JPS59215701A - Method of producing composite function element - Google Patents

Method of producing composite function element

Info

Publication number
JPS59215701A
JPS59215701A JP58091046A JP9104683A JPS59215701A JP S59215701 A JPS59215701 A JP S59215701A JP 58091046 A JP58091046 A JP 58091046A JP 9104683 A JP9104683 A JP 9104683A JP S59215701 A JPS59215701 A JP S59215701A
Authority
JP
Japan
Prior art keywords
porcelain
semiconductor
raw
sheets
oxidizing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58091046A
Other languages
Japanese (ja)
Inventor
正一 登坂
村瀬 潔
山岡 信立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP58091046A priority Critical patent/JPS59215701A/en
Publication of JPS59215701A publication Critical patent/JPS59215701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 技術分野 本発明はバリスタ特性とコンデンサ特性との両方を有す
る半導体磁器複合素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a semiconductor ceramic composite element having both varistor and capacitor characteristics.

従来技術 5rTiOa等を主成分とするバリスタ特性とコンデン
サ特性を有する半導体磁器複合機能素子は既に仰られて
いる。ところが、10■以下のような低いバリスタ電圧
を有し且つ大きな静電容量を有1−る積層型の複合機能
素子を作Mすることは困難であった。即ち積層化し、て
も、Stt電流が大きくなったり、電圧−電流の非直線
性特性が悪くなり。
Prior Art Semiconductor ceramic composite functional elements having varistor characteristics and capacitor characteristics whose main component is 5rTiOa or the like have already been mentioned. However, it has been difficult to fabricate a laminated multi-functional device having a low varistor voltage of 10 μm or less and a large capacitance. That is, even if stacked, the Stt current increases and the voltage-current nonlinearity deteriorates.

小型大容量化が困難であった。It was difficult to increase the size and capacity of the device.

積層化しにくい原因は、半導体磁器層と電極層が交互に
存在するため、半導体磁器層の絶縁層形成ができないこ
とにある。即ち1表向絶縁層型の場合は半導体磁器の表
面を再酸化して絶縁層を形成するため、各半導体磁器層
はその表面?酸化性雰囲気に芒らδれた状態で熱処理は
れなければならないが、積層した半導体磁器においては
これが不可能である。又粒界絶縁型の場合には半導体磁
器の外周に熱拡散物質を塗布して熱処理し1粒界に熱拡
散物質ン拡散させて絶縁層を形成しなければならないが
、半導体磁器各ン脅間に設けた電極層に熱拡散物質の拡
散が遮ぎられ、内部の谷、半導体磁器層は粒界絶縁型に
ならなかった。
The reason why lamination is difficult is that since the semiconductor ceramic layers and the electrode layers are alternately present, it is impossible to form an insulating layer of the semiconductor ceramic layers. In other words, in the case of the one-surface insulating layer type, the surface of the semiconductor porcelain is reoxidized to form an insulating layer, so each semiconductor porcelain layer is formed on the surface of the semiconductor porcelain. Heat treatment must be performed in an oxidizing atmosphere, but this is not possible with laminated semiconductor porcelain. In addition, in the case of grain boundary insulation type, it is necessary to apply a thermal diffusion substance to the outer periphery of the semiconductor porcelain and heat it to diffuse the thermal diffusion substance into one grain boundary to form an insulating layer. The diffusion of the thermal diffusive substance was blocked by the electrode layer provided in the electrode layer, and the internal valleys and semiconductor ceramic layer did not become grain boundary insulated.

発明の目的 そこで1本発明の目的は、積層型の半導体磁器複合機能
素子であっても1粒界絶縁物質を良好に分布させること
が可能な製造方法を提供することにある。
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to provide a manufacturing method that allows grain boundary insulating material to be well distributed even in a laminated type semiconductor ceramic composite functional element.

発明の構成 上記目的を達成するだめの本発明は、バリスタ特性とコ
ンデンサ特性とを有する粒界絶縁型半導体′m器複合機
能素子を得ることが可能な磁器粉体原料によって複数枚
の磁器生シートヲ形成する工程と、前記値器生シートの
主面に半導体磁器の結晶粒界を+lQ緑することが可能
な熱拡散物質ン混入した導電性、ペーストを塗布してペ
ースト塗布層を形成する工程と、少な(とも一枚の前記
磁器生シートが一対の前記m布層によって挾まれるよう
に前記複数枚の儒器生シートを積層して生シート積層体
を形成する工程と、前記生シート積層体を酸化性雰囲気
中で焼成する工程とン含む半導体磁器複合機能素子のM
I造方法処係わるものである。
Structure of the Invention To achieve the above-mentioned object, the present invention is to produce a plurality of raw porcelain sheets using a porcelain powder raw material capable of obtaining a grain-boundary insulated semiconductor multifunctional device having varistor characteristics and capacitor characteristics. and a step of forming a paste coating layer by applying a conductive paste mixed with a thermal diffusion substance capable of greening the crystal grain boundaries of the semiconductor porcelain on the main surface of the ceramic sheet. , forming a raw sheet laminate by laminating the plurality of Confucian raw sheets so that one of the raw porcelain sheets is sandwiched between the pair of the m fabric layers; M of a semiconductor ceramic composite functional device including a step of firing the body in an oxidizing atmosphere
This is related to the manufacturing method.

発明の作用効果 上記発明によれば、内部t&を形成iるための導電性ベ
ース)K予め熱拡散物質を含ませるので。
Effects of the Invention According to the above-mentioned invention, the conductive base (i) for forming the internal T& is preliminarily impregnated with a thermal diffusion substance.

電極間の磁器層に熱拡散物質を拡散させて結晶粒′界に
良好に分布させることが可能になり、特性の良い積層型
半導体磁器複合機能素子を提供することが出来る。
It becomes possible to diffuse the thermal diffusive substance in the ceramic layer between the electrodes and distribute it well in the grain boundaries, making it possible to provide a laminated semiconductor ceramic composite functional element with good characteristics.

実施例 次に本発明の実施例について述べる。Example Next, examples of the present invention will be described.

実施例J SrTjOs粉末    100モル部Nb、Og  
     O,Q 5 % ル部Naz0      
   3モル部 Al2o3o、s % ル部 S10*         2−5モル部から成る磁器
原料を用意し、これをボールミルで24時間攪拌混合し
た粉体を、アルミナ磁器の鉢に詰めて、窒素95容積鳴
、水素5容績鴨の還元性雰囲気(非酸化性雰囲気)で1
350℃の温度に4時間保持して仮焼した。この還元性
雰囲気による仮焼物ビ、アトマイザ−で粗粉砕した後、
磁製ボールミルで湿式攪拌して、粉粒】()μm Di
下に微粉砕した。このようにして得られた仮焼粉体に8
wt%のポリビニルブチラール(バインダー)ン加えて
スラリー状にし、ドクターブレード法により60ttm
の厚さの第3図に示すセラミック生シートCII ’r
複数枚作成した。このようにして得られたセラミック生
シート+I+の主面に、粉末状のPd65wt%、Ag
28wt%1AkOs  5i02系ガラス6.2 w
t%、更にNato (熱拡散物’ji)Y得るための
粉末状NaF O,8wt%、適当量のビヒクルを混練
したものから成る導電性ペーストを縦3mm、横2mm
の長方形に印刷してペースト塗布層(21ビ作った。尚
ペースト塗布層(21は一辺の人が縁まで達し、残りの
三辺には0.3mmのヌベースが生じるよ5に形成した
Example J SrTjOs powder 100 mol parts Nb, Og
O,Q 5% Ru part Naz0
Prepare a porcelain raw material consisting of 3 mole parts Al2o3o, s % Le part S10* 2-5 mole parts, stir and mix this in a ball mill for 24 hours, fill an alumina porcelain pot, fill it with 95 volumes of nitrogen, 1 in a reducing atmosphere (non-oxidizing atmosphere) of 5 volumes of hydrogen
It was calcined by holding at a temperature of 350° C. for 4 hours. After being calcined in this reducing atmosphere and coarsely pulverized with an atomizer,
Wet-stir with a porcelain ball mill to obtain powder particles】() μm Di
Finely ground to the bottom. The calcined powder obtained in this way has 8
Add wt% of polyvinyl butyral (binder) to make a slurry, and make 60ttm by doctor blade method.
Ceramic green sheet CII 'r shown in Figure 3 with thickness of
I created multiple copies. The main surface of the ceramic green sheet +I+ thus obtained was coated with 65 wt% of powdered Pd and Ag.
28wt%1AkOs 5i02 glass 6.2w
A conductive paste made by kneading powdered NaFO, 8 wt%, and an appropriate amount of vehicle to obtain Nato (thermal diffusant 'ji) Y, was made into a 3 mm long and 2 mm wide conductive paste.
A paste coating layer (21 pieces) was made by printing in a rectangular shape.The paste coating layer (21) was formed in such a way that one side reached the edge and a 0.3 mm thick layer was formed on the remaining three sides.

次に、20枚の生シート(1jを第2図に示す如く積層
し、ペースト塗布層(2)が左側面と右側面とに交互に
露出するようになし、100℃でf300. kg/ 
cm’の圧力で圧着して生シート積層体を、形成した。
Next, 20 raw sheets (1j) were stacked as shown in Fig. 2 so that the paste coating layer (2) was exposed alternately on the left side and right side, and heated at 100°C to f300.kg/
A green sheet laminate was formed by pressing at a pressure of cm'.

仄に、生シート積層体を空気中(酸化性雰囲気中)で]
200℃の温度で2時間熱処理し、第3囚に示j磁器層
(1a)と内部電極層(2a)とが交互に配置された焼
結積層体を形成し、内部電極層(2a)の露出面に接続
されるようにAgペースト’に塗布し、焼付けて外部電
極(31(4)を形成して複合機能素子を完成させた。
The raw sheet laminate is exposed to air (in an oxidizing atmosphere)]
Heat treatment was performed at a temperature of 200° C. for 2 hours to form a sintered laminate in which the porcelain layers (1a) and internal electrode layers (2a) were alternately arranged, as shown in the third column. Ag paste' was applied so as to be connected to the exposed surface and baked to form an external electrode (31(4)) to complete a multifunctional device.

上記方法によれば、内部電極を形成するための導電性ペ
ーストにNagO’Y得るためのNaFが予め混入きれ
ているので、ペースト塗布後の酸化性雰囲気での加熱処
理で、このNaF IJ″−Na!0に変換すると共に
、これが半導体結晶の粒界に熱拡散し、絶縁層ン形成す
る。この際、ペースト塗布層(2)から拡散を開′1$
するので、このペースト塗布層が拡散を阻止することは
ない。この結果、熱拡散物質としてのNaxOが半導体
磁器の結晶粒界に良好に存在ゾ4へ話の良い素子を提供
することが出来る。
According to the above method, since NaF for obtaining NagO'Y is mixed in the conductive paste for forming internal electrodes in advance, this NaF IJ''- At the same time as converting to Na!0, this thermally diffuses to the grain boundaries of the semiconductor crystal and forms an insulating layer.At this time, the diffusion from the paste coating layer (2) is
Therefore, this paste coating layer does not prevent diffusion. As a result, it is possible to provide an element with good performance since NaxO as a heat diffusing substance exists well in the grain boundaries of the semiconductor ceramic.

第3図に示すように構成した複合機能素子の特性音測定
したところ、静電容量は、20℃、1kHzの測定条件
で1.5μF、サージ耐量は7.5ジユール、素子に1
mAの直流を流すときの電圧E1を測定することによっ
て決定したバリスタ電圧晴5V、上記のE□と素子1c
]OmAの直流ン流丁とよって決定した非直線係数は1
0となった。上記特性は積層しない複合機能素子の特性
にほぼ一致する。
When we measured the characteristic sound of the multifunctional device configured as shown in Figure 3, we found that the capacitance was 1.5 μF under the measurement conditions of 20°C and 1 kHz, the surge resistance was 7.5 Joules, and the device had a
Varistor voltage 5V determined by measuring the voltage E1 when mA of direct current flows, the above E□ and element 1c
] The nonlinear coefficient determined by the DC current ratio of OmA is 1
It became 0. The above characteristics almost match the characteristics of a multi-functional device that is not laminated.

実施例2 磁器原料の組成ケ。Example 2 Composition of porcelain raw materials.

5rTiO,100モル部と。5rTiO, 100 mole parts.

Nb*OH,Taz05. VVOs、 La*Os、
 CeO2,Nd2O3゜Y*Os、 Sm2O3,P
r60o、及びD )’ x Osの内の少なくとも1
種の金桟酸化物0.01〜3.00モル部と。
Nb*OH, Taz05. VVOs, La*Os,
CeO2, Nd2O3゜Y*Os, Sm2O3,P
r60o, and at least one of D)' x Os
and 0.01 to 3.00 mol parts of seed metal oxide.

NatOo、o 2〜2.50 モ#部とした他は、実
施例1と同一の方法で複合機首ヒ素子ビ作り、その特性
を測定したところ。
A composite nose arsenal element was made in the same manner as in Example 1, except that the modulus was set to NatOo, o 2 to 2.50, and its characteristics were measured.

静電容量は帆6μF〜1.7μF。Capacitance is 6μF to 1.7μF.

サージ耐量は4.5ジユール〜9ジユール。Surge resistance is 4.5 joules to 9 joules.

バリスタ電圧は3■〜]]V。The varistor voltage is 3■~]]V.

非直線係数は6〜22 であった。Non-linear coefficient is 6-22 Met.

実施例3 磁器原料の組成を SrTi0m ] OOモ/l/部。Example 3 Composition of porcelain raw materials SrTi0m] OOmo/l/part.

Nt)205. TaxOB、 VJOn、 LaxO
B、 Cen7.λdtOs−YvOs、 Pr60o
、 SmxOB、 EutOs及びDYxOsの内の少
な(とも1種の金属酸化物101〜3.00モル部。
Nt) 205. TaxOB, VJOn, LaxO
B, Cen7. λdtOs−YvOs, Pr60o
, SmxOB, EutOs and DYxOs (both 101 to 3.00 mole parts of one metal oxide).

Na*00−02〜2−50モル部。Na*00-02 to 2-50 mole parts.

AjhO、CuO’、 Mn01及び5i02の内の少
なくとも1′!Mの酸化物0.01〜3.00モル部。
At least 1' of AjhO, CuO', Mn01 and 5i02! 0.01 to 3.00 mole parts of M oxide.

した他は、実施例]と同一の方法で複合機能素子を作り
、その特性を測定したところ。
Except for the above, a multifunctional device was manufactured using the same method as in Example] and its characteristics were measured.

静電容量は帆7μF〜]、6μF。The capacitance is 7 μF ~], 6 μF.

サージ耐量は6.1ジユール〜】0.8ジユール。Surge resistance is 6.1 joules to 0.8 joules.

バリスタ電圧は3v〜】2v。Varistor voltage is 3v~]2v.

非直線係数は12〜40 であった。Non-linear coefficient is 12-40 Met.

実施例4 磁器原料の組成を。Example 4 Composition of porcelain raw materials.

” (1x ) ”aX T”Oa (但しXは帆0 
] 〜0.5の範囲の値)100モル部と。
” (1x) ”aX T”Oa (X is sail 0
] ~0.5) 100 molar parts.

Nb*05. ’razo、、 wo、、 Lazo、
、 ceoz、 Nd20M。
Nb*05. 'razo,, wo,, lazo,
, ceoz, Nd20M.

YxOs 、 SmzOx、 Pr60u、及びD)’
z03の内の1種又は複数種の金属酸化物0.01〜3
.90モル部と。
YxOs, SmzOx, Pr60u, and D)'
0.01 to 3 of one or more metal oxides of z03
.. 90 mole parts.

Na宜0.0.02〜2.50−T−#部と。0.0.02 to 2.50-T-# parts of Na.

した他は、実施例】と同一の方法で複合機能素子を作り
、その特性音測定したところ。
Other than that, a multifunctional device was made using the same method as in Example, and its characteristic sound was measured.

静電容量は0.6μF〜】、7μF。The capacitance is 0.6 μF ~], 7 μF.

サージ耐量は8.3ジユール〜12ジユール。Surge resistance is 8.3 joules to 12 joules.

バリスタ電圧は3V〜】3v。The varistor voltage is 3V~]3V.

非直線係数は6〜24 であった。Nonlinear coefficient is 6 to 24 Met.

実施例5 礎器原、料の組成を。Example 5 The composition of the foundation materials and materials.

” (1x ) CaX TiOs (但しXは0.0
1〜0.5の範囲の値)】00モル部と。
” (1x) CaX TiOs (X is 0.0
(value in the range of 1 to 0.5)] 00 mole parts.

Nhx06. ’raffio、、 WOa、 LR*
Os、 Cent、 NdtOa−Y’zOa 、 S
mxOB 、 Pr60sr−及びDytOsの内の1
種又は複数種の金相酸化物(1,01〜3.00モル部
と。
Nhx06. 'raffio,, WOa, LR*
Os, Cent, NdtOa-Y'zOa, S
one of mxOB, Pr60sr- and DytOs
The species or species of gold-phase oxide (1.01 to 3.00 mole parts).

Na、00.02〜2.50 モル部と。Na, 00.02 to 2.50 molar parts.

AgzO、CuO、Moot 、及び5iftの内の1
種又は複数種の酸化物0.0]〜3.00モル部と。
One of AgzO, CuO, Moot, and 5ift
0.0] to 3.00 mole parts of the oxide or species.

した他は、実施例1と同一の方法で複合機能素子を作り
、その特性を測定したところ。
Except for the above, a multifunctional device was manufactured using the same method as in Example 1, and its characteristics were measured.

静電容量は0.6μF〜1.6μF。The capacitance is 0.6 μF to 1.6 μF.

サージ耐量は7.6ジユール〜】3.1ジユール。Surge resistance is 7.6 joules to 3.1 joules.

バリスタ電圧は3V″−14V。Varistor voltage is 3V''-14V.

非直線係数は21〜34 であった。Non-linear coefficient is 21-34 Met.

実施例6 磁器原料の組成を。Example 6 Composition of porcelain raw materials.

Sr(1x ) Bax TLOs  (但しXは0<
x≦1を満足する数値)100モル部と。
Sr(1x) Bax TLOs (X is 0<
A value satisfying x≦1) 100 mole parts.

lqb、o、、 Tat015 、 WOa、 La2
o8 、 、 Cen2. NdtOa。
lqb, o, Tat015, WOa, La2
o8, , Cen2. NdtOa.

YzOs、 Pr60o、 SmtOs、 EutOs
、及びDYvos O内の少な(とも1槽の酸化物0.
OJ〜3.00モル部と。
YzOs, Pr60o, SmtOs, EutOs
, and a small amount of oxide in DYvos O (both 1 bath of oxide 0.
OJ~3.00 mole parts.

Nazo  0−02〜2−50モル部と。Nazo 0-02 to 2-50 mole parts.

した他は、実施例]と同一の方法で複合機能素子馨作り
、その特性を測定したところ。
Other than that, a multi-functional device was fabricated using the same method as in Example], and its characteristics were measured.

静電容量は0.2μF〜2.4μF。The capacitance is 0.2 μF to 2.4 μF.

サージ耐量は4.8ジュール〜8.9ジユール。Surge resistance is 4.8 joules to 8.9 joules.

パリxptE&j、50V S−]09V非直線係数は
8〜】9 であ、つた。
Paris xptE&j, 50V S-]09V non-linear coefficient was 8~]9.

実施例? 磁器原料の組成を。Example? Composition of porcelain raw materials.

Sr (I X ) BaxTjOs (但しXは0<
x≦]乞満足する数値)100モル部と。
Sr (I X ) BaxTjOs (X is 0<
x≦] 100 mole parts.

Nb*Os −Ta1o、、 WO5−Law’s、 
CeO2、ヘdtOs−Y20g、 Pr60u、 S
mtOn、 EuzOs−及びDytOiの内の少な(
とも]種の酸化物0.01〜3.00モル部と。
Nb*Os-Ta1o,, WO5-Law's,
CeO2, HedtOs-Y20g, Pr60u, S
The lesser of mtOn, EuzOs- and DytOi (
and 0.01 to 3.00 mole parts of oxides of species.

Na1OO,02% 2.50 モ/l/部と。Na1OO, 02% 2.50 mo/l/part.

5iox及びA 1 t Osの内の少なくとも】種の
酸化物0.01〜2.00モル部と。
0.01 to 2.00 mole parts of an oxide of at least 5 iox and A 1 t Os.

した他に、実施例1と同一の方法で複合機能素子を作り
、その特性を測定したところ。
In addition, a multi-functional device was manufactured using the same method as in Example 1, and its characteristics were measured.

静電容量は0.5μF〜2.8μF。Capacitance is 0.5 μF to 2.8 μF.

サージ耐量は4.9ジュール〜9.3ジユール。Surge resistance is 4.9 joules to 9.3 joules.

バリスタ電圧は53V〜]05V。Varistor voltage is 53V to ]05V.

非直線係数は9.4〜32 であった。Non-linear coefficient is 9.4-32 Met.

変形例 種々の実験によって仄のことが確認されている。Variant This has been confirmed through various experiments.

(al  還元性雰囲気中での加熱温度(仮焼温度)は
、好ましくは3300−1500℃の範囲であり。
(al) The heating temperature (calcination temperature) in a reducing atmosphere is preferably in the range of 3300-1500°C.

1350〜]450’Cの範囲がより好ましい。更にこ
の処理時間は2〜8時間が好ましい。
The range of 1350-]450'C is more preferable. Furthermore, the treatment time is preferably 2 to 8 hours.

(bl  還元性雰囲気の代りに中性雰囲気として焼成
してもよい。
(bl) Firing may be performed in a neutral atmosphere instead of a reducing atmosphere.

(cl  酸化処理(焼成)は850 ℃〜】35u℃
で1〜5時間行うことが好ましい。
(Cl oxidation treatment (calcination) is from 850℃ to 35u℃
It is preferable to carry out the treatment for 1 to 5 hours.

(di  導電性ペースト中に混入する熱拡散物質は。(di) The thermal diffusion substance mixed into the conductive paste is.

NaFKlllルことなく 、 Nato又は酸化加熱
処理でNa、oになるfQa化合物でよい。又1粒界絶
縁層を作る他の熱拡散物質にも適用可能である。
Instead of NaFKllll, it may be Nato or an fQa compound that becomes Na or O through oxidative heat treatment. It is also applicable to other thermal diffusion materials that create a single grain boundary insulating layer.

fel  i器原料に混入するNa、Qは、これに限る
ことな(、後の工程でNaxOになるNaF等のNa化
合物でよい。又、仮焼の後に、 NatO又はNa化合
物を混入してもよい。
The Na and Q mixed into the raw materials for the fel i are not limited to these, but may be Na compounds such as NaF, which will become NaxO in a later step.Also, it is also possible to mix NatO or a Na compound after calcination. good.

(fl  最終的に磁器中に残存するNatOの量は。(fl What is the amount of NatO that will ultimately remain in the porcelain?

0o02〜2.50モル部の範囲が好ましい。従って。A range of 0.002 to 2.50 mol parts is preferred. Therefore.

導電性ペーストに混入するr11a化合物の童もこれを
考慮して決定する。
The amount of the r11a compound to be mixed into the conductive paste is also determined in consideration of this.

(−磁器の出発原料ケ金属酸化物とせずに、金属元素、
炭酸塩、水酸化物、硝酸塩、シュウ酸塩としてもよい。
(-Metal elements, instead of metal oxides, starting materials for porcelain,
It may also be used as carbonate, hydroxide, nitrate, or oxalate.

(711本発明に係わる複合機能素子の性質を損わない
範囲で1%性改良物質を更に付加しても差支えないこと
(711) A 1% property improving substance may be further added to the extent that the properties of the multifunctional device according to the present invention are not impaired.

(it  導電性ペーストは銀ペーストに限ることなく
、Niベーヌト等であってもよい0
(The conductive paste is not limited to silver paste, but may also be Ni beneto, etc.)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる生シートにぺ−スト乞
塗布したものを示す平面図、82図は第11図のシート
ラ積層する状Bを示す正面図、第3図は完成した複合機
能素子を示す断面図である。 +11・・・生シー)、(:a)・・・磁器層、(2)
・・・ペースト塗布層、 (2a)・・・内部電極層、
[3++41・・・外部電極。
Fig. 1 is a plan view showing a raw sheet coated with paste according to an embodiment of the present invention, Fig. 82 is a front view showing the laminated sheet B of Fig. 11, and Fig. 3 is a completed composite FIG. 3 is a cross-sectional view showing a functional element. +11...raw sea), (:a)...porcelain layer, (2)
... paste coating layer, (2a) ... internal electrode layer,
[3++41...external electrode.

Claims (1)

【特許請求の範囲】 fi+  バリスタ特性とコンデンサ特性とを有する粒
界絶縁型半導体磁器複合機能素子を得ることがTXJ能
な磁器粉体原料によって複数枚の磁器生シートを形成す
る工程と。 前記磁器生シートの主面に半導体磁器の結晶粒界を絶縁
することが可能な熱拡散物質ン混入した導電性ペースト
を塗布してペースト塗布層を形成する工程と。 少なくとも一枚の前記4jB器生シートが一対の前記塗
布層によって挾まれるように前記複数枚の磁器生シート
な積/fit’ して生シート積層体乞形成する工程と
。 前記生シート積層体Z酸化性雰囲気中で焼成する工程と ン含む半帰体磁器複合機能素子の製造方法。 (21前記磁器粉体原料は−5rTi03− Sr(、
−x)C’aXTill (但しXは0.01〜0.5
 (7)範囲の値)。 Sr (1y ) B”y TlOs (但しyはo<
y≦]を満足する数値ノの内の1種を主成分とする磁空
原料を非酸化性雰囲気中で仮焼した後に微粉砕したもの
であり、前記熱拡散物質ばNa2O又は酸化性雰囲気中
での加熱でNazOになり得る物質である特許請求の範
囲第1項記載の複合機能素子の製造方法。
[Claims] A step of forming a plurality of raw porcelain sheets using a porcelain powder raw material capable of obtaining a grain boundary insulated semiconductor ceramic composite functional element having fi+ varistor characteristics and capacitor characteristics. forming a paste coating layer by applying a conductive paste mixed with a thermal diffusion substance capable of insulating the crystal grain boundaries of the semiconductor porcelain on the main surface of the raw porcelain sheet; stacking the plurality of porcelain green sheets so that at least one of the 4jB green sheets is sandwiched between the pair of coating layers to form a green sheet laminate; A method for manufacturing a semi-reflective ceramic composite functional element, comprising the step of firing the green sheet laminate Z in an oxidizing atmosphere. (21 The porcelain powder raw material is -5rTi03-Sr(,
-x) C'aXTill (where X is 0.01 to 0.5
(7) range value). Sr (1y) B”y TlOs (where y is o<
A magnetic material whose main component is one of the values satisfying y≦] is calcined in a non-oxidizing atmosphere and then finely pulverized. 2. The method for manufacturing a multifunctional device according to claim 1, wherein the material is a substance that can be converted into NazO by heating at .
JP58091046A 1983-05-24 1983-05-24 Method of producing composite function element Pending JPS59215701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091046A JPS59215701A (en) 1983-05-24 1983-05-24 Method of producing composite function element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091046A JPS59215701A (en) 1983-05-24 1983-05-24 Method of producing composite function element

Publications (1)

Publication Number Publication Date
JPS59215701A true JPS59215701A (en) 1984-12-05

Family

ID=14015556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091046A Pending JPS59215701A (en) 1983-05-24 1983-05-24 Method of producing composite function element

Country Status (1)

Country Link
JP (1) JPS59215701A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192650A (en) * 1984-10-15 1986-05-10 オリンパス光学工業株式会社 Electromotive endoscope
JPS6245003A (en) * 1985-08-22 1987-02-27 松下電器産業株式会社 Voltage dependent non-linear resistor
JPS62134902A (en) * 1985-12-06 1987-06-18 松下電器産業株式会社 Voltage-dependant nonlinear resistor
JPH01283915A (en) * 1988-03-28 1989-11-15 American Teleph & Telegr Co <Att> Multilayer device and its manufacture
JPH02215112A (en) * 1989-02-16 1990-08-28 Matsushita Electric Ind Co Ltd Grain boundary insulation type semiconductor ceramic capacitor and manufacture thereof
US5075818A (en) * 1989-02-16 1991-12-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
US5166759A (en) * 1989-03-15 1992-11-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure
US5166859A (en) * 1990-06-26 1992-11-24 Matsushita Electric Industrial Co., Ltd. Laminated semiconductor ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
JPH0536561A (en) * 1991-07-31 1993-02-12 Taiyo Yuden Co Ltd Manufacture of grain boundary insulating type semiconductor multilayer porcelain capacitor
US5208727A (en) * 1989-03-22 1993-05-04 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
US5268006A (en) * 1989-03-15 1993-12-07 Matsushita Electric Industrial Co., Ltd. Ceramic capacitor with a grain boundary-insulated structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572023A (en) * 1978-11-24 1980-05-30 Murata Manufacturing Co Method of manufacturing grain boundary insulated laminated porcelain capacitor
JPS57207319A (en) * 1981-06-16 1982-12-20 Matsushita Electric Ind Co Ltd Method of producing composite function element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572023A (en) * 1978-11-24 1980-05-30 Murata Manufacturing Co Method of manufacturing grain boundary insulated laminated porcelain capacitor
JPS57207319A (en) * 1981-06-16 1982-12-20 Matsushita Electric Ind Co Ltd Method of producing composite function element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192650A (en) * 1984-10-15 1986-05-10 オリンパス光学工業株式会社 Electromotive endoscope
JPH0430289B2 (en) * 1984-10-15 1992-05-21
JPS6245003A (en) * 1985-08-22 1987-02-27 松下電器産業株式会社 Voltage dependent non-linear resistor
JPS62134902A (en) * 1985-12-06 1987-06-18 松下電器産業株式会社 Voltage-dependant nonlinear resistor
JPH01283915A (en) * 1988-03-28 1989-11-15 American Teleph & Telegr Co <Att> Multilayer device and its manufacture
JPH02215112A (en) * 1989-02-16 1990-08-28 Matsushita Electric Ind Co Ltd Grain boundary insulation type semiconductor ceramic capacitor and manufacture thereof
US5075818A (en) * 1989-02-16 1991-12-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
US5166759A (en) * 1989-03-15 1992-11-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure
US5268006A (en) * 1989-03-15 1993-12-07 Matsushita Electric Industrial Co., Ltd. Ceramic capacitor with a grain boundary-insulated structure
US5208727A (en) * 1989-03-22 1993-05-04 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
US5166859A (en) * 1990-06-26 1992-11-24 Matsushita Electric Industrial Co., Ltd. Laminated semiconductor ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
JPH0536561A (en) * 1991-07-31 1993-02-12 Taiyo Yuden Co Ltd Manufacture of grain boundary insulating type semiconductor multilayer porcelain capacitor

Similar Documents

Publication Publication Date Title
JPS59215701A (en) Method of producing composite function element
JP2019140199A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4780306B2 (en) Multilayer thermistor and manufacturing method thereof
JP3438736B2 (en) Manufacturing method of laminated semiconductor porcelain
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP3424742B2 (en) Multilayer semiconductor ceramic electronic components with positive resistance temperature characteristics
JP3319471B2 (en) Laminated semiconductor porcelain for PTC thermistor and method of manufacturing the same
JP3498211B2 (en) Multilayer semiconductor ceramic electronic components
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP4888264B2 (en) Multilayer thermistor and manufacturing method thereof
JPH10199709A (en) Multilayer type varistor
JP2974833B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0714702A (en) Multilayer semiconductor ceramic having positive temperature-resistance characteristics
JPH0536501A (en) Laminated positive characteristic thermistor
JP2004259735A (en) Hybrid electronic component
JP3039117B2 (en) Multilayer type grain boundary insulating semiconductor ceramic capacitor
JP3240689B2 (en) Laminated semiconductor porcelain composition
JP2886724B2 (en) Manufacturing method of laminated voltage non-linear resistor
JP3245933B2 (en) Resistor
JPH0613206A (en) Laminated varistor
JPH04280603A (en) Laminated varistor
JP3189419B2 (en) Resistor
JPS622612A (en) Laminate type ceramic capacitor element
JP2872454B2 (en) Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor
JPS6022310A (en) Multifunction chip part