JPS643326B2 - - Google Patents

Info

Publication number
JPS643326B2
JPS643326B2 JP57214450A JP21445082A JPS643326B2 JP S643326 B2 JPS643326 B2 JP S643326B2 JP 57214450 A JP57214450 A JP 57214450A JP 21445082 A JP21445082 A JP 21445082A JP S643326 B2 JPS643326 B2 JP S643326B2
Authority
JP
Japan
Prior art keywords
oxide
voltage
voltage nonlinear
resistance element
nonlinear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57214450A
Other languages
Japanese (ja)
Other versions
JPS59104104A (en
Inventor
Kyoshi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP57214450A priority Critical patent/JPS59104104A/en
Publication of JPS59104104A publication Critical patent/JPS59104104A/en
Publication of JPS643326B2 publication Critical patent/JPS643326B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化亜鉛を主成分とする焼結体におい
て出発原料として金属亜鉛およびスピネル型結晶
のアンチモン化合物を含有する電圧非直線抵抗素
子の製造方法に関する。 近年IC、トランジスタ、サイリスタなどの半
導体素子および半導体回路とその応用の急速な発
展にともない計測、制御、通信機器および電力機
器における半導体素子および半導体回路の使用が
普及し、これら機器の小型化、高性能化が急速に
進展している。しかし他方ではこのような進歩に
ともないこれらの機器やその部品の耐電圧、耐サ
ージおよび耐ノイズ性能は十分とはいえない。こ
のためこれらの機器や部品を異常なサージやノイ
ズから保護すること、あるいは回路電圧を安定化
することがきわめて重要な課題になつてきてい
る。これらの課題のために電圧非直線性がきわめ
て大きく放電耐量の大きい寿命特性のすぐれたし
かも安価な電圧非直線抵抗素子の開発が要求され
てきている。従来これらの目的のためにSiCバリ
スタやSiバリスタなどの電圧非直線抵抗素子やツ
エナーダイオードなどが用いられてきた。また最
近では酸化亜鉛を主成分としこれに添加物を加え
たバリスタが開発されている。バリスタの電流電
圧特性は一般につぎの関係 I=(V/C)〓 で表示される。ここでVはバリスタに印加されて
いる電圧であり、Iはバリスタを流れる電流であ
る。またCは与えられた電流を流したときの電圧
に対応する定数である。α=1はオームの法則に
したがう普通の抵抗体であり、αが大きいほど非
直線性がすぐれているといえる。ここではバリス
タ特性をCとαで表わすかわりに1mAにおける
立上り電圧V1mAとαで表わすこととする。従
来用いられているSiCバリスタはSiC粒子を磁器
結合剤で焼き固めたものでその非直線性はSiC粒
子相互の接触抵抗の電圧依存性に起因している。
したがつてバリスタを流れる電流方向の厚みを変
えることによつてC値を制御することができる。
しかし非直線係数αは3から7と比較的小さい。
しかも非酸化性雰囲気中で焼成する必要がある。
他方Siバリスタはその非直線性がSiのP−n接合
に起因したものであるため広範囲にわたつてC値
を制御することが不可能である。ツエナーダイオ
ードも同様にSiのP−n接合を利用しているため
に電圧非直線性は極めて大きいが高電圧用の素子
を作ることが難しく、また放電耐量が小さくサー
ジに弱いという欠点がある。また酸化亜鉛を主成
分とするセラミツクバリスタとして酸化ビスマ
ス、酸化コバルト、酸化マンガン、酸化アンチモ
ンなどを含むものが最近開発されている。これら
はその非直線性が焼結体自体に起因しているため
対称形の電圧電流特性を示しその非直線性が非常
に大きいという長所をもつている。しかしながら
衝撃大電流を印加したときのV1mAの正方向の
変化率と負方向への変化率の差が大きく、特に負
方向への変化が大きい。このことは対称形の電圧
電流特性が維持できない、すなわち極性が発生す
るという大きい欠点となり安定性のない素子とし
て信頼性を保証することができない。この他酸化
ビスマスを含まないで酸化ニツケルおよび酸化バ
リウム等を含むものや希土類元素および酸化コバ
ルトを含むものなどが開発されており、これらの
ものは上記の衝撃大電流を印加したときのV1m
Aの変化率の差は小さくなつているが電圧非直線
性は酸化ビスマスを含むものと比較して小さくバ
リスタとしてのサージ抑制特性が悪いため使用範
囲が限られてしまう欠点があつた。 しかるに本発明の目的は従来の電圧非直線抵抗
素子における上記の欠点を解決せんとするもので
ある。すなわち本質的に対称形の電圧電流特性を
有し、そのサージ抑制特性が良好である高い電圧
非直線係数αをもち実用上衝撃大電流印加時に高
い信頼性をユーザに与える電圧電流特性の維持を
なし、さらに課電寿命特性を高めるV1μAの電圧
の高安定性を満足させるために電圧非直線性が焼
結体自体に依存しα値が60以上と高い値をもち、
かつ衝撃大電流を印加した場合のV1mAの正方
向の変化率と負方向の変化率の差が1%以下とき
わめて小さい極性特性をもち、さらにV1μA時の
電圧変化率が3%以下と小さい非常にすぐれた電
圧非直線抵抗素子の製造方法を提供することにあ
る。以下本発明の詳細を一実施例にもとづき説明
する。 実施例 酸化亜鉛に酸化ビスマス、酸化コバルト、酸化
マンガン、金属亜鉛およびスピネル型結晶のアン
チモン化合物をそれぞれ0.001〜10モル%の範囲
で添加しこれを十分に混合して20mmφ×1mmtの
寸法の円板型に成型し1000℃以上の空気中高温で
焼結した。ここで用いるスピネル型結晶のアンチ
モン化合物はつぎのようにしてあらかじめ調整し
ておく。すなわち酸化亜鉛、酸化アルミニウムお
よび酸化アンチモンをスピネル型結晶を形成する
組成に調合し1300℃で6時間高温処理し湿式粉砕
して製造する。焼結した試料の両面に電極をつけ
特性を測定したところ第1表に示すような結果が
得られた。
The present invention relates to a method for producing a voltage nonlinear resistance element containing metallic zinc and a spinel-type crystalline antimony compound as starting materials in a sintered body mainly composed of zinc oxide. In recent years, with the rapid development of semiconductor devices and circuits such as ICs, transistors, and thyristors, and their applications, the use of semiconductor devices and circuits in measurement, control, communication equipment, and power equipment has become widespread, and these devices are becoming smaller and more sophisticated. Performance improvements are progressing rapidly. However, with such progress, the withstand voltage, surge and noise resistance of these devices and their parts cannot be said to be sufficient. For this reason, protecting these devices and components from abnormal surges and noise, or stabilizing circuit voltages, has become an extremely important issue. To solve these problems, there has been a demand for the development of an inexpensive voltage nonlinear resistance element that has extremely high voltage nonlinearity, high discharge capacity, and excellent life characteristics. Conventionally, voltage nonlinear resistance elements such as SiC varistors and Si varistors, Zener diodes, and the like have been used for these purposes. Recently, varistors have been developed that contain zinc oxide as a main component and add additives to it. The current-voltage characteristics of a varistor are generally expressed by the following relationship: I=(V/C). Here, V is the voltage applied to the varistor and I is the current flowing through the varistor. Further, C is a constant corresponding to the voltage when a given current is passed. α=1 is an ordinary resistor that follows Ohm's law, and it can be said that the larger α is, the better the nonlinearity is. Here, instead of expressing the varistor characteristics by C and α, it is expressed by the rising voltage V1mA at 1 mA and α. Conventionally used SiC varistors are made by baking SiC particles with a magnetic binder, and their nonlinearity is due to the voltage dependence of the contact resistance between the SiC particles.
Therefore, the C value can be controlled by changing the thickness in the direction of the current flowing through the varistor.
However, the nonlinear coefficient α is relatively small, ranging from 3 to 7.
Furthermore, it is necessary to perform firing in a non-oxidizing atmosphere.
On the other hand, since the nonlinearity of Si varistors is due to the P-n junction of Si, it is impossible to control the C value over a wide range. Zener diodes similarly utilize a P-n junction of Si, so they have extremely high voltage nonlinearity, but they also have the drawback of being difficult to make high-voltage devices, and having a low discharge withstand capacity and being susceptible to surges. Ceramic varistors containing zinc oxide as a main component and containing bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, etc. have recently been developed. These have the advantage that their nonlinearity is caused by the sintered body itself, so they exhibit symmetrical voltage-current characteristics and have very large nonlinearity. However, when a large impact current is applied, the difference between the rate of change in V1mA in the positive direction and the rate of change in the negative direction is large, and the change in the negative direction is particularly large. This is a major drawback in that symmetrical voltage-current characteristics cannot be maintained, that is, polarity occurs, and reliability cannot be guaranteed as an unstable element. In addition, products that do not contain bismuth oxide but contain nickel oxide and barium oxide, and products that contain rare earth elements and cobalt oxide have been developed.
Although the difference in the rate of change in A has become smaller, the voltage nonlinearity is smaller than that of a varistor containing bismuth oxide, and the surge suppression properties as a varistor are poor, which limits the range of use. However, an object of the present invention is to overcome the above-mentioned drawbacks of conventional voltage nonlinear resistance elements. In other words, it has essentially symmetrical voltage-current characteristics, has good surge suppression characteristics, has a high voltage nonlinear coefficient α, and maintains voltage-current characteristics that give users high reliability when applying large shock currents in practical use. None, and in order to satisfy the high voltage stability of V1μA that improves the charging life characteristics, the voltage nonlinearity depends on the sintered body itself, and the α value is as high as 60 or more.
It also has extremely small polarity characteristics, with a difference of 1% or less between the rate of change in the positive direction and the rate of change in the negative direction of V1mA when a large shock current is applied, and the voltage change rate at V1μA is 3% or less. An object of the present invention is to provide a method for manufacturing a voltage nonlinear resistance element with excellent performance. The details of the present invention will be explained below based on one embodiment. Example Bismuth oxide, cobalt oxide, manganese oxide, metallic zinc, and spinel-type crystal antimony compound are added to zinc oxide in the range of 0.001 to 10 mol %, respectively, and mixed thoroughly to form a disk with dimensions of 20 mmφ x 1 mmt. It was molded into a mold and sintered in air at a high temperature of over 1000℃. The antimony compound of spinel type crystal used here is prepared in advance as follows. Specifically, zinc oxide, aluminum oxide, and antimony oxide are mixed into a composition that forms spinel-type crystals, treated at a high temperature of 1300°C for 6 hours, and wet-pulverized. When electrodes were attached to both sides of the sintered sample and its properties were measured, the results shown in Table 1 were obtained.

【表】 すなわち第1表は焼結体の厚みを固定して電極
の種類を変えた場合の特性を調べたものである
が、この第1表からわかるように電極の種類と無
関係に素体の厚みによつて特性が変わる焼結体自
体が非直線性をもつ素子であることがわかる。 つぎに第1図に焼結温度と添加量を変えたとき
のV1mAに対応するα値の変化を示す。試料の
焼結温度と組成、添加量は第2表に示すとおりで
ある。曲線1は本発明の実施例でもつとも大きな
α値を示す。曲線2は比較例で前記試料において
金属亜鉛を出発材料として使用しないですべて酸
化亜鉛を用いた場合の特性を示す。曲線3は参考
例として酸化ビスマスを含まないで酸化亜鉛に酸
化ニツケルおよび酸化バリウム等を添加したもの
である。
[Table] In other words, Table 1 examines the characteristics when the thickness of the sintered body is fixed and the type of electrode is changed. It can be seen that the sintered body itself is a nonlinear element whose characteristics change depending on the thickness of the sintered body. Next, Fig. 1 shows the change in α value corresponding to V1mA when the sintering temperature and addition amount are changed. The sintering temperature, composition, and amount added of the samples are shown in Table 2. Curve 1 shows the largest α value among the embodiments of the present invention. Curve 2 is a comparative example and shows the characteristics when zinc oxide was not used as a starting material in the sample described above but all zinc oxide was used. Curve 3 is a reference example in which nickel oxide, barium oxide, etc. are added to zinc oxide without containing bismuth oxide.

【表】 これからわかるように酸化ビスマスを含み金属
亜鉛を出発原料として含有するバリスタは大きい
α値がV1mAの広い範囲にわたり得られるとい
う特徴をもつている。つぎに第3表に極性特性の
比較を示す。すなわち第3表は衝撃大電流特性、
直流負荷特性、温湿度サイクル特性をV1mAの
正方向の変化率と負方向の変化率で表わしたもの
で、従来のこの種の電圧非直線抵抗素子のそれと
比較した。第3表において使用した素子はいずれ
も同一の形状寸法にあわせた。V1mA=200Vの
素子の場合に関して示した例である。従来のZnO
のバリスタのデータは本発明の実施例の組成から
金属亜鉛を出発原料として含有しないものであ
る。
[Table] As can be seen from the following, varistors containing bismuth oxide and metallic zinc as a starting material are characterized by a large α value over a wide range of V1mA. Next, Table 3 shows a comparison of polar characteristics. In other words, Table 3 shows the shock large current characteristics,
The DC load characteristics and temperature/humidity cycle characteristics are expressed as the rate of change in the positive direction and the rate of change in the negative direction of V1mA, and were compared with those of a conventional voltage nonlinear resistance element of this type. All elements used in Table 3 had the same geometry. This is an example shown for a device with V1mA=200V. Conventional ZnO
The data of the varistor does not contain metal zinc as a starting material from the composition of the example of the present invention.

【表】 第3表の値から本発明の製造方法により得られ
たバリスタの値は従来のバリスタの値に比して一
段とすぐれていることがわかる。衝撃電流特性は
500Aのサージ電流を10000回印加した場合のV1
mA値の正方向、負方向の変化率をみたもので、
バリスタの主要な用途であるサージ吸収素子とし
ての安定性を調べたものである。直流負荷特性は
85℃中で2Wの負荷を連続500時間印加後のV1m
Aの変化率を調べたものである。従来のバリスタ
は高温度の場合の劣化が大きいことがわかる。温
湿度サイクル特性は−40℃から85℃95%RHの雰
囲気中で2Wの負荷を100サイクル行つた後の変化
率を調べたものである。また第1図に参考例(曲
線3)として示した酸化亜鉛に酸化ニツケルおよ
び酸化バリウム等を添加したものの極性特性はα
の正方向の変化率と負方向の変化率の差の絶対値
が4〜5%である。 本発明の製造方法により得られた電圧非直線抵
抗素子は非直線性がすぐれているうえ、さらに極
性特性がきわめて小さい。このことは対称形の電
圧電流特性を維持する意味で非常に重要であると
ともにこれらの寿命特性、安定性は素子として高
い信頼性を保証するものである。このことは実用
上からみて特に重要である。なお添加物の酸化ビ
スマス、酸化コバルト、酸化マンガン等は前記実
施例では酸化物を用いたが空気中高温で酸化物に
なるものであればよく必ずしも酸化物に限らない
ことはいうまでもない。焼結温度の最適点は添加
物の添加量に応じて若干異なるが、1000℃以下の
温度では焼結が不十分となり第2表に示した安定
性の特徴を発揮することは難しい。焼結温度の上
限は焼結過度、すなわち焼結体が変形したり膨張
したりする現象がみられない温度によつてきめら
れる。 本発明者の実験結果から金属亜鉛のもつとも有
効な添加量は第2図に示す衝撃電流特性から明ら
かなように0.001〜10モル%の範囲であり、酸化
亜鉛、酸化アルミニウム、酸化アンチモンからな
るスピネル型結晶のアンチモン化合物のもつとも
有効な添加量は第3図に示す温湿度サイクル特性
から明らかなように0.001〜10モル%の範囲であ
る。両者とも0.001モル%未満または10モル%を
越える範囲では負方向のV1mA変化率がマイナ
スとなり従来と同程度の安定性しかもたない。な
お、本発明において上記添加物以外にさらに他の
添加物をあらかじめ酸化亜鉛に添加しておくかあ
るいは焼結体中に拡散させるか、またはこれらの
方法を適宜組み合わせて実施してもよい。 以上詳述したように本発明によれば酸化亜鉛を
主成分とし焼結体自体が電圧非直線特性を有する
電圧非直線抵抗素子の製造方法において出発原料
として金属亜鉛および酸化亜鉛、酸化アルミニウ
ム、酸化アンチモンからなるスピネル型結晶のア
ンチモン化合物を含有することによつてきわめて
大きい非直線性を有ししかも極性特性が非常に良
好で、かつ製造方法がきわめて簡便であり安定し
た特性を有する電圧非直線抵抗素子の製造方法を
提供することができる。
[Table] From the values in Table 3, it can be seen that the values of the varistor obtained by the manufacturing method of the present invention are much better than those of the conventional varistor. The impact current characteristics are
V1 when 500A surge current is applied 10000 times
It looks at the rate of change in the mA value in the positive and negative directions.
This study investigated the stability of varistors as surge absorption elements, which are their main use. DC load characteristics are
V1m after applying a load of 2W for 500 hours continuously at 85℃
The rate of change of A was investigated. It can be seen that conventional varistors deteriorate significantly at high temperatures. The temperature/humidity cycle characteristics were determined by examining the rate of change after 100 cycles of a 2W load in an atmosphere from -40°C to 85°C and 95% RH. In addition, the polarity of the zinc oxide shown as a reference example (curve 3) in Figure 1 with nickel oxide, barium oxide, etc.
The absolute value of the difference between the rate of change in the positive direction and the rate of change in the negative direction is 4 to 5%. The voltage nonlinear resistance element obtained by the manufacturing method of the present invention not only has excellent nonlinearity but also has extremely small polarity characteristics. This is very important in terms of maintaining symmetrical voltage-current characteristics, and these life characteristics and stability guarantee high reliability as an element. This is particularly important from a practical standpoint. Although oxides were used as additives such as bismuth oxide, cobalt oxide, manganese oxide, etc. in the above embodiments, it goes without saying that the additives are not necessarily limited to oxides as long as they become oxides at high temperatures in air. The optimal point of sintering temperature varies slightly depending on the amount of additives added, but at temperatures below 1000°C, sintering becomes insufficient and it is difficult to exhibit the stability characteristics shown in Table 2. The upper limit of the sintering temperature is determined by the degree of sintering, that is, the temperature at which the sintered body does not deform or expand. According to the inventor's experimental results, the most effective addition amount of metallic zinc is in the range of 0.001 to 10 mol%, as is clear from the impact current characteristics shown in Figure 2. The most effective amount of the antimony compound added to the type crystal is in the range of 0.001 to 10 mol%, as is clear from the temperature/humidity cycle characteristics shown in FIG. In both cases, in the range of less than 0.001 mol% or more than 10 mol%, the rate of change in V1mA in the negative direction becomes negative, and the stability is comparable to that of the conventional one. In addition, in the present invention, other additives other than the above-mentioned additives may be added to the zinc oxide in advance, or may be diffused into the sintered body, or an appropriate combination of these methods may be used. As detailed above, according to the present invention, metal zinc, zinc oxide, aluminum oxide, zinc oxide, zinc oxide, zinc oxide, aluminum oxide, etc. A voltage nonlinear resistor that contains an antimony compound in the form of a spinel type crystal made of antimony, has extremely high nonlinearity, has very good polar characteristics, is extremely simple to manufacture, and has stable characteristics. A method for manufacturing an element can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例と従来の参考例との
V1mAに対応するα値の変化の比較を示す曲線
図、第2図は衝撃電流特性を示す曲線図、第3図
は温湿度サイクル特性を示す曲線図である。
Figure 1 shows the difference between an embodiment of the present invention and a conventional reference example.
FIG. 2 is a curve diagram showing a comparison of changes in α value corresponding to V1 mA, FIG. 2 is a curve diagram showing shock current characteristics, and FIG. 3 is a curve diagram showing temperature/humidity cycle characteristics.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とし焼結体自体が電圧非直
線特性を有する電圧非直線抵抗素子の製造方法に
おいて金属亜鉛および酸化亜鉛、酸化アルミニウ
ム、酸化アンチモンからなるスピネル型結晶のア
ンチモン化合物を出発原料として含有することを
特徴とする電圧非直線抵抗素子の製造方法。 2 金属亜鉛およびスピネル型結晶のアンチモン
化合物の含有率がそれぞれ0.001〜10モル%であ
ることを特徴とする特許請求の範囲第1項記載の
電圧非直線抵抗素子の製造方法。 3 焼結体が酸化亜鉛、金属亜鉛およびスピネル
型結晶のアンチモン化合物に少なくとも酸化ビス
マスを加えたものからなることを特徴とする特許
請求の範囲第1項または第2項記載の電圧非直線
抵抗素子の製造方法。 4 焼結体が酸化亜鉛、金属亜鉛およびスピネル
型結晶のアンチモン化合物に酸化コバルト、酸化
マンガンなどの金属酸化物の一種または二種以上
を少量添加したものからなることを特徴とする特
許請求の範囲第1項ないし第3項のいずれかに記
載の電圧非直線抵抗素子の製造方法。
[Claims] 1. A method for manufacturing a voltage nonlinear resistance element whose main component is zinc oxide and whose sintered body itself has voltage nonlinear characteristics. A method for producing a voltage nonlinear resistance element, characterized in that it contains an antimony compound as a starting material. 2. The method for manufacturing a voltage nonlinear resistance element according to claim 1, wherein the content of metallic zinc and the antimony compound of the spinel type crystal is 0.001 to 10 mol%, respectively. 3. The voltage nonlinear resistance element according to claim 1 or 2, wherein the sintered body is made of zinc oxide, metallic zinc, and an antimony compound of spinel type crystals, with at least bismuth oxide added thereto. manufacturing method. 4 Claims characterized in that the sintered body is made of zinc oxide, metallic zinc, and an antimony compound in the form of spinel-type crystals, with the addition of a small amount of one or more metal oxides such as cobalt oxide and manganese oxide. A method for manufacturing a voltage nonlinear resistance element according to any one of Items 1 to 3.
JP57214450A 1982-12-06 1982-12-06 Method of producing voltage nonlinear resistance element Granted JPS59104104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214450A JPS59104104A (en) 1982-12-06 1982-12-06 Method of producing voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214450A JPS59104104A (en) 1982-12-06 1982-12-06 Method of producing voltage nonlinear resistance element

Publications (2)

Publication Number Publication Date
JPS59104104A JPS59104104A (en) 1984-06-15
JPS643326B2 true JPS643326B2 (en) 1989-01-20

Family

ID=16655958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214450A Granted JPS59104104A (en) 1982-12-06 1982-12-06 Method of producing voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS59104104A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core

Also Published As

Publication number Publication date
JPS59104104A (en) 1984-06-15

Similar Documents

Publication Publication Date Title
US4338223A (en) Method of manufacturing a voltage-nonlinear resistor
JPS643325B2 (en)
JPS643326B2 (en)
JPS643324B2 (en)
JPS5932043B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS586288B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS5821807B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS5816603B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS5932044B2 (en) Manufacturing method of voltage nonlinear resistance element
JP2985559B2 (en) Varistor
JPS5919449B2 (en) Manufacturing method of voltage nonlinear resistance element
JPH0574606A (en) Zinc oxide varistor for low voltage
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JPS643041B2 (en)
JPS623962B2 (en)
JPH03178101A (en) Voltage non-linear resistor
JPS623963B2 (en)
JPH03195003A (en) Voltage-dependent nonlinear resistor
JPS62232904A (en) Manufacture of varistor
JPS5923444B2 (en) voltage nonlinear resistor
JPS623964B2 (en)
JPS62282416A (en) Voltage nonlinear resistance unit
JPH02156506A (en) Voltage non-linear resistor
JPS589563B2 (en) Manufacturing method of voltage nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor