JPH0812805B2 - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor

Info

Publication number
JPH0812805B2
JPH0812805B2 JP63203919A JP20391988A JPH0812805B2 JP H0812805 B2 JPH0812805 B2 JP H0812805B2 JP 63203919 A JP63203919 A JP 63203919A JP 20391988 A JP20391988 A JP 20391988A JP H0812805 B2 JPH0812805 B2 JP H0812805B2
Authority
JP
Japan
Prior art keywords
oxide
type
phase
voltage
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63203919A
Other languages
Japanese (ja)
Other versions
JPH0254501A (en
Inventor
今井  修
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63203919A priority Critical patent/JPH0812805B2/en
Priority to EP89307787A priority patent/EP0358323B1/en
Priority to DE68910621T priority patent/DE68910621T2/en
Priority to US07/389,301 priority patent/US5039971A/en
Priority to CA000607731A priority patent/CA1331508C/en
Publication of JPH0254501A publication Critical patent/JPH0254501A/en
Publication of JPH0812805B2 publication Critical patent/JPH0812805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a voltage non-linear resistor mainly composed of zinc oxide.

(従来の技術) 従来から酸化亜鉛を主成分とし、Bi2O3,Sb2O3,Si
O2,Co2O3,MnO2等の少量の添加物を含有した抵抗体
は、優れた電圧非直線性を示すことが広く知られてお
り、その性質を利用して避雷器等に使用されている。
(Prior Art) Conventionally, the main component is zinc oxide, and Bi 2 O 3 , Sb 2 O 3 , Si
It is widely known that resistors containing a small amount of additives such as O 2 , Co 2 O 3 and MnO 2 exhibit excellent voltage nonlinearity. ing.

特に避雷器として使用した場合、落雷により過大な電
流が流れても、その電流を通常は絶縁体であり所定電圧
よりも過大な電圧が印加されると導体となる電圧非直線
抵抗体により接地するため、落雷による事故を防止する
ことができる。
Especially when used as a lightning arrester, even if an excessive current flows due to a lightning strike, the current is normally an insulator and is grounded by a voltage non-linear resistor that becomes a conductor when a voltage greater than a specified voltage is applied. , It is possible to prevent accidents caused by lightning strikes.

(発明が解決しようとする課題) この電圧非直線抵抗体の結晶相として、酸化亜鉛の結
晶相のほか粒界層としてα型、β型、γ型δ型の各ビス
マス相やパイロクロア相等が存在するが、その量比によ
ってはサージ印加後のV1mA変化率が大きくなったり、V
−I特性の温度に対する変化率が大きくなって、いずれ
の場合も多重雷に対しての特性が劣化する場合があっ
た。また、このようにV1mA変化率が大きいと、ギャップ
レス避雷器は熱暴走の危険性が、またギャップ付避雷器
では続流遮断が不可能になる問題もあった。
(Problems to be Solved by the Invention) As the crystal phase of this voltage nonlinear resistor, there are α-type, β-type, γ-type δ-type bismuth phases, pyrochlore phase, etc. in addition to the zinc oxide crystal phase. However, depending on the amount ratio, the rate of change of V 1mA after applying a surge may be large, or
The rate of change of the −I characteristic with respect to temperature becomes large, and in any case, the characteristic with respect to multiple lightning may be deteriorated. In addition, when the change rate of V 1mA is large like this, the gapless lightning arrester has a risk of thermal runaway, and the lightning arrester with a gap may not be capable of interrupting the follow current.

本発明の目的は上述した課題を解消して、多重雷に対
しても良好な特性を示す電圧非直線抵抗体を提供しよう
とするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a voltage non-linear resistor that exhibits good characteristics even against multiple lightning strikes.

