characteristics. As devices such as arresters that incorporate voltage non-linear resistors are becoming smaller, the varistor has a higher voltage (V, There has been a desire for a voltage nonlinear resistor whose characteristics change little when lightning surges are applied.

この発明の目的は、制限電圧比が小さく、230〜30
0 V/ma+の高いバリスタ電圧を有し多数回の雷サ
ージ印加に対してバリスタ電圧等の特性変化の小さい電
圧非直線抵抗体を製造できる新規な方法を提案するとこ
ろにある。
The purpose of this invention is to have a small limiting voltage ratio of 230 to 30
The purpose of the present invention is to propose a new method for manufacturing a voltage nonlinear resistor that has a high varistor voltage of 0 V/ma+ and whose characteristics such as varistor voltage change little even when lightning surges are applied many times.

ここでバリスタ電圧(Vl−A)とは抵抗体にDCIm
A流すために必要な印加電圧を意味し、素子の厚さを薄
くするにはバリスタ電圧を高める必要がある。また制限
電圧比は抵抗体にある一定電流(−般に10〜40kA
 )を流すために必要な印加電圧とバリスタ電圧との比
を意味し、制限電圧比が小さいほど雷サージに対する機
器の保護性能が向上する。
Here, the varistor voltage (Vl-A) is DCIm applied to the resistor.
It means the applied voltage necessary to cause A to flow, and it is necessary to increase the varistor voltage in order to reduce the thickness of the element. Also, the limiting voltage ratio is a constant current (generally 10 to 40 kA) in the resistor.
) is the ratio of the applied voltage required to flow the varistor voltage, and the smaller the limiting voltage ratio, the better the equipment's protection performance against lightning surges.

(課題を解決するための手段) この発明は酸化ビスマスをBi2O2に換算して0.3
〜2モル%、酸化コバルトをCo2O3に換算して0.
1〜2モル%、酸化マンガンをMn0zに換算して0.
1〜2モル%、酸化アンチモンを5bz03に換算して
0.1〜2モル%、酸化クロムをCr2O2に換算して
0.1〜2モル%、酸化ニッケルをNiOに換算して0
.1〜2モル%、酸化アルミニウムをALO3に換算し
て 0.001〜0.05モル%、酸化ホウ素を820
3に換算して0.005〜0.1モル%、酸化銀を八g
zOに換算して0.001〜0.05モル%および酸化
ケイ素をSiO□に換算して1.0〜4.0モル%を含
み、残部酸化亜鉛になる電圧非直線抵抗体素体の側面に
、けい素化合物をSiO2に換算して50〜80モル%
、亜鉛化合物をZnOに換算して10〜40モル%、ビ
スマス化合物をBi2O3に換算して1〜5モル%およ
び残部アンチモン化合物よりなる絶縁被覆層用の混合物
を塗布し、次いで焼成してなる焼結体で、バリスタ電圧
(Vl−A)が前記焼結単位厚さ(胴)あたり230〜
300vであることを特徴とする電圧非直線抵抗体の製
造方法である。
(Means for solving the problem) This invention converts bismuth oxide into Bi2O2.
~2 mol%, 0.0% in terms of cobalt oxide as Co2O3.
1 to 2 mol%, 0.0% when manganese oxide is converted to Mn0z.
1 to 2 mol%, antimony oxide 0.1 to 2 mol% in terms of 5bz03, chromium oxide 0.1 to 2 mol% in terms of Cr2O2, nickel oxide 0 in terms of NiO
.. 1 to 2 mol%, aluminum oxide converted to ALO3 0.001 to 0.05 mol%, boron oxide 820
0.005 to 0.1 mol% in terms of 3, 8 g of silver oxide
A side surface of a voltage nonlinear resistor element body containing 0.001 to 0.05 mol% in terms of zO and 1.0 to 4.0 mol% in terms of silicon oxide as SiO□, with the remainder being zinc oxide. The silicon compound is 50 to 80 mol% in terms of SiO2.
, a mixture for an insulating coating layer consisting of 10 to 40 mol % of a zinc compound in terms of ZnO, 1 to 5 mol % of a bismuth compound in terms of Bi2O3, and the balance antimony compound is coated and then fired. In the solid body, the varistor voltage (Vl-A) is 230 to 230 per unit thickness (shell) of the sintered unit.
This is a method for manufacturing a voltage nonlinear resistor characterized in that the voltage is 300V.

(作 用) 上述した構成において電圧非直線抵抗体素体の組成、特
に酸化けい素の含有量をSin、に換算して1〜4モル
%と特定し、側面のvA縁縁被覆層混合物の組成特に、
けい素化合物の含有量をSin、に換算して50〜80
モル%、亜鉛化合物の含有量をZnOに換算して10〜
40モル%、ビスマス化合物を旧203に換算して1〜
5モル%、残部アンチモン化合物と特定するとともに、
焼成した電圧非直線抵抗体のバリスタ電圧を単位長さ当
たり230〜300vと特定することにより、その相乗
効果にて通常より低い温度における電圧非直線抵抗体素
体と絶縁被覆層との固着強度を上昇させ、絶縁被覆層の
不完全な密着に起因する雷サージ印加における素子側面
の沿面放電を防止するとともにバリスタ電圧が高く制限
電圧比が小さく、多数回の雷サージ印加に対しても特性
の安定な素子を提供できる。
(Function) In the above configuration, the composition of the voltage nonlinear resistor element, especially the content of silicon oxide, is specified as 1 to 4 mol% in terms of Sin, and the vA edge coating layer mixture on the side surface is In particular, the composition
The content of silicon compounds is converted to Sin and is 50 to 80.
Mol%, content of zinc compound converted to ZnO is 10~
40 mol%, bismuth compound converted to old 203 1~
5 mol%, the balance is identified as an antimony compound,
By specifying the varistor voltage of the fired voltage nonlinear resistor to be 230 to 300 V per unit length, the synergistic effect increases the adhesion strength between the voltage nonlinear resistor element and the insulating coating layer at lower temperatures than usual. This prevents creeping discharge on the side of the element when lightning surges are applied due to incomplete adhesion of the insulation coating layer, and the varistor voltage is high and the limiting voltage ratio is small, making the characteristics stable even when lightning surges are applied multiple times. It is possible to provide a device with

なお、電圧非直線抵抗体素体において各成分の含有量を
制限する理由は以下の通りである。
The reason for limiting the content of each component in the voltage nonlinear resistor element is as follows.

Big(hは粒界層としてZnO粒子間に微構造を形成
するとともにZnO粒子の粒成長を促進する作用がある
。添加量が0.3モル%未満では粒界相が充分に形成さ
れず、この粒界相によって形成される電気的バリヤの高
さが低下して漏洩電流が増加し、低電流域での非直線性
が悪化する。一方、添加量が2モル%を越えると粒界相
が厚くなりすぎたりZnO粒子の粒成長が促進され、制
限電圧比が悪化する。このため、BizOsの添加量は
0.3〜2モル%と限定した。好ましくは0.5〜1.
2モル%がよい。
Big (h has the effect of forming a microstructure between ZnO particles as a grain boundary layer and promoting the grain growth of ZnO particles. If the amount added is less than 0.3 mol%, the grain boundary phase will not be sufficiently formed, The height of the electrical barrier formed by this grain boundary phase decreases, increasing leakage current and worsening nonlinearity in the low current range.On the other hand, if the amount added exceeds 2 mol%, the grain boundary phase becomes too thick, and grain growth of ZnO particles is promoted, deteriorating the limiting voltage ratio.For this reason, the amount of BizOs added is limited to 0.3 to 2 mol%, preferably 0.5 to 1.
2 mol% is good.

Co2O3およびMnO□は、その一部がZnO粒子内
に固溶するとともに一部は粒界相に析出して電気的バリ
ヤの高さを高める作用を有する。これらの含有量がとも
に0.1モル%未満であると電気的バリヤの高さが低下
して低電流域での非直線性が悪化する。
Co2O3 and MnO□ have the effect of increasing the height of the electrical barrier by partially dissolving in the ZnO particles and precipitating in the grain boundary phase. If both of these contents are less than 0.1 mol%, the height of the electrical barrier will decrease and nonlinearity in the low current range will worsen.

一方Co、03及びMnO□の添加量が2モル%を越え
ると粒界相が厚くなりすぎて制限電圧比が悪化する。こ
のため、Co2O3およびMnO,ともにその添加量を
0.1〜2モル%と限定した。好ましくはCo□030
.5〜1.5モル%、Mn0z 0.3〜0.7モル%
がよい。
On the other hand, if the amount of Co, O3, and MnO□ added exceeds 2 mol %, the grain boundary phase becomes too thick and the limiting voltage ratio deteriorates. Therefore, the amounts of both Co2O3 and MnO added were limited to 0.1 to 2 mol%. Preferably Co□030
.. 5 to 1.5 mol%, Mn0z 0.3 to 0.7 mol%
Good.

sb!o3. Crz03およびNiOは、ZnOと反
応してスピネル層を形成することにより、ZnO粒子の
異常粒成長を抑制して焼成体の均一性を向上する作用を
有する。各々添加量が0.1モル%未満ではZnO粒子
の異常粒成長が発生して焼成体の電流分布が不均一にな
る。一方、2モル%を越えると絶縁性のスピネル相が多
くなりすぎて焼成体の電流分布が不均一になる。このた
め、5))z03+ Cr2O3およびNiOの各々を
001〜2モル%と限定した。好ましくは5bzO,0
,8〜1.2モル%、CrzOa O,3〜0.7モル
%、Ni00.8〜1.2モル%がよい。
sb! o3. Crz03 and NiO have the effect of suppressing abnormal grain growth of ZnO particles and improving the uniformity of the fired body by reacting with ZnO to form a spinel layer. If the amount added is less than 0.1 mol %, abnormal grain growth of ZnO particles occurs, resulting in non-uniform current distribution in the fired body. On the other hand, if it exceeds 2 mol %, the insulating spinel phase will be too large and the current distribution in the fired product will become non-uniform. Therefore, 5)) each of z03+ Cr2O3 and NiO was limited to 001 to 2 mol%. Preferably 5bzO,0
, 8 to 1.2 mol %, CrzOa O, 3 to 0.7 mol %, and Ni 0.8 to 1.2 mol %.

A E zOsはZnOに固溶してZnOからなる素子
の抵抗を下げる作用を有している。添加量がo、ooi
モル%未満では素子の抵抗を充分小さくできず制限電圧
比が悪化する。一方、0.05モル%を越えると電気的
バリヤの高さが低下して低電流域での非直線性が悪化す
る。このため、0.001〜0.05モル%と限定した
。好ましくは0.002〜0.005モル%がよい。
A E zOs forms a solid solution in ZnO and has the effect of lowering the resistance of an element made of ZnO. The amount added is o, ooi
If it is less than mol %, the resistance of the element cannot be sufficiently reduced and the limiting voltage ratio deteriorates. On the other hand, if it exceeds 0.05 mol %, the height of the electrical barrier decreases and nonlinearity in the low current range deteriorates. For this reason, it was limited to 0.001 to 0.05 mol%. Preferably it is 0.002 to 0.005 mol%.

B2O3はBi2O3,SiO□とともに粒界相に析出
してZnO粒子の粒成長を促進するとともに、粒界相を
ガラス化して安定にする作用を有する。それらの添加量
がo、oosモル%未満であると粒界相を安定化させる
効果が不充分である。ところで、0.1モル%を越える
と粒界相が厚くなりすぎて制限電圧比が悪化する。この
ため、B20.の添加量はo、oos〜0.1モル%と
限定した。好ましくは0.01〜0.08モル%がよい
B2O3 precipitates in the grain boundary phase together with Bi2O3 and SiO□ to promote grain growth of ZnO particles, and has the effect of vitrifying and stabilizing the grain boundary phase. If the amount added is less than o, oos mol%, the effect of stabilizing the grain boundary phase will be insufficient. By the way, if it exceeds 0.1 mol %, the grain boundary phase becomes too thick and the limiting voltage ratio deteriorates. For this reason, B20. The amount of addition was limited to o, oos to 0.1 mol%. Preferably it is 0.01 to 0.08 mol%.

Ag、0は粒界相に析出して課電によって起こるイオン
移動を抑制して粒界相を安定化する作用を有するが、そ
の添加量が0.001モル%未満であると粒界相を安定
化する効果が不充分である。一方、0.05モル%を越
えると逆に粒界相が不安定になり制限電圧比が悪化する
。よって、Ag、0の添加量は0.001〜0.05モ
ル%と限定した。好ましくは0.005〜0.03モル
%がよい。
Ag,0 has the effect of stabilizing the grain boundary phase by precipitating in the grain boundary phase and suppressing ion movement caused by electric charge, but if the amount added is less than 0.001 mol%, the grain boundary phase will be stabilized. The stabilizing effect is insufficient. On the other hand, if it exceeds 0.05 mol %, the grain boundary phase becomes unstable and the limiting voltage ratio deteriorates. Therefore, the amount of Ag, 0 added was limited to 0.001 to 0.05 mol%. Preferably it is 0.005 to 0.03 mol%.

SingはBizOsとともに粒界相に析出してZnO
粒子の粒成長を抑制し、バリスタ電圧(V、MA)を向
上させる作用を有する。添加量が1モル%未満ではZn
O粒子の粒成長の抑制効果が不充分でありバリスタ電圧
を上昇させることができずしかも課電寿命が劣化し制限
電圧比が増大する。一方4.0モル%を越えると粒界相
が厚くなりすぎて雷サージ耐量特性が悪化するとともに
雷サージ印加後のバリスタ電圧が低下する。このため、
SiO2の添加量は1〜4モル%と限定した。好ましく
は1.5〜2モル%がよい。
Sing precipitates in the grain boundary phase together with BizOs and forms ZnO
It has the effect of suppressing particle growth and improving varistor voltage (V, MA). If the amount added is less than 1 mol%, Zn
The effect of suppressing grain growth of O particles is insufficient, making it impossible to increase the varistor voltage, and furthermore, the charging life deteriorates and the limiting voltage ratio increases. On the other hand, if it exceeds 4.0 mol %, the grain boundary phase becomes too thick, deteriorating the lightning surge resistance characteristics and lowering the varistor voltage after the lightning surge is applied. For this reason,
The amount of SiO2 added was limited to 1 to 4 mol%. Preferably it is 1.5 to 2 mol%.

電圧非直線抵抗体のバリスタ電圧は例えば焼成温度を下
げるなど、焼成条件等を制御することにより230〜3
00 V/nymと限定する。というのはバリスタ電圧
が230 V/nm未満及び300 V/mmを越える
と制限電圧比が増大するとともに、雷サージ印加に対す
るエネルギー耐量が低下し、また雷サージ印加に対する
バリスタ電圧の低下率も大きくなるからである。とくに
バリスタ電圧は240〜280 V/mmが好ましい。
The varistor voltage of the voltage nonlinear resistor can be adjusted to 230 to 3 by controlling the firing conditions, such as lowering the firing temperature.
00 V/nym. This is because when the varistor voltage is less than 230 V/nm or more than 300 V/mm, the limiting voltage ratio increases, the energy withstand capacity against lightning surge application decreases, and the rate of decrease in varistor voltage against lightning surge application also increases. It is from. In particular, the varistor voltage is preferably 240 to 280 V/mm.

ここにエネルギー耐量とはバリスタ電圧の異なる抵抗体
の耐量を相対的に評価する手段であり雷サージ耐量をエ
ネルギー値(電流×電圧×印加時間)で示す。雷サージ
耐量を雷サージ電流値で評価した場合にはバリスタ電圧
の高い素子はど印加電圧が高くなるため耐量値は低い値
を示す。従って正当な評価ができない。
Here, the energy withstand capacity is a means of relatively evaluating the withstand capacity of resistors with different varistor voltages, and the lightning surge withstand capacity is expressed as an energy value (current x voltage x application time). When the lightning surge withstand capacity is evaluated by the lightning surge current value, the element with a high varistor voltage has a high applied voltage, so the withstand capacity value shows a low value. Therefore, a fair evaluation cannot be made.

次に、電圧比直線抵抗体素体の側面に塗布する絶縁被覆
層用混合物の組成のうち、けい素化合物の添加量をSi
O□として50モル%以上80モル%以下としたのは、
その添加量が50モル%未満であると絶縁被覆層が剥離
したり雷サージ耐量特性を向上させることができず一方
、80モル%を越えると絶8i被覆層が吸湿性を示すと
ともに雷サージ耐量特性が向上しないため、けい素化合
物の添加量はSiO1として50〜80モル%と限定し
た。なお、好ましくは50〜70モル%である。
Next, in the composition of the mixture for the insulating coating layer to be applied to the side surface of the voltage ratio linear resistor element, the amount of silicon compound added is
O□ is set to 50 mol% or more and 80 mol% or less because
If the amount added is less than 50 mol%, the insulating coating layer will peel off and the lightning surge resistance characteristics cannot be improved, while if it exceeds 80 mol%, the 8i coating layer will exhibit hygroscopicity and the lightning surge resistance characteristics will fail. Since the properties were not improved, the amount of silicon compound added was limited to 50 to 80 mol% as SiO1. In addition, preferably it is 50-70 mol%.

亜鉛化合物はその添加量がZnOとして10モル%未満
であると絶縁被覆層が吸湿性を示すとともに雷サージ耐
量が向上せず、逆に40モル%を越えると絶縁被覆層が
剥離し易くなる。このため亜鉛化合物の添加量はZnO
として10〜40モル%と限定した。好ましくは20〜
30モル%がよい。亜鉛化合物は後で述べるように低い
温度における素体と絶縁被覆層の密着性向上に大きい効
果を示すと考えられる。
If the amount of the zinc compound added is less than 10 mol% as ZnO, the insulating coating layer will exhibit hygroscopicity and the lightning surge resistance will not improve, while if it exceeds 40 mol%, the insulating coating layer will easily peel off. Therefore, the amount of zinc compound added is
The content was limited to 10 to 40 mol%. Preferably 20~
30 mol% is good. As will be described later, the zinc compound is thought to have a great effect on improving the adhesion between the element body and the insulating coating layer at low temperatures.

ビスマス化合物は、その添加量がBi、03として1モ
ル%未満では、絶縁被覆層が剥離しやすくなり一方5モ
ル%を超えると、雷サージ耐量が低下する。よってビス
マス化合物の添加量はBigOlとして1〜5モル%に
限定した。また、焼成後における絶縁被覆層中にはスピ
ネル(Zntz3Sbzz:+On)も雷サージ耐量向
上の面で必要であるとの理由から残部はアンチモン化合
物とした。
When the bismuth compound is added in an amount less than 1 mol % as Bi, 03, the insulating coating layer tends to peel off, while when it exceeds 5 mol %, the lightning surge resistance decreases. Therefore, the amount of bismuth compound added was limited to 1 to 5 mol% as BigOl. Further, since spinel (Zntz3Sbzz:+On) is also necessary in the insulating coating layer after firing in order to improve lightning surge resistance, the remainder was made of an antimony compound.

焼成後における上記絶縁被覆層の厚みについては30μ
m未満では雷サージ耐量を向上させる効果が極めて小さ
く、一方100μmを超えると密着性が不完全となり剥
離し易くなる。よって焼成後の絶縁被覆層の厚みは30
〜100μmとするのが好ましい。
The thickness of the above insulating coating layer after firing is 30 μm.
If the thickness is less than 100 μm, the effect of improving lightning surge resistance will be extremely small, while if the thickness exceeds 100 μm, the adhesion will be incomplete and peeling will occur easily. Therefore, the thickness of the insulation coating layer after firing is 30
It is preferable to set it as 100 micrometers.

ここで絶縁被覆層用混合物の組成としてけい素化合物、
亜鉛化合物、ビスマス化合物、アンチモン化合物を規定
したが、各化合物とも1000°C以下(好ましくは8
00″C以下)で酸化物に変化するものであればよい。
Here, as the composition of the mixture for the insulating coating layer, a silicon compound,
Although zinc compounds, bismuth compounds, and antimony compounds are specified, each compound must be heated at 1000°C or less (preferably 8°C or less).
Any material may be used as long as it changes to an oxide at temperatures below 00"C).

具体的には炭酸塩、硝酸塩、水酸化物等があげられるが
、酸化物が最も好ましい。
Specific examples include carbonates, nitrates, hydroxides, etc., but oxides are most preferred.

以上のように抵抗体素体側面に塗布する絶縁被覆用混合
物中のけい酸化合物、亜鉛化合物、ビスマス化合物、ア
ンチモン化合物は素子の雷サージ耐量向上にとって重要
な働きをしているが、これは次のように考えられる。
As mentioned above, the silicic acid compound, zinc compound, bismuth compound, and antimony compound in the insulation coating mixture applied to the side surface of the resistor element play an important role in improving the lightning surge resistance of the element. It can be thought of as follows.

素体にけい酸化合物、亜鉛化合物、ビスマス化合物、ア
ンチモン化合物よりなる絶縁被覆用混合物を塗布し、焼
成すると各化合物がまず酸化物に変化する。次に、絶縁
被覆用混合物中の酸化けい素、酸化アンチモンと素材中
の酸化亜鉛との反応が素体と絶縁被覆用混合物の界面で
進行し絶縁被覆層が形成される。この絶縁被覆層は主に
酸化亜鉛と酸化けい素との反応によるけい酸亜鉛(zn
2sio4)と酸化亜鉛と酸化アンチモンとの反応によ
るスピネル(Zny/+Sbt/30*)から成り立っ
ており、けい酸亜鉛が素体と接触する部分に生成する。
When an insulating coating mixture consisting of a silicate compound, a zinc compound, a bismuth compound, and an antimony compound is applied to the element body and fired, each compound first changes into an oxide. Next, a reaction between silicon oxide and antimony oxide in the insulating coating mixture and zinc oxide in the material proceeds at the interface between the element body and the insulating coating mixture to form an insulating coating layer. This insulating coating layer is mainly composed of zinc silicate (zn
2sio4), zinc oxide, and antimony oxide (Zny/+Sbt/30*), and is formed at the part where zinc silicate contacts the element body.

絶縁被覆用混合物中の酸化ビスマスはフラックスとして
上記反応を円滑に進める働きがある。この発明では絶縁
被覆用混合物中にも酸化亜鉛が含まれているため、けい
酸亜鉛及びスピネル生成の反応は絶縁被覆用混合物中で
も進行する。従ってこの発明ではバリスタ電圧を上げる
ため焼成温度を下げた場合でも吸湿性の劣化はなく強固
で素体との密着性の良好な絶縁被覆層が形成されると考
えられる。
Bismuth oxide in the insulating coating mixture functions as a flux to facilitate the above reaction. In this invention, since zinc oxide is also contained in the mixture for insulation coating, the reaction of producing zinc silicate and spinel proceeds also in the mixture for insulation coating. Therefore, in the present invention, even when the firing temperature is lowered in order to increase the varistor voltage, there is no deterioration in hygroscopicity, and a strong insulating coating layer with good adhesion to the element body is formed.

なお絶縁被覆層用混合物の組成としてけい素化合物、亜
鉛化合物、ビスマス化合物、アンチモン化合物を規定し
たが、各化合物とも1200°C以下(好ましくは10
00°C以下)で酸化物に変化するものであればよい。
Although a silicon compound, a zinc compound, a bismuth compound, and an antimony compound are specified as the composition of the mixture for the insulating coating layer, each compound must be kept at a temperature of 1200°C or less (preferably 100°C or less).
Any material may be used as long as it changes to an oxide at temperatures below 00°C.

具体的には炭酸塩、硝酸塩、水酸化物等があげられるが
、酸化物が一番好ましい。
Specific examples include carbonates, nitrates, hydroxides, etc., but oxides are most preferred.

次に、この発明を適用して電圧非直線抵抗体を製造する
場合の具体的な製造要領につき述べる。
Next, specific manufacturing procedures for manufacturing a voltage nonlinear resistor by applying the present invention will be described.

所定の粒度に調整した酸化亜鉛の主原料と所定粒度に調
整した酸化ビスマス、酸化コバルト、酸化マンガン、酸
化アンチモン、酸化クロム、酸化ケイ素、酸化ニッケル
、酸化銀、酸化ホウ素等よりなる添加物を混合する。酸
化銀、酸化ホウ素の代わりに硝酸銀、ホウ酸を用いても
よい。好ましくは銀を含むホウケイ酸ビスマスガラスを
用いる。
Mix the main raw material of zinc oxide adjusted to a specified particle size with additives such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, silicon oxide, nickel oxide, silver oxide, boron oxide, etc. adjusted to a specified particle size. do. Silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Preferably, bismuth borosilicate glass containing silver is used.

次いでこれらの原料粉末に対して所定量のポリビニルア
ルコール水溶液および酸化アルミニウム源として硝酸ア
ルミニウム溶液の所定量を添加する。
Next, a predetermined amount of an aqueous polyvinyl alcohol solution and a predetermined amount of an aluminum nitrate solution as an aluminum oxide source are added to these raw material powders.

この混合操作は好ましくは乳化機を用いる。This mixing operation preferably uses an emulsifying machine.

次に好ましくは200 mmHg以下の真空度で減圧脱
気を行い混合泥漿を得る。ここに混合泥漿の水分量は3
0〜35−t%程度に、またその混合泥漿の粘度は10
0cp±50とするのが好ましい。
Next, deaeration is performed under reduced pressure, preferably at a vacuum level of 200 mmHg or less, to obtain a mixed slurry. Here, the water content of the mixed slurry is 3
0 to 35-t%, and the viscosity of the mixed slurry is 10
It is preferable to set it to 0 cp±50.

次に得られた混合泥漿を噴霧乾燥装置に供給して平均粒
径50〜150μm、好ましくは80〜120μ鶴で、
水分量が0.5〜2.Owt%、より好ましくは0.9
〜1.5 wt%の造粒粉を造粒する。
Next, the obtained mixed slurry is fed to a spray drying device so that the average particle size is 50 to 150 μm, preferably 80 to 120 μm.
Moisture content is 0.5-2. Owt%, more preferably 0.9
-1.5 wt% granulated powder is granulated.

次に得られた造粒粉を、成形工程において、成形圧力8
00〜1000kg/cm”の下で所定の形状に成形す
る。そしてその形成体を昇降温速度50〜70°C/h
rで800〜1OOO″C1保持時間1〜5時間という
条件で仮焼成する。なお仮焼成の前に成形体を昇降温速
度10〜100°C/hrで400〜600°C1保持
時間1〜10時間で結合剤を飛散除去することが好まし
い。
Next, the obtained granulated powder was subjected to a molding process at a molding pressure of 8
00 to 1000 kg/cm" and molded into a predetermined shape.Then, the formed body is heated and cooled at a temperature raising/cooling rate of 50 to 70°C/h.
Preliminary firing is carried out under the conditions of 800 to 1 OOO'' C1 holding time of 1 to 5 hours at r. It is preferable to remove the binder by scattering over time.

次に、仮焼成した仮焼体の側面に絶縁被覆層を形成する
。この発明では、ビスマス化合物、アンチモン化合物、
亜鉛化合物、およびけい素化合物として例えば酸化ビス
マス、酸化アンチモン、酸化亜鉛、酸化けい素の所定量
に有機結合剤としてエチルセルロース、ブチルカルピト
ール、酢酸nブチル等を加えた酸化物ペーストを、10
0〜300μmの厚さに仮焼体の側面に塗布する。次に
これを昇降温速度30〜60’C/hr 、 1000
〜1250’C好ましくは1000〜1200″Cで2
〜7時間という条件で本焼成する。
Next, an insulating coating layer is formed on the side surface of the calcined body. In this invention, a bismuth compound, an antimony compound,
An oxide paste prepared by adding ethyl cellulose, butyl calpitol, n-butyl acetate, etc. as an organic binder to predetermined amounts of zinc compounds and silicon compounds such as bismuth oxide, antimony oxide, zinc oxide, and silicon oxide,
Coat the side surface of the calcined body to a thickness of 0 to 300 μm. Next, the temperature was raised and lowered at a rate of 30 to 60'C/hr, 1000
~1250'C preferably 2 at 1000-1200''C
Main firing is performed for ~7 hours.

なお、ガラス粉末に有機結合剤としてエチルセルロース
、ブチルカルピトール、酢酸nブチル等を加えたガラス
ペーストを前記絶縁被覆層上に100〜300μmの厚
さに塗布し、空気中で昇降温速度100〜200°C/
hr 、 400〜600°C2保持時間0.5〜4時
間という条件で熱処理してガラス層を形成すると好まし
い。
A glass paste prepared by adding ethyl cellulose, butyl calpitol, n-butyl acetate, etc. as an organic binder to glass powder is applied to a thickness of 100 to 300 μm on the insulating coating layer, and the temperature is raised and lowered in air at a rate of 100 to 200 μm. °C/
It is preferable to form the glass layer by heat treatment under the conditions of 400 to 600° C.2 holding time of 0.5 to 4 hours.

そして最後に電圧非直線抵抗体の両端面を平滑に研磨し
、アルミニウム電極を溶射により設ける。
Finally, both end faces of the voltage nonlinear resistor are polished smooth, and aluminum electrodes are provided by thermal spraying.

(実施例) 表−1に示す成分組成になる直径47 mm 、厚さ2
0価の電圧非直線抵抗体を上述した要領で製造し、得ら
れた各素子のバリスタ電圧(Vl−A )、制限電流比
、エネルギー耐量、雷サージ印加後におけるバリスタ電
圧の低下率および絶縁被覆層の吸湿性について調査した
。その結果を表−1に併せて示す。
(Example) Diameter 47 mm, thickness 2 with the component composition shown in Table-1
A zero-valent voltage nonlinear resistor was manufactured in the manner described above, and the varistor voltage (Vl-A), limiting current ratio, energy withstand capacity, rate of decrease in varistor voltage after lightning surge application, and insulation coating of each element obtained were The hygroscopicity of the layer was investigated. The results are also shown in Table-1.

なお、制限電流比は8720μsの電流波形で10kA
の電流を流すために必要な印加電圧とバリスタ電圧との
比から、エネルギー耐量は4/lOμSの電流波形の衝
撃電流に対する耐量(2回クリア)をエネルギー値に換
算したものから求めた。また雷サージ印加後におけるバ
リスタ電圧の低下率は、4710μsの電流波形になる
30KAの電流を10回繰返し印加したのちのバリスタ
電圧の低下率を、絶縁被覆層の吸湿性については、素子
を蛍光探傷液中に圧力200 kg/cm2の状態で2
4時間浸漬した後の、吸湿状態を検査し絶縁被覆層に滲
みのないものについては○、滲みのあるものについては
×として示した。
In addition, the limiting current ratio is 10kA with a current waveform of 8720μs.
The energy withstand capacity was determined from the ratio of the applied voltage required to flow the current and the varistor voltage, and the withstand capacity (cleared twice) against the shock current of the current waveform of 4/lOμS was converted into an energy value. In addition, the rate of decrease in varistor voltage after a lightning surge is applied is the rate of decrease in varistor voltage after 10 repeated applications of a 30 KA current with a current waveform of 4710 μs. 2 at a pressure of 200 kg/cm2 in the liquid.
After being immersed for 4 hours, the moisture absorption state was inspected, and those with no bleeding in the insulating coating layer were marked as ○, and those with bleeding were marked as ×.

表−1から明らかなように、この発明に適合する電圧非
直線抵抗体(No、1〜26)は、調査した項目のすべ
てに対して満足のいく結果が得られることが確かめられ
た。
As is clear from Table 1, it was confirmed that the voltage nonlinear resistors (Nos. 1 to 26) conforming to the present invention were able to obtain satisfactory results for all of the investigated items.

また、課電寿命特性及び開閉サージ耐量特性についても
良好な結果が確認された。
Also, good results were confirmed regarding the charging life characteristics and switching surge resistance characteristics.

(発明の効果) この発明によれば、電気的特性が良好で、とくにバリス
タ電圧が従来の素子に比べて高く、制限電圧比が小さく
多数回の雷サージ印加に対して特性変化が小さい小型化
に有利な電圧非直線抵抗体を得ることができる。
(Effects of the Invention) According to the present invention, the electrical characteristics are good, especially the varistor voltage is higher than that of conventional elements, the limiting voltage ratio is small, and the characteristics change little when lightning surges are applied many times. It is possible to obtain a voltage non-linear resistor that is advantageous for.

特許出願人  日本碍子株式会社 手   続   補   正   書 平成 元年 2月28日 特許庁長官  吉  1)  文  毅  殿1、事件
の表示 昭和63年特許願第53677号 2、発明の名称 3、補正をする者 事件との関係  特許出願人 4、代理人 1、明細書第5頁第16行の「前記焼結単位厚さ」を[
前記焼結体の単位厚さ」に訂正する。
Patent Applicant Nippon Insulators Co., Ltd. Procedural Amendment Letter February 28, 1989 Director General of the Japan Patent Office Yoshi 1) Takeshi Moon 1, Indication of the case 1988 Patent Application No. 53677 2, Title of the invention 3, Amendment Relationship with the case of patent applicant 4, agent 1, “sintered unit thickness” on page 5, line 16 of the specification [
The unit thickness of the sintered body is corrected.

2、同第13頁第3行および第7行の「けい酸化合物」
を「けい素化合物」それぞれに訂正する。
2. "Silicate compound" on page 13, lines 3 and 7
Correct each to "silicon compound".

3、同第14頁第6〜11行間を削除する。3. Delete the space between lines 6 to 11 on page 14.

Claims (1)

【特許請求の範囲】[Claims] 1.酸化ビスマスをBi_2O_3に換算して0.3〜
2モル%、 酸化コバルトをCo_2O_3に換算して0.1〜2モ
ル%、 酸化マンガンをMnO_2に換算して0.1〜2モル%
、 酸化アンチモンをSb_2O_3に換算して0.1〜2
モル%、 酸化クロムをCr_2O_3に換算して0.1〜2モル
%、 酸化ニッケルをNiOに換算して0.1〜2モル%、 酸化アルミニウムをAl_2O_3に換算して0.00
1〜0.05モル%、 酸化ホウ素をB_2O_3に換算して0.005〜0.
1モル%、 酸化銀をAg_2Oに換算して0.001〜0.05モ
ル%および酸化ケイ素をSiO_2に換算して1.0〜
4.0モル%を含み、残部酸化亜鉛になる電圧非直線抵
抗体素体の側面に、けい素化合物をSiO_2に換算し
て50〜80モル%、亜鉛化合物をZnOに換算して1
0〜40モル%、ビスマス化合物をBi_2O_3に換
算して1〜5モル%および残部アンチモン化合物よりな
る絶縁被覆層用の混合物を塗布し、次いで焼成してなる
焼結体でバリスタ電圧(V_l_m_A)が焼結体の単
位厚さ(mm)あたり230〜300Vであることを特
徴とする電圧非直線抵抗体の製造方法。
1. Bismuth oxide converted to Bi_2O_3 is 0.3~
2 mol%, cobalt oxide 0.1 to 2 mol% in terms of Co_2O_3, manganese oxide 0.1 to 2 mol% in terms of MnO_2
, 0.1 to 2 when antimony oxide is converted to Sb_2O_3
Mol%, chromium oxide 0.1 to 2 mol% in terms of Cr_2O_3, nickel oxide 0.1 to 2 mol% in terms of NiO, aluminum oxide 0.00 in terms of Al_2O_3
1 to 0.05 mol%, 0.005 to 0.00 in terms of boron oxide as B_2O_3.
1 mol%, 0.001 to 0.05 mol% in terms of silver oxide as Ag_2O and 1.0 to 0.05 mol% as silicon oxide in terms of SiO_2
4.0 mol%, the balance being zinc oxide, on the side surface of the voltage nonlinear resistor element body, the silicon compound is 50 to 80 mol% in terms of SiO_2, and the zinc compound is 1 in terms of ZnO.
A mixture for an insulating coating layer consisting of 0 to 40 mol% of bismuth compound, 1 to 5 mol% of bismuth compound converted to Bi_2O_3, and the balance antimony compound is coated and then fired to produce a sintered body with a varistor voltage (V_l_m_A). A method for manufacturing a voltage nonlinear resistor, characterized in that the voltage is 230 to 300 V per unit thickness (mm) of the sintered body.
JP63053677A 1988-03-09 1988-03-09 Manufacture of non-linear voltage resistance Pending JPH01228105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053677A JPH01228105A (en) 1988-03-09 1988-03-09 Manufacture of non-linear voltage resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053677A JPH01228105A (en) 1988-03-09 1988-03-09 Manufacture of non-linear voltage resistance

Publications (1)

Publication Number Publication Date
JPH01228105A true JPH01228105A (en) 1989-09-12

Family

ID=12949453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053677A Pending JPH01228105A (en) 1988-03-09 1988-03-09 Manufacture of non-linear voltage resistance

Country Status (1)

Country Link
JP (1) JPH01228105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139802A (en) * 1989-10-26 1991-06-14 Ngk Insulators Ltd Voltage nonlinear resistor
JPH04100201A (en) * 1990-08-20 1992-04-02 Ngk Insulators Ltd Voltage nonlinear resistor for capped surge arrester and its manufacture
JPH04107901A (en) * 1990-08-29 1992-04-09 Ngk Insulators Ltd Voltage non-linear resistor and its manufacturing method
KR100296931B1 (en) * 1997-02-17 2001-08-07 무라타 야스타카 Chip type varistor and ceramic compositions for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548441A (en) * 1979-09-22 1980-04-07 Kitamura Gokin Seisakusho:Kk Center deflection reforming and rolling device of valve bar material in thread rolling machine
JPS62237703A (en) * 1986-04-09 1987-10-17 日本碍子株式会社 Manufacture of voltage nonlinear resistance element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548441A (en) * 1979-09-22 1980-04-07 Kitamura Gokin Seisakusho:Kk Center deflection reforming and rolling device of valve bar material in thread rolling machine
JPS62237703A (en) * 1986-04-09 1987-10-17 日本碍子株式会社 Manufacture of voltage nonlinear resistance element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139802A (en) * 1989-10-26 1991-06-14 Ngk Insulators Ltd Voltage nonlinear resistor
JPH04100201A (en) * 1990-08-20 1992-04-02 Ngk Insulators Ltd Voltage nonlinear resistor for capped surge arrester and its manufacture
JPH04107901A (en) * 1990-08-29 1992-04-09 Ngk Insulators Ltd Voltage non-linear resistor and its manufacturing method
KR100296931B1 (en) * 1997-02-17 2001-08-07 무라타 야스타카 Chip type varistor and ceramic compositions for the same

Similar Documents

Publication Publication Date Title
CA1279113C (en) Voltage non-linear resistor and its manufacture
EP0241150B1 (en) Voltage non-linear resistor and its manufacture
JP2572881B2 (en) Voltage nonlinear resistor for lightning arrester with gap and its manufacturing method
EP0473419B1 (en) Voltage non-linear resistor and method of producing the same
US4855708A (en) Voltage non-linear resistor
US5039971A (en) Voltage non-linear type resistors
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPH0734403B2 (en) Voltage nonlinear resistor
JP2003229302A (en) Voltage nonlinear resistor
JP2572884B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH05234716A (en) Zinc oxide varistor
JPH0734402B2 (en) Voltage nonlinear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
WO2019146065A1 (en) Material for current-voltage non-linear resistors, and current-voltage non-linear resistor and method for manufacturing same
JPH0379850B2 (en)
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP2572859B2 (en) Voltage non-linear resistor and surge arrester
JP2003007512A (en) Nonlinear resistor element
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH0812806B2 (en) Voltage nonlinear resistor
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH0812805B2 (en) Voltage nonlinear resistor
JP2000286107A (en) Voltage nonlinear resistor and its manufacture
JPH03250605A (en) Manufacture of voltage non-linearity resistor