JPS6145464Y2 - - Google Patents

Info

Publication number
JPS6145464Y2
JPS6145464Y2 JP3087281U JP3087281U JPS6145464Y2 JP S6145464 Y2 JPS6145464 Y2 JP S6145464Y2 JP 3087281 U JP3087281 U JP 3087281U JP 3087281 U JP3087281 U JP 3087281U JP S6145464 Y2 JPS6145464 Y2 JP S6145464Y2
Authority
JP
Japan
Prior art keywords
thick film
insulating substrate
conductive layers
thermistor
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3087281U
Other languages
Japanese (ja)
Other versions
JPS57144032U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3087281U priority Critical patent/JPS6145464Y2/ja
Publication of JPS57144032U publication Critical patent/JPS57144032U/ja
Application granted granted Critical
Publication of JPS6145464Y2 publication Critical patent/JPS6145464Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は直線性温度検出素子に関し、更に詳細
に説明すると、厚膜サーミスタと厚膜抵抗とによ
り抵抗−温度特性が直線性を有するようになされ
た直線性温度検出素子に関するものである。
[Detailed description of the invention] The present invention relates to a linear temperature sensing element, and more specifically, it is a linear temperature sensing element whose resistance-temperature characteristics have linearity using a thick film thermistor and a thick film resistor. It is related to.

従来より、直線性温度検出素子としては、第1
図示す如く、ビード形サーミスタ1と、固定抵抗
器2,2′を用い第2図に示すように接続して形
成されていた。然し乍ら、ビード形サーミスタは
焼結後抵抗値修正が不可能であるため、所望とす
る抵抗−温度特性を有する温度検出素子を得るに
は多数製作した中より選別して使用しなければな
らず、組付け作業が煩雑で且つ高価とならざるを
得ない欠点を有していた。また近時アルミナ基板
にサーミスタペーストを印刷焼成したものが提案
されているが、アルミナ基板の一面にのみインピ
ーダンス素子が配設されているため十分に小型化
する事が出来ず、熱時定数を小さくする事が出来
ず、従つて感熱応答性が悪いので欠点を有してい
た。
Conventionally, as a linear temperature detection element, the first
As shown, a bead-shaped thermistor 1 and fixed resistors 2, 2' were connected as shown in FIG. However, since it is impossible to modify the resistance value of a bead-type thermistor after sintering, in order to obtain a temperature sensing element with the desired resistance-temperature characteristics, it is necessary to select one from a large number of manufactured ones. It has the disadvantage that the assembly work is complicated and expensive. Recently, a thermistor paste printed and fired on an alumina substrate has been proposed, but since the impedance element is only placed on one side of the alumina substrate, it cannot be made sufficiently compact, and the thermal time constant has to be reduced. Therefore, it had the disadvantage of poor thermal response.

本考案の目的はアルミナ基板等からなる絶縁基
板の一面側に厚膜サーミスタを、他面側に厚膜抵
抗を夫々配設することにより、直線性温度検出素
子を小型化する事が出来、従つて感熱応答性を向
上させる事が出来、然も厚膜サーミスタ及び厚膜
抵抗の抵抗値の修正、調節が極めて容易であり、
量産性に優れた直線性温度検出素子を提供するも
ので、以下図面を参照して詳述する所より明らか
となるであろう。
The purpose of this invention is to miniaturize the linear temperature sensing element by arranging a thick film thermistor on one side of an insulating substrate made of an alumina substrate and a thick film resistor on the other side. This makes it possible to improve thermal response, and it is extremely easy to modify and adjust the resistance values of thick film thermistors and thick film resistors.
This provides a linear temperature sensing element that is highly mass-producible, and will become clear from the detailed description below with reference to the drawings.

第3図A及びBには、本考案に係る直線性温度
検出素子の1実施例の概略が示されており、第3
図Aにはアルミナ基板等からなる絶縁基板3の一
面側3aが、第3図Bには他面側3bが夫々示さ
れており、この絶縁基板3の一面側3aにはスク
リーン印刷法により導電ペーストが印刷焼成され
て下部導電性層8が形成されており、前記下部導
電性層8の両端位置にサーミスタペーストがスク
リーン印刷され、焼成されて第1及び第2の厚膜
サーミスタ5及び5′が夫々形成されており、前
記第1及び第2のの厚膜サーミスタ5及び5′の
上面に、前記下部導電性層8と絶縁状態で上部導
電性層7及び9が夫々印刷焼成されて形成されて
いる。
3A and 3B schematically show one embodiment of the linear temperature detecting element according to the present invention, and FIG.
One side 3a of an insulating substrate 3 made of an alumina substrate or the like is shown in Figure A, and the other side 3b is shown in Figure 3B. The paste is printed and fired to form a lower conductive layer 8, and thermistor paste is screen printed on both ends of the lower conductive layer 8 and fired to form the first and second thick film thermistors 5 and 5'. are formed, respectively, and upper conductive layers 7 and 9 are printed and fired on the upper surfaces of the first and second thick film thermistors 5 and 5', respectively, in an insulated state from the lower conductive layer 8. has been done.

絶縁基板3の他面側3bには導電性層7′,
8′及び9′が夫々独立した状態にスクリーン印刷
法により形成されており、前記導電性層7′は一
面側3aの上部導電性層7に、導電性層8′は一
面側3aの下部導電性層8に、導電性層9′は一
面側3aの上部導電性層9に夫々対応する裏面側
に位置する部分を有し、前記導電性層7′及び
8′間に第1の厚膜抵抗6が印刷焼成されて導電
性層7′及び8′間が接続され、また導電性層7′
及び9′間に第2の厚膜抵抗6′が印刷焼成されて
導電性層7′及び9′が接続されている。
On the other side 3b of the insulating substrate 3, a conductive layer 7',
8' and 9' are formed independently by a screen printing method, the conductive layer 7' is formed on the upper conductive layer 7 on one side 3a, and the conductive layer 8' is formed on the lower conductive layer 7 on one side 3a. In the conductive layer 8, the conductive layer 9' has portions located on the back side corresponding to the upper conductive layer 9 on the one side 3a, and a first thick film is provided between the conductive layers 7' and 8'. A resistor 6 is printed and fired to connect between conductive layers 7' and 8', and also connects conductive layer 7'.
A second thick film resistor 6' is printed and fired between the conductive layers 7' and 9' to connect the conductive layers 7' and 9'.

絶縁基板3上に形成した第1及び第2の厚膜サ
ーミスタ5及び5′、または第1及び第2の厚膜
抵抗6及び6′の抵抗値が設定した範囲内にない
場合にはレーザー光またはアルミナサンドを吹き
つけて所望とする抵抗値に各別に修正する事が出
来、特に第1及び第2の厚膜抵抗6及び6′のみ
を修正する場合には絶縁基板3の一面側3aに形
成した第1及び第2の厚膜サーミスタ5及び5′
に影響を与える事がない。また前記厚膜サーミス
タ5及び5′の表面をガラス10で被覆するのが
好ましい。
If the resistance values of the first and second thick film thermistors 5 and 5' formed on the insulating substrate 3 or the first and second thick film resistors 6 and 6' are not within the set range, a laser beam is emitted. Alternatively, the resistance value can be adjusted individually by spraying alumina sand onto the one side 3a of the insulating substrate 3, especially when modifying only the first and second thick film resistors 6 and 6'. The formed first and second thick film thermistors 5 and 5'
It has no effect on Further, it is preferable that the surfaces of the thick film thermistors 5 and 5' be covered with glass 10.

次に第4図及び第5図に示す如く、絶縁基板3
を挾んで相互に対向する導電性層7及び7′、導
電性層8及び8′、及び導電性層9及び9′が夫々
クリツプ端子の如き端子電極12,13及び14
により夫々接続されると共に、端子電極12及び
14に夫々リード線12a及び14aが形成され
ている。尚リード線12a,13a及び14aが
一体形成されている端子電極12,13及び14
を用いる場合にはリード線13aを切断等により
除去すればよい。更に絶縁基板3の両面をエポキ
シ樹脂15またはガラス等により被覆して遮断す
る事により第6図に示すような直線性温度検出素
子が形成される。尚前記絶縁基板3は大きな絶縁
基板にスリツト16を形成し、このスリツト16
より分割して形成されるが、この分割の前に行わ
れるスクリーン印刷は絶縁基板3の一面側3aに
形成される第1及び第2の厚膜サーミスタ5及び
5′と、他面側3bに形成される第1及び第2の
厚膜抵抗6及び6′とを夫々絶縁基板3の両面よ
り同時に印刷する事も出来る。尚更に、前記導電
性層7,8,9,7′,8′,及び9′は図示の形
状に限定されるものではなく、またリード線12
a及び14aの位置も図示のものに限定されな
い。
Next, as shown in FIGS. 4 and 5, the insulating substrate 3
The conductive layers 7 and 7', the conductive layers 8 and 8', and the conductive layers 9 and 9' facing each other with the terminals in between are terminal electrodes 12, 13 and 14 such as clip terminals, respectively.
Lead wires 12a and 14a are formed on the terminal electrodes 12 and 14, respectively. Note that the terminal electrodes 12, 13, and 14 are integrally formed with the lead wires 12a, 13a, and 14a.
When using the lead wire 13a, the lead wire 13a may be removed by cutting or the like. Further, by covering both surfaces of the insulating substrate 3 with epoxy resin 15 or glass to block them, a linear temperature detecting element as shown in FIG. 6 is formed. The insulating substrate 3 is a large insulating substrate with a slit 16 formed therein.
However, screen printing performed before this division is performed to form the first and second thick film thermistors 5 and 5' on one side 3a of the insulating substrate 3, and on the other side 3b. It is also possible to simultaneously print the first and second thick film resistors 6 and 6' to be formed from both sides of the insulating substrate 3, respectively. Furthermore, the conductive layers 7, 8, 9, 7', 8', and 9' are not limited to the shape shown, and the conductive layers 7, 8, 9, 7', 8', and 9' are not limited to the shape shown, and
The positions of a and 14a are also not limited to those shown.

次に、本考案に係る直線性温度検出素子の具体
例を説明する。第7図に示すような6mm間隔でス
リツト16の入つた縦横48mm、厚さ0.64mmのアル
ミナ基板からなる絶縁基板3の一面側3aに下部
導電性層8を形成した後、25℃で30KΩ±2%、
サーミスタ定数3800±100゜Kの第1の厚膜サー
ミスタ5と、25℃で6KΩ±2%サーミスタ定数
3800±100゜Kの第2の厚膜サーミスタ5′を夫々
形成し、この第1及び第2の厚膜サーミスタ5及
び5′の上面に上部導電性層7及び9を夫々印刷
焼成して形成する。又絶縁基板3の他面側3bに
導電性層7′,8′及び9′を夫々形成した後、
5.42K±1%の第1の厚膜抵抗6と、3.97KΩ±
1%の第2の厚膜抵抗6′を夫々形成し、第1及
び第2の厚膜サーミスタ5及び5′、第1及び第
2の厚膜抵抗6及び6′の表面をガラス10被覆
した後、前記導電性層7及び7′と、導電性層8
及び8′と、及び導電性層9及び9′とにクリツプ
端子12,13及び14を夫々半田付けして接続
し、クリツプ端子13のリード線13aを除去し
た後エポキシ樹脂15の粉体塗装を行う事により
直線性温度検出素子が得られ、この抵抗−温度特
性は第8図に示す直線17の通りである。尚サー
ミスタ定数、抵抗値を変更する事により種々の抵
抗−温度特性が得られる事明らかであろう。
Next, a specific example of the linear temperature detection element according to the present invention will be explained. After forming a lower conductive layer 8 on one side 3a of an insulating substrate 3 made of an alumina substrate measuring 48 mm in length and width and 0.64 mm in thickness with slits 16 arranged at 6 mm intervals as shown in FIG. 2%,
First thick film thermistor 5 with thermistor constant 3800±100°K and thermistor constant 6KΩ±2% at 25℃
A second thick film thermistor 5' having a temperature of 3800±100°K is formed, and upper conductive layers 7 and 9 are printed and fired on the upper surfaces of the first and second thick film thermistor 5 and 5', respectively. do. After forming conductive layers 7', 8' and 9' on the other side 3b of the insulating substrate 3,
First thick film resistor 6 of 5.42K±1% and 3.97KΩ±
1% second thick film resistors 6' were respectively formed, and the surfaces of the first and second thick film thermistors 5 and 5' and the first and second thick film resistors 6 and 6' were coated with glass 10. After that, the conductive layers 7 and 7' and the conductive layer 8
and 8' and conductive layers 9 and 9' by soldering and connecting the clip terminals 12, 13 and 14, respectively, and after removing the lead wire 13a of the clip terminal 13, powder coating of epoxy resin 15 is applied. By doing so, a linear temperature sensing element is obtained, and its resistance-temperature characteristics are as shown by the straight line 17 in FIG. It is clear that various resistance-temperature characteristics can be obtained by changing the thermistor constant and resistance value.

以上が本考案に係る直線性温度検出素子の1実
施の構成であるが、斯る構成に依れば、絶縁基板
の一面側に厚膜サーミスタが、他面側に厚膜抵抗
が夫々形成されているので絶縁基板の大きさを半
減させる事が出来、温度検出素子を小型化する事
が出来、感熱応答性を向上させる事が出来、更に
厚膜サーミスタ及び厚膜抵抗の抵抗値を所望する
抵抗値に修正調節する事が出来、著しく容易に所
望する抵抗−温度特性が得られ、また絶縁基板の
表裏の導電性層を端子電極により極めて簡単に接
続する事が出来、量産性に優れ、経済性に優れた
直線性温度検出素子を得る事が出来る。
The above is the configuration of one implementation of the linear temperature detection element according to the present invention. According to this configuration, a thick film thermistor is formed on one side of the insulating substrate, and a thick film resistor is formed on the other side. Because of this, the size of the insulating substrate can be halved, the temperature detection element can be made smaller, the thermal response can be improved, and the resistance value of the thick film thermistor and thick film resistor can be improved. The resistance value can be corrected and adjusted, the desired resistance-temperature characteristics can be obtained extremely easily, and the conductive layers on the front and back sides of the insulating substrate can be connected extremely easily with terminal electrodes, making it excellent for mass production. A linear temperature detection element with excellent economic efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度検出素子を構成するビード
形サーミスタと固定抵抗器の外観図、第2図は本
考案の基礎となる温度検出回路図、第3図A及B
は本考案に係る直線性温度検出素子の1実施例の
概略を示すもので、第3図Aは絶縁基板の一面側
を、第3図Bは絶縁基板の他面側を夫々示す正面
図、第4図は表裏の導電性層を端子電極により接
続した状態を示す正面図、第5図は第4図の−
線断面説明図、第6図は第4図に示す素子をエ
ポキシ樹脂により被覆した状態を示す正面図、第
7図はスリツトの入つた絶縁基板の正面図、第8
図は本考案に係る直線性温度検出素子の1実施例
の抵抗−温度特性図である。 図中、3…絶縁基板、3a…一面側、3b…他
面側、5,5′…第1及び第2の厚膜サーミス
タ、6,6′…第1及び第2の厚膜抵抗、7,
8,9…一面側の導電性層、7′,8′,9′…他
面側の導電性層、10…ガラス、12,13,1
4…端子電極、12a,14a…リード線、15
…エポキシ樹脂。
Figure 1 is an external view of a bead-type thermistor and fixed resistor that constitute a conventional temperature detection element, Figure 2 is a temperature detection circuit diagram that is the basis of the present invention, and Figures 3A and B.
3 schematically shows an embodiment of the linear temperature detection element according to the present invention, FIG. 3A is a front view showing one side of the insulating substrate, and FIG. 3B is a front view showing the other side of the insulating substrate. Figure 4 is a front view showing the state in which the front and back conductive layers are connected by terminal electrodes, and Figure 5 is the - of Figure 4.
6 is a front view showing the element shown in FIG. 4 covered with epoxy resin; FIG. 7 is a front view of an insulating substrate with slits; FIG.
The figure is a resistance-temperature characteristic diagram of one embodiment of the linear temperature detection element according to the present invention. In the figure, 3... Insulating substrate, 3a... One side, 3b... Other side, 5, 5'... First and second thick film thermistors, 6, 6'... First and second thick film resistors, 7 ,
8, 9... Conductive layer on one side, 7', 8', 9'... Conductive layer on the other side, 10... Glass, 12, 13, 1
4...Terminal electrode, 12a, 14a...Lead wire, 15
…Epoxy resin.

Claims (1)

【実用新案登録請求の範囲】 (1) 絶縁基板の一面側に配設された第1及び第2
の厚膜サーミスタと、他面側に配設された第1
及び第2の厚膜抵抗とを備え、前記第1及び第
2の厚膜サーミスタと、第1及び第2の厚膜抵
抗とが夫々絶縁基板の表裏に形成された導電性
層により接続されている事を特徴とする直線性
温度検出素子。 (2) 前記表裏の導電性層が端子電極によつて接続
されてなる実用新案登録請求の範囲第1項記載
の直線性温度検出素子。
[Scope of claims for utility model registration] (1) First and second portions disposed on one side of an insulating substrate
thick film thermistor and the first one arranged on the other side.
and a second thick film resistor, wherein the first and second thick film thermistors and the first and second thick film resistors are connected by conductive layers formed on the front and back surfaces of an insulating substrate, respectively. A linear temperature sensing element characterized by: (2) The linear temperature sensing element according to claim 1, wherein the front and back conductive layers are connected by a terminal electrode.
JP3087281U 1981-03-05 1981-03-05 Expired JPS6145464Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087281U JPS6145464Y2 (en) 1981-03-05 1981-03-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087281U JPS6145464Y2 (en) 1981-03-05 1981-03-05

Publications (2)

Publication Number Publication Date
JPS57144032U JPS57144032U (en) 1982-09-09
JPS6145464Y2 true JPS6145464Y2 (en) 1986-12-20

Family

ID=29828340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087281U Expired JPS6145464Y2 (en) 1981-03-05 1981-03-05

Country Status (1)

Country Link
JP (1) JPS6145464Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093453A (en) * 2005-09-29 2007-04-12 Mitsubishi Materials Corp Surface-mounted temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093453A (en) * 2005-09-29 2007-04-12 Mitsubishi Materials Corp Surface-mounted temperature sensor

Also Published As

Publication number Publication date
JPS57144032U (en) 1982-09-09

Similar Documents

Publication Publication Date Title
US4901051A (en) Platinum temperature sensor
US5896081A (en) Resistance temperature detector (RTD) formed with a surface-mount-device (SMD) structure
JPH01302803A (en) Chip resistor and its manufacture
US4906965A (en) Platinum temperature sensor
US4160969A (en) Transducer and method of making
US4320165A (en) Thick film resistor
JPS6145464Y2 (en)
JPH09205004A (en) Chip resistor and its manufacturing method
JP2847102B2 (en) Chip type thermistor and method of manufacturing the same
JP2741762B2 (en) Temperature sensitive resistor and method of manufacturing the same
JP3112328B2 (en) Thick film chip resistors
JP2540440Y2 (en) Chip type thermistor sensor
JPH04372101A (en) Square-shaped chip resistor and its manufacture
JP4487825B2 (en) Temperature detection element
JPH0729701A (en) Chip resistor
JPH0963805A (en) Square chip resistor
JP3199264B2 (en) Negative thermistor
JPS5678148A (en) Resistance temperature compensation circuit
JPH01270301A (en) Small-sized thermosensitive resistor and manufacture thereof
JPH0445263Y2 (en)
JPH07320915A (en) Chip type network resistor
JPS62169301A (en) Temperature coefficient regulation of thick film resistance element
JP2996161B2 (en) Platinum temperature sensitive resistor
JPS5832241Y2 (en) thick film bridge circuit
JPH081035U (en) Small temperature sensitive resistor