(課題を解決するための手段) 本発明の電圧非直線抵抗体は、酸化亜鉛を主成分とし、
酸化ビスマス、酸化アンチモン、酸化ケイ素等の金属酸
化物を添加成分として含む電圧非直線抵抗体において、
酸化ビスマスの結晶相が少なくともα型、β型、δ型の
3種類の結晶相を含むとともに、α型、β型およびδ型
の各結晶量をα,βおよびδとしたとき、 の関係を満たすことを特徴とするものである。
(Means for Solving the Problems) The voltage nonlinear resistor of the present invention contains zinc oxide as a main component,
In a voltage non-linear resistor containing a metal oxide such as bismuth oxide, antimony oxide, or silicon oxide as an additive component,
When the crystal phase of bismuth oxide includes at least three types of crystal phases of α-type, β-type, and δ-type, and the respective amounts of α-type, β-type, and δ-type crystals are α, β, and δ, It is characterized by satisfying the relationship of.

(作用) 上述した構成において、抵抗体中の酸化ビスマスの結
晶相が少なくとも所定量比のα型、β型およびδ型の結
晶相を含む電圧非直線抵抗体が、後述する実施例から明
らかなように、サージ印加後のV1mA変化率が小であると
ともに、V−I特性の温度に対する変化率が小さいこと
を見出したことによる。その結果、サージ耐量が良好で
多重雷に対して良好であるとともに、熱暴走せず、寿命
も良好な電圧非直線抵抗体を得ることができる。
(Operation) In the above-described configuration, a voltage non-linear resistor in which the crystal phase of bismuth oxide in the resistor includes at least a predetermined amount ratio of α-type, β-type and δ-type crystal phases is clear from Examples described later. As described above, it was found that the rate of change of V 1 mA after the application of the surge was small and the rate of change of the VI characteristic with respect to temperature was small. As a result, it is possible to obtain a voltage non-linear resistor which has a good surge withstand capability, is good against multiple lightning, does not cause thermal runaway, and has a good life.

ここで、各相の効果について説明すると、δ相は主に
V1mA変化率を減少させる効果がありまたサージ耐量を良
好にする効果もある。α相およびβ相は主にV−I特性
の温度に対する変化率を減少させる効果があり、α相ま
たはβ相単独ではその効果が小さく寿命が悪化するとと
もに、α相およびβ相が本発明の範囲内でないとその効
果は小さい。また、γ相は寿命は良好になるが他の上記
特性に対しては悪影響を及ぼすため、多くても0.5wt%
以下であると好ましい。また、パイロクロア相は含有し
ない方が好ましい。
Here, explaining the effects of each phase, the δ phase is mainly
It has the effect of reducing the V 1mA change rate and also has the effect of improving the surge withstand capability. The α phase and the β phase mainly have an effect of reducing the rate of change of the VI characteristic with respect to temperature, and the effect is small and the life is deteriorated when the α phase or the β phase is used alone. If it is not within the range, the effect is small. In addition, the γ phase has a long life, but it adversely affects the other properties described above, so at most 0.5 wt%
The following is preferable. Further, it is preferable not to contain the pyrochlore phase.

さらに、抵抗体を製造するに際し、ガラスフリットを
0.01〜0.3wt%添加使用する。または酸化ケイ素を非晶
質で添加すると粒界層が安定化するため好ましい。
In addition, a glass frit is used when manufacturing the resistor.
Add 0.01 to 0.3wt%. Alternatively, it is preferable to add silicon oxide in an amorphous state because the grain boundary layer is stabilized.

なお、α型、β型およびδ型の各結晶量α,βおよび
δの関係は、 であると、さらに本発明の効果が顕著になるため好まし
い。
The relationship between the α-type, β-type and δ-type crystal amounts α, β and δ is It is preferable that it is because the effect of the present invention becomes more remarkable.

(実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るに
は、まず所定の粒度に調整した酸化亜鉛原料と所定の粒
度に調整した酸化ビスマス、酸化コバルト、酸化マンガ
ン、酸化アンチモン、酸化クロム、好ましくは非晶質の
酸化ケイ素、酸化ニッケル、酸化ホウ素、酸化銀等より
なる添加物の所定量を混合する。なお、この場合酸化
銀、酸化ホウ素の代わりに硝酸銀、ホウ酸を用いてもよ
い。好ましくは銀を含むホウケイ酸ビスマスガラスを用
いるとよい。この際、これらの原料粉末に対して所定量
のポリビニルアルコール水溶液等を加える。また好まし
くは酸化アルミニウム源として硝酸アルミニウム溶液の
所定量を添加する。この混合操作は好ましくは乳化機を
用いる。
(Example) In order to obtain a voltage nonlinear resistor containing zinc oxide as a main component, first, a zinc oxide raw material adjusted to a predetermined particle size and bismuth oxide, cobalt oxide, manganese oxide, antimony oxide adjusted to a predetermined particle size, A predetermined amount of an additive made of chromium oxide, preferably amorphous silicon oxide, nickel oxide, boron oxide, silver oxide or the like is mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Bismuth borosilicate glass containing silver is preferably used. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders. Further, preferably, a predetermined amount of aluminum nitrate solution is added as a source of aluminum oxide. This mixing operation preferably uses an emulsifier.

次に好ましくは200mmHg以下の真空度で減圧脱気を行
い混合泥漿を得る。ここに混合泥漿の水分量は30〜35wt
%程度に、またその混合泥漿の粘度は100±50cpとする
のが好ましい。次に得られた混合泥漿を噴霧乾燥装置に
供給して平均粒径50〜150μm、好ましくは80〜120μm
で、水分量が0.5〜2.0wt%、より好ましくは0.9〜1.5wt
%の造粒粉を造粒する。次に得られた造粒粉を、成形工
程において、成形圧力800〜1000kg/cm2の下で所定の形
状に成形する。そしてその成形体を昇降温速度50〜70℃
/hrで800〜1000℃、保持時間1〜5時間という条件で焼
成する。なお、仮焼成の前に成形体を昇降温速度10〜10
0℃/hrで400〜600℃、保持時間1〜10時間で結合剤を飛
散除去することが好ましい。
Next, vacuum degassing is preferably performed at a vacuum degree of 200 mmHg or less to obtain a mixed sludge. The water content of the mixed slurry is 30-35 wt.
%, And the viscosity of the mixed slurry is preferably 100 ± 50 cp. Next, the obtained mixed sludge is supplied to a spray dryer to have an average particle size of 50 to 150 μm, preferably 80 to 120 μm.
And the water content is 0.5 to 2.0 wt%, more preferably 0.9 to 1.5 wt
Granulate% granulated powder. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 in a molding step. Then, the molded body is heated / cooled at a temperature of 50 to 70 ° C.
Firing is performed under the conditions of 800 to 1000 ° C./hr and a holding time of 1 to 5 hours. In addition, the temperature rising / falling rate of the molded body is 10 to 10 before the calcination.
It is preferable to remove the binder by scattering at 400 to 600 ° C. at 0 ° C./hr and a holding time of 1 to 10 hours.

次に、仮焼成した仮焼体の側面に絶縁被覆層を形成す
る。本願発明では、Bi2O3,Sb2O3,ZnO,SiO2等の所定量
に有機結合剤としてエチルセルロース、ブチルカルビト
ール、酢酸nブチル等を加えた酸化物ペーストを、60〜
300μmの厚さに仮焼体の側面に塗布する。次に、これ
を昇降温速度20〜60℃/hr、1000〜1300℃好ましくは110
0〜1250℃、3〜7時間という条件で本焼成する。な
お、ガラス粉末に有機結合剤としてエチルセルロース、
ブチルカルビトール、酢酸nブチル等を加えたガラスペ
ーストを前記の絶縁被覆層上に100〜300μmの厚さに塗
布し、空気中で昇降温速度50〜200℃/hr、400〜900℃保
持時間0.5〜2時間という条件で熱処理することにより
ガラス層を形成すると好ましい。
Next, an insulating coating layer is formed on the side surface of the calcined body that has been calcined. In the present invention, an oxide paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate or the like as an organic binder to a predetermined amount of Bi 2 O 3 , Sb 2 O 3 , ZnO, SiO 2 or the like is used.
Apply to the side of the calcined body to a thickness of 300 μm. Next, the temperature rising / falling rate is 20 to 60 ° C / hr, 1000 to 1300 ° C, preferably 110
The main firing is performed under the conditions of 0 to 1250 ° C. and 3 to 7 hours. Incidentally, ethyl cellulose as an organic binder in glass powder,
A glass paste containing butyl carbitol, n-butyl acetate, etc. is applied on the above-mentioned insulating coating layer to a thickness of 100 to 300 μm, and the temperature rising and falling speed is 50 to 200 ° C./hr and 400 to 900 ° C. holding time. It is preferable to form the glass layer by heat treatment under the condition of 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al
2O3,ダイヤモンド等の#400〜2000相当の研磨剤により
水好ましくは油を研磨液として使用して研磨する。次
に、研磨面を洗浄後、研磨した両端面に例えばアルミニ
ウム等によって電極を例えば溶射により設けて電圧非直
線抵抗体を得ている。
After that, both end surfaces of the obtained voltage nonlinear resistor are
Polishing is carried out with water, preferably oil, as a polishing liquid with a polishing agent corresponding to # 400 to 2000 such as 2 O 3 and diamond. Next, after cleaning the polished surface, electrodes are provided, for example, by spraying, on the polished both end surfaces by, for example, aluminum or the like to obtain a voltage non-linear resistor.

上述した製造方法において、原料の種類及び添加量、
本焼成条件、本焼成冷却速度、本焼成後における熱処理
条件等を種々組合わせることにより、焼結体中に少なく
とも所定量比のα‐Bi2O3結晶相、β−Bi2O3結晶相およ
びδ−Bi2O3結晶相を含む本発明の電圧非直線抵抗体が
製造でき、目的とするV1mA変化率、V−I特性の温度に
対する変化率等の良好な電圧非直線抵抗体が得られるも
のである。
In the manufacturing method described above, the kind and addition amount of raw materials,
By combining various conditions such as the main firing conditions, the main firing cooling rate, and the heat treatment conditions after the main firing, the α-Bi 2 O 3 crystalline phase and the β-Bi 2 O 3 crystalline phase of at least a predetermined amount ratio in the sintered body can be obtained. And the voltage non-linear resistor of the present invention containing the δ-Bi 2 O 3 crystal phase can be produced, and a desired voltage non-linear resistor having a desired V 1mA change rate and a change rate of VI characteristic with respect to temperature can be obtained. Is what you get.

以下、実際に本発明の範囲内および範囲外の電圧非直
線抵抗体において、各種特性を測定した結果について説
明する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実施例 上述した方法に従って、Bi2O3,Co3O4,MnO2,Sb
2O3,Cr2O3,NiOを各々0.1〜2.0モル%、Al(NO3)3・9H2O
0.001〜0.01モル%、銀を含むホウケイ酸ビスマスガラ
ス0.01〜0.3wt%、非晶質SiO21.0〜3.0モル%、残部ZnO
からなる原料から直径47mm、厚さ22.5mmの形状でバリス
タ電圧(V1mA)が200〜230V/mmの第1表に示す結晶相を
有する本発明試料No.1〜9と比較例試料No.1〜10の電圧
非直線抵抗体を準備した。
Examples Bi 2 O 3 , Co 3 O 4 , MnO 2 , Sb were prepared according to the method described above.
2 O 3, Cr 2 O 3 , NiO each 0.1 to 2.0 mol%, Al (NO 3) 3 · 9H 2 O
0.001 to 0.01 mol%, bismuth borosilicate glass containing silver 0.01 to 0.3 wt%, amorphous SiO 2 1.0 to 3.0 mol%, balance ZnO
Sample Nos. 1 to 9 of the present invention and Comparative Example Sample No. 1 having a crystal phase shown in Table 1 having a diameter of 47 mm and a thickness of 22.5 mm and a varistor voltage (V 1mA ) of 200 to 230 V / mm. A voltage non-linear resistor of 1-10 was prepared.

準備した本発明および比較例の抵抗体に対して、温度
特性、V1mA低下率、雷サージ耐量および開閉サージ耐量
を測定するとともに、課電寿命パターンを求めた。結果
を第1表に示す。ここで、温度特性は、25℃におけるV
1mAおよびV40KAに対する150℃におけるV1mAおよびV40KA
の変化率として求めた。150℃では25℃と比較し、V1mA
は低下しV40KAは増大する。V1mA低下率は、30KAの電流
を8/20μsの電流波形で10回印加した前後のV1mAより求
めた。雷サージ耐量は、130KAおよび150KAの電流を4/10
μsの電流波形で2回繰り返し印加した後破壊したもの
を×、破壊しなかったものを○と表示した。開閉サージ
耐量は800Aおよび1000Aの電流を2msの電流波形で20回繰
り返し印加した後破壊したものを×、破壊しなかったも
のを○と表示した。さらに、課電パターンは第1図にお
けるもれ電流と時間の関係から求めた。第1図におい
て、Aは最良のもの、Bは熱暴走せずに戻るため良好な
もの、Cは熱暴走するものをそれぞれ示している。な
お、各結晶相量はX線回折による内部標準法により求め
た。
With respect to the prepared resistors of the present invention and the comparative example, the temperature characteristics, V 1mA reduction rate, lightning surge withstand capability and switching surge withstand capability were measured, and the voltage application life pattern was determined. The results are shown in Table 1. Here, the temperature characteristic is V at 25 ° C.
V 1mA and V 40KA at 150 ° C for 1mA and V 40KA
Was calculated as the rate of change. Compared to 25 ℃ at 150 ℃, V 1mA
Decreases and V 40KA increases. The V 1mA decrease rate was obtained from V 1mA before and after applying a current of 30 KA with a current waveform of 8/20 μs 10 times. Lightning surge withstand current of 130KA and 150KA is 4/10
A sample which was destroyed after being applied twice with a current waveform of μs was marked with X, and a sample which was not broken was marked with ◯. The switching surge resistance is shown as × when the current of 800 A and 1000 A was repeatedly applied 20 times with the current waveform of 2 ms and was broken, and as ○ when it was not broken. Further, the voltage application pattern was obtained from the relationship between the leakage current and time in FIG. In FIG. 1, A is the best one, B is good because it returns without thermal runaway, and C is thermal runaway. The amount of each crystal phase was determined by the internal standard method by X-ray diffraction.

第1表の結果から、少なくとも所定量比のα相、β相
およびδ相とを含む本発明の抵抗体は、比較例に較べ
て、温度特性およびV1mA低下率が良好であるとともに他
の諸特性も良好なことがわかる。
From the results shown in Table 1, the resistor of the present invention containing at least a predetermined amount ratio of α-phase, β-phase and δ-phase has better temperature characteristics and V 1mA lowering rate than other Comparative Examples, and other It can be seen that various characteristics are also good.

なお、本発明の課電パターンはA(最良)ではないが
熱暴走する恐れはない。ギャップ付避雷器では素子は常
時課電されていないためBでも全く問題とはならない。
The voltage application pattern of the present invention is not A (best), but there is no fear of thermal runaway. In the arrester with a gap, the element is not always charged, and B does not pose any problem.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線
抵抗体は、少なくとも所定量比のα相、β相およびδ相
を含有させることにより、雷サージ印加によるV1mA変化
率が小さく電圧−電流特性の温度変化が小さく良好な多
重雷に対する特性を得ることができるとともに、良好な
サージ耐量、寿命等の他の特性も得ることができる。
(Effects of the Invention) As is clear from the above description, the voltage nonlinear resistor of the present invention contains at least a predetermined amount ratio of α phase, β phase, and δ phase, so that V 1 mA change due to lightning surge application It is possible to obtain good characteristics against multiple lightning with a small rate and a small temperature change in voltage-current characteristics, and also to obtain other characteristics such as good surge withstand capability and life.

【図面の簡単な説明】[Brief description of drawings]

第1図は課電パターンをもれ電流と時間との関係で示す
グラフである。
FIG. 1 is a graph showing a charging pattern as a relationship between leakage current and time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とし、酸化ビスマス、酸
化アンチモン、酸化ケイ素等の金属酸化物を添加成分と
して含む電圧非直線抵抗体において、酸化ビスマスの結
晶相が少なくともα型、β型、δ型の3種類の結晶相を
含むとともに、α型、β型およびδ型の各結晶量をα,
βおよびδとしたとき、 の関係を満たすことを特徴とする電圧非直線抵抗体。
1. A voltage non-linear resistor containing zinc oxide as a main component and a metal oxide such as bismuth oxide, antimony oxide, or silicon oxide as an additional component, wherein the crystal phase of bismuth oxide is at least α-type or β-type, It contains three types of δ-type crystal phases, and α-type, β-type and δ-type crystal amounts are α,
Given β and δ, A voltage non-linear resistor characterized by satisfying the following relationship.
JP63203919A 1988-08-10 1988-08-18 Voltage nonlinear resistor Expired - Lifetime JPH0812805B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63203919A JPH0812805B2 (en) 1988-08-18 1988-08-18 Voltage nonlinear resistor
EP89307787A EP0358323B1 (en) 1988-08-10 1989-08-01 Voltage non-linear type resistors
DE68910621T DE68910621T2 (en) 1988-08-10 1989-08-01 Nonlinear voltage dependent resistors.
US07/389,301 US5039971A (en) 1988-08-10 1989-08-03 Voltage non-linear type resistors
CA000607731A CA1331508C (en) 1988-08-10 1989-08-08 Voltage non-linear type resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203919A JPH0812805B2 (en) 1988-08-18 1988-08-18 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPH0254501A JPH0254501A (en) 1990-02-23
JPH0812805B2 true JPH0812805B2 (en) 1996-02-07

Family

ID=16481864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203919A Expired - Lifetime JPH0812805B2 (en) 1988-08-10 1988-08-18 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH0812805B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046802B2 (en) * 1980-02-18 1985-10-18 株式会社東芝 Manufacturing method of non-linear resistor

Also Published As

Publication number Publication date
JPH0254501A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
EP0358323B1 (en) Voltage non-linear type resistors
EP0332462B1 (en) Voltage non-linear resistor
JPH0734403B2 (en) Voltage nonlinear resistor
JPH0812805B2 (en) Voltage nonlinear resistor
JPH0734401B2 (en) Voltage nonlinear resistor
JPH0812806B2 (en) Voltage nonlinear resistor
JPH01228105A (en) Manufacture of non-linear voltage resistance
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JP2942027B2 (en) Method of manufacturing voltage non-linear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JP3353015B2 (en) Method of manufacturing voltage non-linear resistor
JPH0734402B2 (en) Voltage nonlinear resistor
JPH0812804B2 (en) Voltage nonlinear resistor
JPH0379850B2 (en)
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH0817123B2 (en) Method of manufacturing voltage non-linear resistor
JPH0547514A (en) Manufacture of non-linearly voltage dependent resistor
JPH02135701A (en) Manufacture of voltage non-linear resistor
JPH0812808B2 (en) Method of manufacturing voltage non-linear resistor
JPH04257201A (en) Voltage non-linear resistor
JPH07114163B2 (en) Method for manufacturing voltage non-linear resistor
JPH0812812B2 (en) Method of manufacturing voltage non-linear resistor
JPH0831362B2 (en) Method of manufacturing voltage non-linear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13