JPH0515041B2 - - Google Patents

Info

Publication number
JPH0515041B2
JPH0515041B2 JP59261063A JP26106384A JPH0515041B2 JP H0515041 B2 JPH0515041 B2 JP H0515041B2 JP 59261063 A JP59261063 A JP 59261063A JP 26106384 A JP26106384 A JP 26106384A JP H0515041 B2 JPH0515041 B2 JP H0515041B2
Authority
JP
Japan
Prior art keywords
temperature
mixing
raw material
dispersion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59261063A
Other languages
Japanese (ja)
Other versions
JPS61139002A (en
Inventor
Hiroyoshi Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59261063A priority Critical patent/JPS61139002A/en
Publication of JPS61139002A publication Critical patent/JPS61139002A/en
Publication of JPH0515041B2 publication Critical patent/JPH0515041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は非直線抵抗体の製造方法に係り、特に
酸化亜鉛と金属酸化物原料の分散、混合工程を改
良した非直線抵抗体の製造方法に関する。 [発明の技術的背景と問題点] 電力系統において発生する異常電圧を抑制し、
電力系統を保護するために避雷器が用いられる。
避雷器には正常な電圧でほぼ絶縁特性を示し、異
常電圧が印加された時には低い抵抗値となる非直
線抵抗体が用いられる。この非直線抵抗体として
は酸化亜鉛を主体とし、これに数種の金属酸化物
を混合して、成形し、焼結して造られたものが用
いられる。 代表的な化学組成の例としては酸化ビスマス
(Bi2O3)、酸化コバルト(Co2O3)、二酸化マンガ
ン(MnO2)、酸化アンチモン(Sb2O3)、酸化ク
ロム(Cr2O3)、二酸化ケイ素(SiO2)、酸化ニツ
ケル(NiO)、をそれぞれ0.5〜1.0mol%、残りを
主成分の酸化亜鉛(ZnO)とし、さらに必要に応
じて酸化アルミニウム(Al2O3)、酸化ホウ素
(B2O3)、酸化銀(Ag2O)を微量に加える場合も
ある。これらの粉末原料を正確に秤量し、混合機
に入れ充分に分散・混合する。混合物は造粒し、
所定の形状に成形し、焼結容器(サヤ)に入れ空
気中で1050〜1300℃で焼結する。焼結後、研磨し
て直径25mm〜130mm、厚さ10mm〜30mmの円柱また
は円板状とする。そして側面の耐圧を向上させる
ためにカラーコーテイングを行ない、必要ならば
熱処理等の後加工をし、アルミニウム等の電極を
つけて非直線抵抗体とする。 このようにして製造した非直線抵抗体を避雷器
の内部要素に用いた時の最も大切な性能は避雷器
に加えられている正常な電圧に耐え得る能力すな
わち課電寿命特性、サージ処理能力(放電耐量特
性)、保護性能(非直線特性)などがある。 これらの特性の中で特に非直線特性、放電耐量
特性は分散・混合工程におけるロツトによりその
バラツキが著しく大きく、大量生産における解決
すべき問題点であつた。 一般に分散、混合工程においてボールミル等の
混合機が用いられる。この中に粉砕媒体(セラミ
ツクボール等)を入れ、原料、水、有機バインダ
と共に回転または攪拌してボールの衝撃力、磨砕
力を利用して分散、混合を行なつている。この時
発熱を伴うのが普通である。そして先に述べた製
品特性が混合ロツトによつてバラツキが著しく大
きい原因を調査するために、分散・混合工程中の
原料スラリーの温度との関連を詳細に調査した。
その結果、特性のバラツキが分散・混合工程中の
原料スラリー温度と密接な関連があることが明ら
かになつた。分散・混合工程中の原料スラリーの
温度は、季節変動等による気温の変化に伴う水
温、材料温度の変化および混合装置の冷却水の流
量変化の影響を受けて変化する。この原料スラリ
ーの温度変化は分散・混合状態に影響を及ぼすた
め、最終製品の特性にバラツキを生じる原因とな
つていた。 [発明の目的] 本発明は上記の点にか鑑みなされたもので、多
くの製造工程の中で、特に製品特性のバラツキと
深く関わりがある原料の分散・混合工程を改良
し、放電耐量特性、非直線特性の原料分散・混合
工程ロツトによるバラツキを少なくした非直線抵
抗体の製造方法を提供することを目的とする。 [発明の概要] かかる目的を達成するため、本発明によれば主
成分である酸化亜鉛に一種類以上の金属酸化物を
添加した原料を水と共に分散、混合する工程を備
えた非直線抵抗体の製造方法において、前記原料
と水を温度制御装置を備えた混合装置に入れ、こ
の温度制御装置によつて前記原料と水の混合物で
ある原料スラリーの温度を20〜50℃のある温度に
保持しながら前記分散、混合の工程を行うことを
特徴とする。 [発明の実施例] 以下本発明を一実施例により詳細に説明する。 Bi2O3、Co2O3、MnO、Cr2O3、SiO2を夫々
0.5mol%、Sb2O3、NiOを夫々1mol%、Al2O325
×10-4wt%とし、残りをZnOとした。さらにこ
れらの0.1wt%になるようにBi2O350wt%、
SiO210wt%、B2O320wt%、Ag2O20wt%からな
る混合物を正確に秤量した。これらの粉末原料を
十分に混合するために水、分散剤、バインダ、潤
滑剤とともに温度コントロールのできる第1図に
概要を示した分散・混合装置に入れ分散・混合し
た。 第1図に示した分散・混合装置は、原料混合装
置1と、この装置1を収納するように設けた温度
制御用ジヤケツト4と、このジヤケツト4内面と
装置1外面間に温度制御用水槽7からの制御用水
を送入するポンプを備えている。そして前記原料
混合装置1内には電動機Mで回転される混合翼2
が配置されるとともに温度センサー3が設けてあ
る。そして温度制御用水槽7内には水温制御装置
6を配置してある。前記原料混合装置1内に前述
した粉末原料を水等とともに入れ、電動機Mを駆
動して原料をスラリーにする。このときスラリー
の温度を温度センサー3により検知している。例
えばスラリー温度が所定温度よりも低い場合に
は、温度制御用水槽7内の水を水温制御装置6で
加熱してジヤケツト4内に送水する。このため原
料混合装置1全体が昇温されることになるので、
スラリーの温度を所定温度に上昇させた状態で混
合することができる。一方スラリー温度が所定温
度よりも高い場合には水温制御装置6により水槽
7内の水温を低下させるように制御すればよい。
このようにしてスラリー温度を10℃、15℃、20
℃、25℃、30℃、40℃、50℃として分散、混合し
た。次に混合物スラリーをスプレードライヤで例
えば平均粒径120ミクロンになるように造粒する。 次に得られた造粒粉末をφ120mm×t30mmの成形
体とした。添加した分散剤、バインダ、潤滑剤を
予じめ除くため空気中で500℃で焼成した。さら
に1050℃で側面に高抵抗層を形成させるために予
備焼成した。その後BiO3、Sb2O3、SiO2等よりな
る高抵抗形成物質を外面に塗布し、焼結容器に入
れ、空気中で1200℃で焼結し、外径φ100mm、厚
さt24.5mmの焼結体を得た。得られた焼結体の両
平面を研磨し、厚さ23mmとし、カラーコーテイン
グを行ない、カラー焼付けを行なつた。両平面に
アルミニウムのメタリコン電極をつけて非直線抵
抗体を得た。完成した非直線抵抗体の非直線特
性、放電耐量特性の測定を行なつた。その結果が
第1表である。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a non-linear resistor, and more particularly to a method for manufacturing a non-linear resistor in which the process of dispersing and mixing zinc oxide and metal oxide raw materials is improved. [Technical background and problems of the invention] To suppress abnormal voltages occurring in the power system,
Lightning arresters are used to protect power systems.
A non-linear resistor is used in a lightning arrester, which exhibits almost insulating properties at normal voltages and has a low resistance value when abnormal voltages are applied. This non-linear resistor is mainly made of zinc oxide, mixed with several metal oxides, molded and sintered. Examples of typical chemical compositions include bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese dioxide (MnO 2 ), antimony oxide (Sb 2 O 3 ), and chromium oxide (Cr 2 O 3 ) . ), silicon dioxide (SiO 2 ), and nickel oxide (NiO), each in an amount of 0.5 to 1.0 mol%, the remainder being the main component zinc oxide (ZnO), and further containing aluminum oxide (Al 2 O 3 ) and oxide as necessary. In some cases, trace amounts of boron (B 2 O 3 ) and silver oxide (Ag 2 O) are added. These powdered raw materials are accurately weighed, placed in a mixer, and thoroughly dispersed and mixed. The mixture is granulated;
It is formed into a predetermined shape, placed in a sintering container (pod), and sintered in air at 1050-1300°C. After sintering, it is polished into a cylinder or disc shape with a diameter of 25 mm to 130 mm and a thickness of 10 mm to 30 mm. Color coating is then applied to improve the voltage resistance of the side surfaces, and if necessary, post-processing such as heat treatment is performed, and electrodes such as aluminum are attached to form a non-linear resistor. When a non-linear resistor manufactured in this way is used as an internal element of a lightning arrester, the most important performance is the ability to withstand the normal voltage applied to the lightning arrester, i.e. the charging life characteristics, and the surge handling ability (discharge withstand capacity). characteristics), protection performance (nonlinear characteristics), etc. Among these properties, the non-linear properties and the discharge withstand properties in particular have large variations depending on the lot in the dispersion/mixing process, which is a problem that needs to be solved in mass production. Generally, a mixer such as a ball mill is used in the dispersion and mixing process. A grinding medium (ceramic balls, etc.) is placed in this, and the material, water, and organic binder are rotated or stirred, and the impact force and grinding force of the balls are used to perform dispersion and mixing. This is usually accompanied by fever. In order to investigate the cause of the considerable variation in the product characteristics mentioned above depending on the mixing lot, we investigated in detail the relationship with the temperature of the raw material slurry during the dispersion and mixing process.
As a result, it became clear that the variation in properties was closely related to the temperature of the raw material slurry during the dispersion and mixing process. The temperature of the raw material slurry during the dispersion/mixing process changes under the influence of changes in water temperature and material temperature due to changes in air temperature due to seasonal fluctuations, etc., and changes in the flow rate of cooling water in the mixing device. Changes in temperature of this raw material slurry affect the dispersion and mixing state, causing variations in the properties of the final product. [Objective of the Invention] The present invention has been made in view of the above points, and among many manufacturing processes, it improves the dispersion and mixing process of raw materials, which is particularly closely related to variations in product characteristics, and improves discharge capacity characteristics. An object of the present invention is to provide a method for manufacturing a nonlinear resistor in which variations in nonlinear characteristics due to raw material dispersion/mixing process lots are reduced. [Summary of the Invention] In order to achieve the above object, the present invention provides a non-linear resistor comprising a step of dispersing and mixing a raw material in which one or more metal oxides are added to zinc oxide, which is the main component, with water. In the manufacturing method, the raw material and water are placed in a mixing device equipped with a temperature control device, and the temperature of the raw material slurry, which is a mixture of the raw material and water, is maintained at a temperature of 20 to 50 ° C. The method is characterized in that the above-mentioned dispersion and mixing steps are performed. [Example of the Invention] The present invention will be explained in detail below using an example. Bi 2 O 3 , Co 2 O 3 , MnO, Cr 2 O 3 , SiO 2 respectively
0.5 mol%, 1 mol% each of Sb 2 O 3 and NiO, Al 2 O 3 25
×10 -4 wt%, and the rest was ZnO. Furthermore, Bi 2 O 3 50wt% to make these 0.1wt%,
A mixture consisting of 10 wt% SiO2 , 20 wt% B2O3 , and 20 wt% Ag2O was accurately weighed. In order to thoroughly mix these powder raw materials, they were placed together with water, a dispersant, a binder, and a lubricant in a temperature-controlled dispersion/mixing device as outlined in FIG. 1 for dispersion/mixing. The dispersion/mixing device shown in FIG. 1 includes a raw material mixing device 1, a temperature control jacket 4 provided to accommodate the device 1, and a temperature control water tank 7 between the inner surface of the jacket 4 and the outer surface of the device 1. The system is equipped with a pump that supplies water for control. In the raw material mixing device 1, a mixing blade 2 rotated by an electric motor M is provided.
are arranged, and a temperature sensor 3 is also provided. A water temperature control device 6 is disposed within the temperature control water tank 7. The powdered raw material described above is put into the raw material mixing device 1 together with water, etc., and the electric motor M is driven to turn the raw material into a slurry. At this time, the temperature of the slurry is detected by a temperature sensor 3. For example, when the slurry temperature is lower than a predetermined temperature, the water in the temperature control water tank 7 is heated by the water temperature control device 6 and fed into the jacket 4. For this reason, the temperature of the entire raw material mixing device 1 will be raised, so
Mixing can be performed while the temperature of the slurry is raised to a predetermined temperature. On the other hand, if the slurry temperature is higher than the predetermined temperature, the water temperature control device 6 may control the water temperature in the water tank 7 to be lowered.
In this way, the slurry temperature can be adjusted to 10℃, 15℃, 20℃.
℃, 25℃, 30℃, 40℃, and 50℃ and dispersed and mixed. Next, the mixture slurry is granulated using a spray dryer so that the average particle size is, for example, 120 microns. Next, the obtained granulated powder was made into a compact with a diameter of 120 mm and a thickness of 30 mm. In order to remove the added dispersant, binder, and lubricant in advance, it was fired in air at 500°C. Furthermore, it was pre-baked at 1050°C to form a high-resistance layer on the sides. After that, a high resistance forming substance made of BiO 3 , Sb 2 O 3 , SiO 2 etc. is applied to the outer surface, placed in a sintering container, and sintered at 1200°C in air to form a material with an outer diameter of 100 mm and a thickness of 24.5 mm. A sintered body was obtained. Both surfaces of the obtained sintered body were polished to a thickness of 23 mm, color coated, and color baked. A nonlinear resistor was obtained by attaching aluminum metallicon electrodes to both planes. The nonlinear characteristics and discharge withstand characteristics of the completed nonlinear resistor were measured. The results are shown in Table 1.

【表】 V1mAは交流抵抗分電流1mAを流した時の電
圧値(ピーク値)である。V10kAは衝撃電流
10kA(8×20μs)を流した時の電圧値である。
V10kA/V1mAはそれぞれの電圧値の比をとつた
ものでその値が小さい程非直線特性がすぐれてい
る。第1表には50個の平均値を示している。矩形
波放電耐量は2.5msの矩形波電流を用いて50個の
試料について250J/c.c.のエネルギーになるように
調整して放電電流に耐える回数と耐えた個数を求
めたものである。衝撃大電流耐量は、8×20μsの
波形を有する100kAの電流を20個の試料に通電し
耐える回数と耐えた個数を求めたものである。い
ずれも回数の大きい程放電耐量特性は優れてい
る。この結果からいずれの評価項目においても本
発明における原料分散・混合工程における原料ス
ラリーの温度が20〜50℃の範囲において優れた非
直線抵抗体が得られた。 以上のようにZnOを主体とした非直線抵抗体の
製造工程において原料を分散・混合する際に、原
料スラリーの温度を制御することにより著しく優
れたバラツキの少ない非直線抵抗体が得られるこ
とが明らかとなつたがその理由は下記によると考
えられる。 本発明で得た分散・混合温度を変化させた非直
線抵抗体に2.5msの矩形波電流を通電し発熱させ
この温度を赤外線カメラによつて観測した。その
面分布、線分布の結果が第2図及び第3図であ
る。第2図は分散・混合温度10℃・第3図は分
散・混合温度30℃である。この結果からわかるよ
うに温度が30℃のものは面全体に発熱がより均一
であり、10℃のものは不均一である。そして不均
一なものは電流集中が起り、放電耐量のバラツキ
は大きくなり、非直線性も悪い。 これらのことから製造工程における分散・混合
工程時の原料スラリーの温度が低いと強く凝集し
た原料が分散せず、原料の分散が不十分であるこ
とから均一な原料の混合ができていないことを示
しており、焼結後の組織も不均一になつている。
このことは微細構造の観察でも確かめられた。 以上のように分散・混合工程における原料スラ
リーの温度制御を行なうことにより均一に原料が
混合され、その結果焼結後の組織が均一となり、
電流も集中しなくなりバラツキの小さいより高性
能の非直線抵抗体が得られた。 尚、原料スラリーの温度が50℃以上になると有
機バインダ等のゲル化等の変化が起り、著しく特
性が低下し、ボールの摩耗が激しくなり、不純物
の混入によつて製品特性が変化するため、温度の
上限は50℃に限定される。 [発明の効果] 以上述べたように本発明によれば、原料スラリ
ーの温度を20〜50℃のある温度に保持することに
より、原料の混合、分散が均一になるため、バラ
ツキの小さい優れた電気特性を有する非直線抵抗
体を得ることができる。
[Table] V 1 mA is the voltage value (peak value) when 1 mA of AC resistance current flows. V 10 kA is the shock current
This is the voltage value when 10kA (8 x 20μs) is applied.
V 10 kA/V 1 mA is the ratio of the respective voltage values, and the smaller the value, the better the nonlinear characteristics. Table 1 shows the average values for 50 samples. The square wave discharge withstand capacity is calculated by adjusting the energy of 50 samples to 250 J/cc using a 2.5 ms square wave current, and calculating the number of times the sample can withstand the discharge current and the number of samples that can withstand the discharge current. Shock large current withstand capacity is determined by applying a current of 100 kA with a waveform of 8 x 20 μs to 20 samples, and determining the number of times the samples withstood and the number of samples that withstood. In either case, the greater the number of times, the better the discharge endurance characteristics are. From these results, excellent nonlinear resistors were obtained in all evaluation items when the temperature of the raw material slurry in the raw material dispersion/mixing step in the present invention was in the range of 20 to 50°C. As described above, when dispersing and mixing raw materials in the manufacturing process of nonlinear resistors mainly made of ZnO, it is possible to obtain significantly superior nonlinear resistors with less variation by controlling the temperature of the raw material slurry. It has become clear that the reason is thought to be as follows. A rectangular wave current of 2.5 ms was applied to the nonlinear resistor obtained in the present invention with varying dispersion/mixing temperature to generate heat, and this temperature was observed with an infrared camera. The results of the surface distribution and line distribution are shown in FIGS. 2 and 3. Figure 2 shows the dispersion/mixing temperature at 10°C, and Figure 3 shows the dispersion/mixing temperature at 30°C. As can be seen from these results, when the temperature is 30°C, heat generation is more uniform over the entire surface, and when the temperature is 10°C, it is non-uniform. If the current is non-uniform, current concentration will occur, the dispersion in discharge capacity will increase, and non-linearity will be poor. These results indicate that if the temperature of the raw material slurry during the dispersion/mixing process in the manufacturing process is low, the strongly agglomerated raw materials will not be dispersed, and the raw materials will not be uniformly mixed due to insufficient dispersion of the raw materials. The structure after sintering is also non-uniform.
This was also confirmed by microstructural observation. As mentioned above, by controlling the temperature of the raw material slurry in the dispersion and mixing process, the raw materials are mixed uniformly, and as a result, the structure after sintering is uniform,
The current is no longer concentrated, resulting in a higher-performance nonlinear resistor with less variation. Furthermore, if the temperature of the raw material slurry exceeds 50℃, changes such as gelation of the organic binder etc. will occur, which will significantly reduce the properties, increase wear of the balls, and change the product properties due to the contamination of impurities. The upper temperature limit is limited to 50°C. [Effects of the Invention] As described above, according to the present invention, by maintaining the temperature of the raw material slurry at a temperature of 20 to 50°C, the mixing and dispersion of the raw materials becomes uniform, resulting in excellent results with small variations. A non-linear resistor having electrical properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非直線抵抗体の製造方法の一
実施例を説明するための分散・混合装置の概略
図、第2図a,bは非直線抵抗体の発熱分布図、
第3図a,bは本発明による非直線抵抗体の発熱
分布図である。 1……原料混合装置、2……混合翼、3……温
度センサー、4……温度制御用ジヤケツト、5…
…温度制御用水送入ポンプ、6……温度制御用水
温コントロール装置、7……温度制御用水槽。
FIG. 1 is a schematic diagram of a dispersion/mixing device for explaining an embodiment of the method for manufacturing a non-linear resistor of the present invention, FIGS. 2 a and b are heat distribution diagrams of the non-linear resistor,
3a and 3b are heat distribution diagrams of the nonlinear resistor according to the present invention. 1... Raw material mixing device, 2... Mixing blade, 3... Temperature sensor, 4... Temperature control jacket, 5...
... Water supply pump for temperature control, 6 ... Water temperature control device for temperature control, 7 ... Water tank for temperature control.

Claims (1)

【特許請求の範囲】[Claims] 1 主成分である酸化亜鉛に一種類以上の金属酸
化物を添加した原料を水と共に分散、混合する工
程を備えた非直線抵抗体の製造方法において、前
記原料と水を温度制御装置を備えた混合装置に入
れ、この温度制御装置によつて前記原料と水の混
合物である原料スラリーの温度を20〜50℃のある
温度に保持しながら前記分散、混合の工程を行う
ことを特徴とする非直線抵抗体の製造方法。
1. A method for manufacturing a non-linear resistor comprising a step of dispersing and mixing a raw material in which one or more metal oxides are added to zinc oxide, which is the main component, with water, the method comprising a temperature control device for controlling the raw material and water. The method of dispersion and mixing is performed by placing the slurry in a mixing device and maintaining the temperature of the raw material slurry, which is a mixture of the raw material and water, at a temperature of 20 to 50°C using the temperature control device. Method of manufacturing a linear resistor.
JP59261063A 1984-12-11 1984-12-11 Manufacture of non-linear resistor Granted JPS61139002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261063A JPS61139002A (en) 1984-12-11 1984-12-11 Manufacture of non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261063A JPS61139002A (en) 1984-12-11 1984-12-11 Manufacture of non-linear resistor

Publications (2)

Publication Number Publication Date
JPS61139002A JPS61139002A (en) 1986-06-26
JPH0515041B2 true JPH0515041B2 (en) 1993-02-26

Family

ID=17356559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261063A Granted JPS61139002A (en) 1984-12-11 1984-12-11 Manufacture of non-linear resistor

Country Status (1)

Country Link
JP (1) JPS61139002A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836893B2 (en) * 1990-03-08 1998-12-14 日本碍子 株式会社 Method of manufacturing voltage non-linear resistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147202A (en) * 1981-03-06 1982-09-11 Meidensha Electric Mfg Co Ltd Method of producing nonlinear resistor
JPS5831504A (en) * 1981-08-20 1983-02-24 株式会社東芝 Method of producing non-linear resistor
JPS5853801A (en) * 1981-09-25 1983-03-30 三菱電機株式会社 Method of producing voltage nonlinear resistor
JPS58124204A (en) * 1982-01-21 1983-07-23 株式会社東芝 Method of producing nonlinear resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147202A (en) * 1981-03-06 1982-09-11 Meidensha Electric Mfg Co Ltd Method of producing nonlinear resistor
JPS5831504A (en) * 1981-08-20 1983-02-24 株式会社東芝 Method of producing non-linear resistor
JPS5853801A (en) * 1981-09-25 1983-03-30 三菱電機株式会社 Method of producing voltage nonlinear resistor
JPS58124204A (en) * 1982-01-21 1983-07-23 株式会社東芝 Method of producing nonlinear resistor

Also Published As

Publication number Publication date
JPS61139002A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
EP1150306B1 (en) Current/voltage non-linear resistor and sintered body therefor
JPH0252409B2 (en)
EP2194541B1 (en) Current-voltage non-linear resistor and method of manufacture thereof
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
US4460497A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
US5000876A (en) Voltage non-linear type resistors
JPH0515041B2 (en)
US4452728A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum, boron and selected alkali metal additives
EP2144256B1 (en) Current/voltage nonlinear resistor
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JP2692210B2 (en) Zinc oxide varistor
CN113603476B (en) Preparation method and electrochemical test of multi-point electrode zinc oxide pressure-sensitive ceramic
JP2001052907A (en) Ceramic element and manufacturing method
JPH05234716A (en) Zinc oxide varistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPS6322602B2 (en)
JPS6214922B2 (en)
JP2003007512A (en) Nonlinear resistor element
JPH0216003B2 (en)
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JPH08213209A (en) Manufacture of voltage nonlinear-type resistor
JPS59169101A (en) Method of producing voltage nonlinear resistor
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees