JPH04150001A - Thermistor element - Google Patents

Thermistor element

Info

Publication number
JPH04150001A
JPH04150001A JP27471390A JP27471390A JPH04150001A JP H04150001 A JPH04150001 A JP H04150001A JP 27471390 A JP27471390 A JP 27471390A JP 27471390 A JP27471390 A JP 27471390A JP H04150001 A JPH04150001 A JP H04150001A
Authority
JP
Japan
Prior art keywords
resistor
electrodes
thermistor
layers
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27471390A
Other languages
Japanese (ja)
Inventor
Hirobumi Sunahara
博文 砂原
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP27471390A priority Critical patent/JPH04150001A/en
Publication of JPH04150001A publication Critical patent/JPH04150001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To finely adjust a resistance value by a method wherein a plurality of kinds of resistor layers whose thermistor constant are different, resistor layers for resistance-value adjustment use and electrodes are formed between oxide ceramic layers. CONSTITUTION:A resistor layer 12 whose thermistor constant is high and a resistor layer 14 whose thermistor constant is low are formed between insulating oxide ceramic layers 28a to 28e. Then, resistor layers 16, 18 for resistant-value adjustment use and internal electrodes 24, 26, 30a to 30d are formed. Then, comb-shaped electrodes 36, 38 are formed toward the direction of the internal electrodes 24, 26 form an external electrode, 32. When the number of the comb- shaped electrodes 36, 38 is trimmed, the connecting number of resistors of the resistor layers 18, 18 for resistance-value adjustment use is adjusted. In addition, the resistor layers, 12, 14 whose thermistor constant is different and the resistor layers 16, 18 for resistance-value adjustment use are connected in parallel and linearized. Thereby, it is possible to easily manufacture a thermistor element which ensures a required characteristic and whose reliability is high.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、例えば感温素子として用いられるサーミス
タ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a thermistor element used, for example, as a temperature-sensitive element.

tbl従来の技術 感温素子として用いられるサーミスタは、常温付近で使
用できるものとしてMn−Ni系、MnNi−Co系ま
たはMn−Ni−Co系などの酸化物が用いられていて
、また、800°C前後で使用できるものとしZr−Y
系酸化物などが用いられている。これらの材料からなる
サーミスタは温度係数が大きく、形状や抵抗値の設計上
の自由度が大きく、また安価であるなどの利点を備えて
いる。
tbl Conventional technology A thermistor used as a temperature-sensitive element uses oxides such as Mn-Ni, MnNi-Co, or Mn-Ni-Co, which can be used at around room temperature. Zr-Y can be used before and after C.
oxides, etc. are used. Thermistors made of these materials have advantages such as a large temperature coefficient, a large degree of freedom in design of shape and resistance value, and low cost.

これらの負特性サーミスタは、半導体特性を利用したも
ので、その抵抗温度特性は次式で表される。
These negative characteristic thermistors utilize semiconductor characteristics, and their resistance temperature characteristics are expressed by the following equation.

R1=R2exp  ((1/Tl−1/T2)B)T
l、T2:温度[k) R1:温度TIにおける抵抗値 R2:温度T2における抵抗値 B:サーミスタ定数[k) (C1発明が解決しようとする課題 このように、従来の負特性サーミスタでは抵抗温度特性
が直線的でないため、温度センサとして利用する際、回
路側で補正しない場合には、所謂リニアライスを行う必
要があった。リニアライズの原理を第5図の抵抗温度特
性を基に説明する。
R1=R2exp ((1/Tl-1/T2)B)T
l, T2: Temperature [k] R1: Resistance value at temperature TI R2: Resistance value at temperature T2 B: Thermistor constant [k) (C1 Problems to be solved by the invention As described above, in the conventional negative characteristic thermistor, the resistance temperature Because the characteristics are not linear, when using it as a temperature sensor, it was necessary to perform so-called linear lining if no correction was made on the circuit side.The principle of linearizing is explained based on the resistance-temperature characteristics shown in Figure 5. .

先ず、ある所定温度で抵抗値が等しくなるようなサーミ
スタ定数の異なる2つの抵抗体を考える。
First, consider two resistors with different thermistor constants whose resistance values are equal at a certain predetermined temperature.

このとき所定温度よりも高温側ではサーミスタ定数の大
きな抵抗体の抵抗値は小さくなり、低温側ではサーミス
タ定数の小さな抵抗体の抵抗値が小さくなる。従ってこ
れら2つの抵抗体を並列接続すると、その合成抵抗値は
、所定温度の高温側ではサーミスタ定数の大きな抵抗体
の抵抗値が支配的になり、低温側ではサーミスタ定数の
小さな抵抗体の抵抗値が支配的になる。そこで所定温度
範囲では丁度その中間領域になる。このように2つのサ
ーミスタ定数および抵抗値の組み合わせを選択すること
によって、中間領域でリニアライズされた特性が得られ
るわけである。また、リニアライズされる温度範囲は、
2つの抵抗体の抵抗値が等しくなる温度をシフトするこ
とで調整可能となる。つまり、両抵抗体の抵抗値を変更
することによって抵抗値の等しくなる点を調整すること
ができる。
At this time, the resistance value of the resistor with a large thermistor constant becomes small on the higher temperature side than the predetermined temperature, and the resistance value of the resistor with a small thermistor constant becomes small on the low temperature side. Therefore, when these two resistors are connected in parallel, their combined resistance value will be such that the resistance value of the resistor with a large thermistor constant becomes dominant on the high temperature side of a given temperature, and the resistance value of the resistor with a small thermistor constant on the low temperature side. becomes dominant. Therefore, within the predetermined temperature range, the temperature is exactly in the middle region. By selecting a combination of two thermistor constants and resistance values in this manner, linearized characteristics in the intermediate region can be obtained. Also, the temperature range to be linearized is
Adjustment is possible by shifting the temperature at which the resistance values of the two resistors become equal. That is, by changing the resistance values of both resistors, it is possible to adjust the point at which the resistance values become equal.

従来は、通常数種類の負特性サーミスタと数種類の定抵
抗体とを組み合わせてリニアライズを行っていた。
Conventionally, linearization has been performed by combining several types of negative characteristic thermistors and several types of constant resistors.

また、リニアライズされた一つの温度センサとして、サ
ーミスタ定数の異なる2種類の抵抗体をシート成形法に
よって組み合わせた積層サーミスタ素子が提案されてい
るが、その製造時に同時焼成を行うため、各抵抗体層間
で相互拡散がおこり、抵抗値およびサーミスタ定数に変
動が生じる。
In addition, a laminated thermistor element in which two types of resistors with different thermistor constants are combined using a sheet molding method has been proposed as a single linearized temperature sensor, but since simultaneous firing is performed during manufacturing, each resistor Interdiffusion occurs between layers, causing variations in resistance and thermistor constant.

さらに、外部環境からの保護を目的とした保護層が形成
されないためエージング特性が低いという欠点があった
Furthermore, since a protective layer for the purpose of protection from the external environment is not formed, there is a drawback that aging characteristics are low.

この発明の目的は、一体焼成によっても必要な特性を確
保しうる信較性の高いリニアライズされたサーミスタ素
子を提供することにある。
An object of the present invention is to provide a highly reliable linearized thermistor element that can ensure necessary characteristics even by integral firing.

また、この発明の他の目的は、積層体内部に形成する抵
抗体の抵抗値を微調整できるようにしたサーミスタ素子
を提供することにある。
Another object of the present invention is to provide a thermistor element in which the resistance value of a resistor formed inside a laminate can be finely adjusted.

(di課題を解決するための手段 この発明のサーミスタ素子は、複数の全面内部電極間に
サーミスタ定数の異なる複数種の抵抗体層をそれぞれ設
け、 全面内部電極と個別内部電極間に抵抗値調整用抵抗体層
を設け、 上記各内部電極と共に各抵抗体層を複数の酸化物セラミ
クス層間に介在させた状態で積層一体出し、 酸化物セラミクス層の外面に、上記全面内部電極を共通
接続する二つの外部!極と、この外部電極から延出して
上記個別内部電極にそれぞれ接続するくし型電極とを形
成してなることを特徴とする。
(Means for Solving the Problems) The thermistor element of the present invention includes a plurality of types of resistor layers having different thermistor constants between a plurality of internal electrodes on the entire surface, and a resistance value adjustment between the internal electrodes on the entire surface and the individual internal electrodes. A resistor layer is provided, each resistor layer is interposed between a plurality of oxide ceramic layers together with each of the internal electrodes, and the resistor layer is laminated together, and two resistor layers are provided on the outer surface of the oxide ceramic layer to commonly connect the entire surface internal electrode. It is characterized by forming an external electrode and comb-shaped electrodes extending from the external electrode and respectively connected to the individual internal electrodes.

(e)作用 この発明のサーミスタ素子では、サーミスタ定数の異な
る複数種の抵抗体層がそれぞれ複数の全面内部電極間に
設けられ、抵抗値調整用の抵抗体層が全面内部電極と個
別内部電極間に設けられ、上記各内部電極と各抵抗体層
とが複数の酸化物セラミクス層間に介在した状態で積層
一体出されている。そして、酸化物セラミクス層の外面
に形成された外部電極が上記各全面内部電極を共通接続
し、くし型電極が外部電極から延出して上記個別内部電
極にそれぞれ接続する。従って2つの外部電極間にはサ
ーミスタ定数の異なる複数の抵抗体層と抵抗値調整用抵
抗体層とがそれぞれ並列接続されることになり、これに
よりリニアライズされたサーミスタ素子が得られる。ま
た、上記くし型電極には複数の抵抗値調整用抵抗体層が
接続されているため、このくし型電極の各部を必要本数
カットすることによって、2つの外部電極間に並列接続
される抵抗値調整用抵抗体層の数(面積)が減少し、こ
れによって抵抗体の抵抗値を微調整することができる。
(e) Function In the thermistor element of the present invention, a plurality of types of resistor layers having different thermistor constants are respectively provided between a plurality of internal electrodes on the entire surface, and a resistor layer for adjusting the resistance value is provided between the internal electrodes on the entire surface and the individual internal electrodes. The internal electrodes and the resistor layers are integrally stacked and interposed between a plurality of oxide ceramic layers. An external electrode formed on the outer surface of the oxide ceramic layer commonly connects each of the internal electrodes on the entire surface, and a comb-shaped electrode extends from the external electrode and connects to each of the individual internal electrodes. Therefore, a plurality of resistor layers having different thermistor constants and a resistance value adjusting resistor layer are connected in parallel between the two external electrodes, thereby obtaining a linearized thermistor element. In addition, since a plurality of resistor layers for adjusting the resistance value are connected to the above-mentioned comb-shaped electrode, by cutting the required number of each part of this comb-shaped electrode, the resistance value can be adjusted in parallel between the two external electrodes. The number (area) of the adjustment resistor layers is reduced, thereby making it possible to finely adjust the resistance value of the resistor.

(fl実施例 この発明の実施例であるサーミスタ素子の断面図を第1
図に示す。第1図において12はMnNi系酸化物から
なるサーミスタ定数の大きな抵抗体層、14はCo−L
i系酸化物からなるサーミスタ定数が1000以下と小
さな抵抗体層である。また、16は抵抗体層12と同組
成からなる抵抗値調整用抵抗体層、18は抵抗体層14
と同組成からなる抵抗値調整用抵抗体層である。抵抗体
Fif12の両面には全面内部電極30a、30bを形
成している。また、抵抗体層14の両面には全面内部電
極30c、30dを形成している。さらに、抵抗値調整
用抵抗体層16は、その一方の面を内部電極30aに接
(−で設け、他方の面に複数の個別内部電極24を形成
している。抵抗値調整用抵抗体層18は、その一方の面
を内部電極30dに接して設け、他方の面に複数の個別
内部電極26を形成している。これらの抵抗体層は各内
部電極とともにAlz O3,Z rOzなどからなる
融点の高い絶縁性酸化物セラミクス層28a。
(fl Example: The first cross-sectional view of a thermistor element which is an example of this invention is shown below.
As shown in the figure. In FIG. 1, 12 is a resistor layer made of MnNi-based oxide and has a large thermistor constant, and 14 is Co-L.
It is a small resistor layer made of i-based oxide and has a thermistor constant of 1000 or less. Further, 16 is a resistance value adjusting resistor layer having the same composition as the resistor layer 12, and 18 is a resistor layer 14.
This is a resistance value adjusting resistor layer having the same composition as . Full-surface internal electrodes 30a and 30b are formed on both sides of the resistor Fif12. Further, internal electrodes 30c and 30d are formed on both surfaces of the resistor layer 14 over the entire surface. Further, the resistance value adjustment resistor layer 16 has one surface in contact with the internal electrode 30a (-), and a plurality of individual internal electrodes 24 are formed on the other surface.Resistance value adjustment resistor layer 16 18 is provided with one surface in contact with the internal electrode 30d, and a plurality of individual internal electrodes 26 are formed on the other surface.These resistor layers, together with each internal electrode, are made of AlzO3, ZrOz, etc. Insulating oxide ceramic layer 28a with a high melting point.

28b、28c、28d、28a間に積層し、焼結一体
層している。積層体の周囲にはさらに外部電極32.3
4を形成し、外部電極32から個別内部電極24および
26方向にそれぞれくし型電極36および38を延出形
成している。そして、くし型電極36と個別内部電極2
4間を電極層20を介して接続し、くし型電極38と個
別内部電極26間を電極層22を介して接続している。
They are laminated between 28b, 28c, 28d, and 28a to form a sintered integral layer. Further, an external electrode 32.3 is provided around the laminate.
4, and comb-shaped electrodes 36 and 38 are formed extending from the external electrode 32 in the direction of the individual internal electrodes 24 and 26, respectively. Then, the comb-shaped electrode 36 and the individual internal electrode 2
The comb-shaped electrodes 38 and the individual internal electrodes 26 are connected via the electrode layer 22.

上記くし型電極36および38の形状を第2図および第
3図に示す。第2図は第1図に示したサーミスタ素子の
上面図、第3図は同サーミスタ素子の底面図である。第
2図に示すように、くし型電極36は6つの電極からな
り、それぞれ電極層20a〜20fを介して6つの個別
内部電極(第1図中24参照)に接続している。また、
第3図に示すように、くし型電極38は6つの電極から
なり、それぞれ電極層22a〜22fを介して6つの個
別内部電極(第1図中26参照)に接続している。従っ
て、第2図および第3図に示した二点鎖線に沿ってレー
ザビームをスキャンさせ、(し型電極のうち必要な本数
をトリミングすることにより抵抗値調整用抵抗体の接続
数を調整することができる。
The shapes of the comb-shaped electrodes 36 and 38 are shown in FIGS. 2 and 3. FIG. 2 is a top view of the thermistor element shown in FIG. 1, and FIG. 3 is a bottom view of the thermistor element. As shown in FIG. 2, the comb-shaped electrode 36 consists of six electrodes, each connected to six individual internal electrodes (see 24 in FIG. 1) via electrode layers 20a to 20f. Also,
As shown in FIG. 3, the comb-shaped electrode 38 consists of six electrodes, each connected to six individual internal electrodes (see 26 in FIG. 1) via electrode layers 22a to 22f. Therefore, by scanning the laser beam along the two-dot chain line shown in FIGS. be able to.

以上のように構成したサーミスタ素子の各抵抗体層によ
る等価回路を第4図に示す。第4図において12.14
は抵抗体層12.14による主たる抵抗であり、16a
−16fは抵抗4M ljl整用紙用抵抗体層16成し
た6つの個別内部電極(24)と全面内部電極30a間
に形成される6つの抵抗であり、その接続数によって抵
抗体層12の抵抗値を調整する。また、18a〜18f
は抵抗値調整用抵抗体層18とこれに形成した6つの個
別内部電極(26)と全面内部電極30d間に形成され
る抵抗であり、その接続数によって抵抗体層14による
抵抗値を調整する。
FIG. 4 shows an equivalent circuit of each resistor layer of the thermistor element constructed as described above. 12.14 in Figure 4
is the main resistance due to the resistor layer 12.14, and 16a
-16f are six resistors formed between the six individual internal electrodes (24) of the resistor layer 16 for resistor alignment and the full-surface internal electrode 30a, and the resistance value of the resistor layer 12 is determined by the number of connections. Adjust. Also, 18a to 18f
is a resistance formed between the resistance value adjusting resistor layer 18, the six individual internal electrodes (26) formed thereon, and the full-surface internal electrode 30d, and the resistance value of the resistor layer 14 is adjusted depending on the number of connections. .

以下、第1図に示したサーミスタ素子の製造方法の一例
を述べる。
An example of a method for manufacturing the thermistor element shown in FIG. 1 will be described below.

■先ず、M n COx 、 N i C03およびA
l2O:Iを所定量混合した後、900°Cで2時間仮
焼して、その仮焼物にバインダ、可塑剤および純水を加
えて十分に混練してスラリーを作成する。このスラリー
をドクターブレード法によってテープキャスティングし
、厚さ0.03mの高サーミスタ定数の抵抗体層用グリ
ーンテープを作成する。
■First, M n COx , N i C03 and A
After mixing a predetermined amount of 12O:I, it is calcined at 900°C for 2 hours, and a binder, a plasticizer, and pure water are added to the calcined product and thoroughly kneaded to prepare a slurry. This slurry was tape cast by a doctor blade method to produce a green tape for a resistor layer having a high thermistor constant and having a thickness of 0.03 m.

■同様にしてCo / L i系酸化物からなる低サー
ミスタ定数の抵抗体層用グリーンテープを作成する。
② In the same manner, a green tape for a resistor layer with a low thermistor constant made of Co/Li-based oxide is prepared.

■上記高サーミスタ定数の抵抗体層を形成するグリーン
テープの両面に全面内部電極30a、30bを形成する
ptペーストを塗布し、同様に低サーミスタ定数のグリ
ーンテープの両面に全面内部電極30c、30dを形成
するptペーストを塗布する。
■Apply PT paste to form full-surface internal electrodes 30a and 30b on both sides of the above-mentioned green tape forming a resistor layer with a high thermistor constant, and similarly apply full-face internal electrodes 30c and 30d on both sides of the green tape with a low thermistor constant. Apply the PT paste to be formed.

■上記高サーミスタ定数のグリーンテープと同組成の酸
化物を用い、これにバインダ、可塑剤および純水を加え
て3本ローラで十分に混練して抵抗値調整用抵抗体層1
6を形成するするための厚膜用ペーストを作成する。
■Using an oxide with the same composition as the green tape with a high thermistor constant above, add a binder, plasticizer, and pure water to it and thoroughly knead it with three rollers to form a resistor layer 1 for resistance value adjustment.
A thick film paste for forming 6 is prepared.

■同様に、上記低サーミスタ定数の抵抗体層用グリーン
テープと同組成の厚膜用ペーストを作成する。
(2) Similarly, prepare a thick film paste having the same composition as the green tape for resistor layer with low thermistor constant.

■AlzOs粉末に有機バインダ、溶剤、可塑剤および
分散剤を加えてスラリーを作成する。このスラリーを用
いて厚さ0.02n+のグリーンテープを作成し、第1
図に示した5層のセラミクス層28a〜28e用のグリ
ーンシートを準備する■シー)28a、28eの所定箇
所に電極層20.22形成用の貫通孔を形成し、ptペ
ーストを充填し乾燥させる。
■ Add an organic binder, solvent, plasticizer, and dispersant to AlzOs powder to create a slurry. A green tape with a thickness of 0.02n+ was made using this slurry, and the first
Prepare green sheets for the five ceramic layers 28a to 28e shown in the figure. ■C) Form through holes for forming electrode layers 20 and 22 at predetermined locations on 28a and 28e, fill with PT paste and dry. .

■シート28a、28eの個別内部電極24゜26に対
応した位置にくし型電極36.38を形成する。
(2) Comb-shaped electrodes 36 and 38 are formed at positions corresponding to the individual internal electrodes 24 and 26 of the sheets 28a and 28e.

■シート12表面に形成した全面内部電極30aの所定
箇所に抵抗値調整用ペーストを所定面積分印刷し、乾燥
させる。さらにその表面の複数箇所にPtペーストを印
刷し、乾燥させて個別内部電極24を形成する。
(2) A resistance value adjustment paste is printed on a predetermined area of the internal electrode 30a formed on the surface of the sheet 12 in a predetermined area and dried. Furthermore, Pt paste is printed at multiple locations on the surface and dried to form individual internal electrodes 24.

[相]シート140表面に形成した全面内部電極30d
の所定箇所に抵抗値調整用ペーストを所定面積分印刷し
乾燥させて抵抗値調整用抵抗体層18を形成する。さら
にその表面の複数箇所にptペーストを印刷し乾燥させ
て個別内部電極26を形成する。
[Phase] Full-surface internal electrode 30d formed on the surface of the sheet 140
A resistor layer 18 is formed by printing a predetermined area of a resistance value adjusting paste on a predetermined location and drying it. Further, PT paste is printed at multiple locations on the surface and dried to form individual internal electrodes 26.

0以上のようにして形成した各シートを位置合わせして
積層し、60°C,1分間、0.5ton/aIrの条
件で熱圧着し、その後1200〜1300°Cで一体焼
成する。
The sheets formed as described above are aligned and laminated, thermocompression bonded at 60°C for 1 minute at 0.5 ton/aIr, and then integrally fired at 1200 to 1300°C.

@形成した積層体の側面に導電ペーストを塗布し焼き付
けることによって外部電極32.34を形成する。
External electrodes 32 and 34 are formed by applying a conductive paste to the side surfaces of the formed laminate and baking it.

以上のようにしてサーミスタ素子を製造することができ
る。そして、得られたサーミスタ素子の初期抵抗値が所
定値でない場合には、抵抗値を確認しながらくし型電極
36および/または38を例えばレーザによりトリミン
グし、抵抗値調整用抵抗体層の所定部分を電気的に分離
することによって所望の抵抗値に微調整する。
The thermistor element can be manufactured in the manner described above. If the initial resistance value of the obtained thermistor element is not a predetermined value, the comb-shaped electrodes 36 and/or 38 are trimmed by, for example, a laser while checking the resistance value, and a predetermined portion of the resistance layer for adjusting the resistance value is trimmed. The desired resistance value can be finely adjusted by electrically isolating the resistor.

なお、上述の実施例では説明上くし型電極の本数を少な
くして表したが、実際には例えば(し型電極を10〜2
0本程度とし抵抗値調整用抵抗体層の体積を主たる抵抗
体層の体積の1/25〜1/10程度とすれば、1%以
下の精度で抵抗体の微調整が行える。
In addition, in the above-mentioned example, the number of comb-shaped electrodes was reduced for the sake of explanation, but in reality, for example (10 to 2 comb-shaped electrodes were used).
If the volume of the resistance value adjusting resistor layer is about 1/25 to 1/10 of the volume of the main resistor layer, fine adjustment of the resistor can be performed with an accuracy of 1% or less.

(g1発明の効果 この発明によれば次のような効果を奏する。(Effects of g1 invention According to this invention, the following effects are achieved.

■サーミスタ定数の異なる複数種の抵抗体層を組み合わ
せて、各抵抗体層を酸化物セラミクス層の間に介在させ
た状態で一体化したため、各抵抗体層間の相互拡散を防
止することができる。
(2) Since multiple types of resistor layers with different thermistor constants are combined and integrated with each resistor layer interposed between oxide ceramic layers, mutual diffusion between the resistor layers can be prevented.

■複数の抵抗体層は融点が高くて化学的に安定な酸化物
セラミクス屡の間に介在されているため、高温での使用
および過酷な雰囲気下での使用も可能となる。
■Since the multiple resistor layers are interposed between chemically stable oxide ceramics with a high melting point, it can be used at high temperatures and in harsh atmospheres.

■酸化物セラミクスの外面には内部電極と電気的に接続
した外部電極が形成されているため、この外部電極を利
用して回路基板上にリニアライズされたサーミスタ素子
を直接取り付けることもでき、サーミスタ素子の利用範
囲が広くなる。
■Since an external electrode is formed on the outer surface of oxide ceramics and is electrically connected to the internal electrode, it is possible to directly attach a linearized thermistor element onto a circuit board using this external electrode. The device can be used in a wider range of applications.

■複数の個別内部電極を形成した抵抗値調整用抵抗体層
を設けて、これを外部電極側に形成したくし型電極に電
気的に接続しているので、焼成後の抵抗値微調整が可能
となり、所定の電気的特性を有するサーミスタ素子を容
易に製造することができる。
■A resistance value adjustment resistor layer with multiple individual internal electrodes is provided, and this is electrically connected to the comb-shaped electrodes formed on the external electrode side, making it possible to finely adjust the resistance value after firing. Therefore, a thermistor element having predetermined electrical characteristics can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例であるサーミスタ素子の断面
図、第2図は同サーミスタ素子の上面図、第3図は同サ
ーミスタ素子の底面図である。第4図は実施例に係るサ
ーミスタ素子の等価回路図である。第5図はりニアライ
ズの原理を説明するための図である。 12−高サーミスタ定数の抵抗体層、 14−低サーミスタ定数の抵抗体層、 16−高サーミスタ定数の抵抗値調整用抵抗体層、 18−低サーミスタ定数の抵抗値調整用抵抗体層、 20.22−電極層、 4、26 8 a〜2 0a〜3 2、34 6、38 個別内部電極、 8e−酸化物セラミクス層、 Od−全面内部電極、 一外部電極、 −<シ型電極。
FIG. 1 is a sectional view of a thermistor element according to an embodiment of the invention, FIG. 2 is a top view of the thermistor element, and FIG. 3 is a bottom view of the thermistor element. FIG. 4 is an equivalent circuit diagram of the thermistor element according to the embodiment. FIG. 5 is a diagram for explaining the principle of linearization. 12-Resistor layer with high thermistor constant, 14-Resistor layer with low thermistor constant, 16-Resistance layer for adjusting resistance value with high thermistor constant, 18-Resistor layer for adjusting resistance value with low thermistor constant, 20. 22-electrode layer, 4, 26 8a-20a-3 2, 34 6, 38 individual internal electrode, 8e-oxide ceramic layer, Od-full-surface internal electrode, one external electrode, -<S-shaped electrode.

Claims (1)

【特許請求の範囲】[Claims] (1) 複数の全面内部電極間にサーミスタ定数の異な
る複数種の抵抗体層をそれぞれ設け、 全面内部電極と個別内部電極間に抵抗値調整用抵抗体層
を設け、 上記各内部電極と共に各抵抗体層を複数の酸化物セラミ
クス層間に介在させた状態で積層一体化し、 酸化物セラミクス層の外面に、上記全面内部電極を共通
接続する二つの外部電極と、この外部電極から延出して
上記個別内部電極にそれぞれ接続するくし型電極とを形
成してなるサーミスタ素子
(1) A plurality of types of resistor layers with different thermistor constants are provided between the plurality of internal electrodes on the entire surface, and a resistor layer for adjusting the resistance value is provided between the internal electrodes on the entire surface and the individual internal electrodes. The body layer is interposed between a plurality of oxide ceramic layers and is integrated into a laminated structure, and two external electrodes are provided on the outer surface of the oxide ceramic layer to commonly connect the above-mentioned internal electrodes, and the above-mentioned individual electrodes extend from the external electrodes. A thermistor element formed by forming internal electrodes and comb-shaped electrodes connected to each other.
JP27471390A 1990-10-12 1990-10-12 Thermistor element Pending JPH04150001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27471390A JPH04150001A (en) 1990-10-12 1990-10-12 Thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27471390A JPH04150001A (en) 1990-10-12 1990-10-12 Thermistor element

Publications (1)

Publication Number Publication Date
JPH04150001A true JPH04150001A (en) 1992-05-22

Family

ID=17545534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27471390A Pending JPH04150001A (en) 1990-10-12 1990-10-12 Thermistor element

Country Status (1)

Country Link
JP (1) JPH04150001A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410291A (en) * 1992-09-01 1995-04-25 Nippondenso Co., Ltd. Thermistor type temperature sensor
US6400251B1 (en) * 1999-04-01 2002-06-04 Murata Manufacturing Co., Ltd. Chip thermistor
WO2003049126A3 (en) * 2001-12-04 2003-12-31 Epcos Ag Electrical component with a negative temperature coefficient
US7053748B2 (en) 1998-04-14 2006-05-30 Tyco Electronics Corporation Electrical devices
WO2008003287A2 (en) 2006-07-06 2008-01-10 Epcos Ag Electric component comprising a sensor element, method for encapsulating a sensor element and method for producing a board assembly
WO2024079096A1 (en) * 2022-10-12 2024-04-18 Tdk Electronics Ag Sensor element and method for producing a sensor element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410291A (en) * 1992-09-01 1995-04-25 Nippondenso Co., Ltd. Thermistor type temperature sensor
US5610571A (en) * 1992-09-01 1997-03-11 Nippondenso Co., Ltd. Thermistor type temperature sensor
US7053748B2 (en) 1998-04-14 2006-05-30 Tyco Electronics Corporation Electrical devices
US6400251B1 (en) * 1999-04-01 2002-06-04 Murata Manufacturing Co., Ltd. Chip thermistor
WO2003049126A3 (en) * 2001-12-04 2003-12-31 Epcos Ag Electrical component with a negative temperature coefficient
JP2005512317A (en) * 2001-12-04 2005-04-28 エプコス アクチエンゲゼルシャフト Electrical device with negative temperature coefficient
US7135955B2 (en) 2001-12-04 2006-11-14 Epcos Ag Electrical component with a negative temperature coefficient
WO2008003287A2 (en) 2006-07-06 2008-01-10 Epcos Ag Electric component comprising a sensor element, method for encapsulating a sensor element and method for producing a board assembly
WO2008003287A3 (en) * 2006-07-06 2008-06-12 Epcos Ag Electric component comprising a sensor element, method for encapsulating a sensor element and method for producing a board assembly
US8134446B2 (en) 2006-07-06 2012-03-13 Epcos Ag Electrical component with a sensor element, method for the encapsulation of a sensor element, and method for production of a plate arrangement
WO2024079096A1 (en) * 2022-10-12 2024-04-18 Tdk Electronics Ag Sensor element and method for producing a sensor element
DE102022126526A1 (en) 2022-10-12 2024-04-18 Tdk Electronics Ag Sensor element and method for producing a sensor element

Similar Documents

Publication Publication Date Title
EP0429633B1 (en) Thermistor and method of making the same
JP6096918B2 (en) Temperature probe and method of manufacturing temperature probe
CN102971808B (en) Slice heat sensitive resistor and manufacture method thereof
JPH04150001A (en) Thermistor element
JP4907138B2 (en) Chip type NTC element
JP2798136B2 (en) Thermistor
JPH04150002A (en) Thermistor element
JPH0534208A (en) Thermistor
JP3206601B2 (en) Multi-layer thermistor
JP3254970B2 (en) Manufacturing method of multilayer composite element and multilayer composite element
JP2633838B2 (en) High temperature thermistor
JP3245946B2 (en) Resistor
JP3058305B2 (en) Thermistor and manufacturing method thereof
JP3189419B2 (en) Resistor
JPH0628202B2 (en) Negative characteristic thermistor
JP2000124008A (en) Composite chip thermistor electronic component and its manufacture
JP4822606B2 (en) Ceramic chip heater and element heating type sensor using the same
JP3667099B2 (en) High temperature thermistor element, manufacturing method thereof, and temperature sensor for high temperature using the same
JPH0661014A (en) Laminated thermistor
JPH0653009A (en) Multilayered thermistor
JPH08255704A (en) Chip thermistor and its manufacturing method
JPH02189901A (en) Laminated thermistor
JPH0634201U (en) Stacked thermistor
JPH0831361B2 (en) Thermistor element
JPS6145464Y2 (en)