JPH0536561A - Manufacture of grain boundary insulating type semiconductor multilayer porcelain capacitor - Google Patents

Manufacture of grain boundary insulating type semiconductor multilayer porcelain capacitor

Info

Publication number
JPH0536561A
JPH0536561A JP21431091A JP21431091A JPH0536561A JP H0536561 A JPH0536561 A JP H0536561A JP 21431091 A JP21431091 A JP 21431091A JP 21431091 A JP21431091 A JP 21431091A JP H0536561 A JPH0536561 A JP H0536561A
Authority
JP
Japan
Prior art keywords
porcelain
grain boundary
type semiconductor
atmosphere
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21431091A
Other languages
Japanese (ja)
Other versions
JP2872454B2 (en
Inventor
Hiroshi Kishi
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3214310A priority Critical patent/JP2872454B2/en
Publication of JPH0536561A publication Critical patent/JPH0536561A/en
Application granted granted Critical
Publication of JP2872454B2 publication Critical patent/JP2872454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance denseness of a porcelain by using base metal as an inner electrode of a grain boundary insulating type semiconductor multilayer porcelain capacitor. CONSTITUTION:A porcelain crude sheet 1 is formed of a material in which a material containing a main ingredient of a semiconductor porcelain and a semiconductor formation accelerator is temporarily baked in an oxidative atmosphere. The sheet 1 is coated with base metal conductive paste 2 mixed with grain boundary insulating material. A laminate of the sheet 1 coated with the paste 2 is formed, and baked in a reducing atmosphere. The obtained sintered material is heat treated at 900-1200 deg.C in a weak acidic atmosphere to form the grain boundary insulating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒界絶縁型半導体積層磁
器コンデンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain boundary insulation type semiconductor multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】粒界絶縁型半導体磁器は半導体結晶粒子
とこの粒子間(粒界)に介在する絶縁層とから成る。粒
界絶縁層は、半導体磁器の表面に絶縁化物質を塗布して
酸化性雰囲気中で熱拡散すること、又は半導体磁器材料
の中に粒界絶縁化物質を混入したものを用意し、この成
形体を焼成することによって形成される。
2. Description of the Related Art A grain boundary insulation type semiconductor ceramic comprises semiconductor crystal grains and an insulating layer interposed between the grains (grain boundaries). The grain boundary insulating layer is prepared by applying an insulating substance to the surface of the semiconductor porcelain and thermally diffusing it in an oxidizing atmosphere, or by preparing the semiconductor porcelain material mixed with the grain boundary insulating substance. Formed by firing the body.

【0003】粒界絶縁型半導体磁器積層コンデンサを形
成する場合において、前者の絶縁化物質の熱拡散方法に
基づく積層コンデンサの製作を可能にするために、積層
コンデンサの内部電極形成用の導電性ペースト中に粒界
絶縁化用の熱拡散物質を混入させることが特開昭59−
215701号公報に開示されている。
In the case of forming a grain boundary insulation type semiconductor porcelain multilayer capacitor, a conductive paste for forming an internal electrode of the multilayer capacitor in order to enable the production of a multilayer capacitor based on the former method of thermal diffusion of an insulating material. It is possible to mix a thermal diffusion material for insulating grain boundaries into the inside of the device.
It is disclosed in Japanese Patent No. 215701.

【0004】ここに開示されている方法では、チタン酸
ストロンチウム等の主成分と酸化ニオブ等の半導体化促
進剤を混合した磁器材料を還元性雰囲気中で1300℃
〜1500℃の範囲の仮焼し、この仮焼後の磁器材料で
磁器生シート(グリーンシート)を形成し、この磁器生
シートに熱拡散物質を混合した導電性ペーストを塗布
し、これによる積層体を形成し、この積層体を酸化性雰
囲気で焼成することによって、焼結と粒界の絶縁化とを
同時に行う。
In the method disclosed herein, a porcelain material obtained by mixing a main component such as strontium titanate and a semiconducting promoter such as niobium oxide in a reducing atmosphere at 1300 ° C.
Calcination in the range of up to 1500 ° C is performed, a porcelain raw sheet (green sheet) is formed from the porcelain material after the calcination, a conductive paste mixed with a heat diffusion substance is applied to the porcelain raw sheet, and lamination by this By forming a body and firing this laminated body in an oxidizing atmosphere, sintering and insulation of grain boundaries are performed at the same time.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記公報に
開示されている方法では、1300℃〜1500℃のよ
うに比較的高い温度で還元雰囲気中で仮焼した磁器原料
を使用するため、緻密な焼結体を得ることが困難であ
る。即ち、仮焼で焼結したものを粉砕して磁器生シート
の材料とするので、磁器生シートの緻密性が悪い。また
磁器生シートの焼成は大気中、850℃〜1350℃の
条件で行うので、Ni(ニッケル)等の卑金属を内部電
極として使用することが困難又は不可能である。
The method disclosed in the above publication uses a porcelain raw material calcined in a reducing atmosphere at a relatively high temperature of 1300 ° C. to 1500 ° C. It is difficult to obtain a sintered body. That is, since the calcinated and sintered material is crushed to be used as the material for the porcelain green sheet, the denseness of the porcelain green sheet is poor. Further, since the porcelain green sheet is fired in the air under the condition of 850 ° C to 1350 ° C, it is difficult or impossible to use a base metal such as Ni (nickel) as the internal electrode.

【0006】一方、絶縁化物質を熱拡散させる代りに、
絶縁化磁器主成分と半導体化促進剤とから成る磁器原料
に絶縁化物質を予め混入する方法を採用すると、主成分
に対して半導体促進化剤と絶縁化物質との両方が同時に
反応するために、反応の制御が難しく、結果として特性
のバラツキが生じる。また、大気中、900℃〜125
0℃程度の酸化処理工程が必要になり、内部電極をNi
等の卑金属で形成する場合においては、これの酸化を防
ぐために酸化処理の温度を低く設定するか又は処理時間
を短く設定することが必要になり、粒界層の絶縁化を十
分に達成することが困難であった。
On the other hand, instead of thermally diffusing the insulating material,
If a method of previously mixing an insulating substance into a porcelain raw material composed of an insulating porcelain main component and a semiconducting promoter is adopted, both the semiconductor promoting agent and the insulating substance react with the main component at the same time. However, it is difficult to control the reaction, resulting in variations in characteristics. In the air, 900 ° C to 125 ° C
Oxidation treatment process at about 0 ℃ is required,
In order to prevent oxidation of the base metal, it is necessary to set the temperature of the oxidation treatment low or set the treatment time short so that the grain boundary layer can be sufficiently insulated. Was difficult.

【0007】そこで、本発明の目的は緻密な焼結体を得
ることができる粒界絶縁型半導体積層磁器コンデンサの
製造方法を提供することにある。本発明の別な目的は、
内部電極としてニッケル等の卑金属を使用することがで
きる粒界絶縁型半導体積層磁器コンデンサの製造方法を
提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a grain boundary insulation type semiconductor laminated ceramic capacitor which can obtain a dense sintered body. Another object of the present invention is to
It is an object of the present invention to provide a method for manufacturing a grain boundary insulation type semiconductor laminated ceramic capacitor which can use a base metal such as nickel as an internal electrode.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明は、半導体磁器を得るための主成分又はこの主
成分を得るための物質と半導体化促進剤とを含む磁器原
料を酸化性雰囲気中で仮焼する工程と、前記仮焼した磁
器材料を使用して磁器生シートを形成する工程と、前記
磁器生シートの主面に前記半導体磁器の粒界を絶縁化す
るための物質を混入した導電性ペーストを塗布する工程
と、前記導電性ペーストが塗布された複数の磁器生シー
トを積層して積層体を形成する工程と、前記積層体を還
元性雰囲気中で焼成して焼結体を得る工程と、前記焼結
体を弱酸化性雰囲気中、900℃〜1200℃で熱処理
する工程とを含むことを特徴とする粒界絶縁型半導体積
層磁器コンデンサの製造方法に係わるものである。
In order to achieve the above object, the present invention is directed to oxidizing a porcelain raw material containing a main component for obtaining a semiconductor porcelain or a substance for obtaining the main component and a semiconducting accelerator. A step of calcination in an atmosphere, a step of forming a porcelain raw sheet using the calcinated porcelain material, a substance for insulating the grain boundaries of the semiconductor porcelain on the main surface of the porcelain raw sheet A step of applying a mixed conductive paste, a step of stacking a plurality of porcelain green sheets coated with the conductive paste to form a laminated body, and sintering the laminated body in a reducing atmosphere And a step of heat-treating the sintered body at 900 ° C. to 1200 ° C. in a weakly oxidizing atmosphere, the present invention relates to a method for manufacturing a grain boundary insulation type semiconductor multilayer ceramic capacitor. .

【0009】更に、弱酸化性雰囲気中の熱処理工程の後
に、弱酸化性雰囲気よりも酸化性の強い雰囲気(好まし
くは大気中)で500℃〜800℃の熱処理を施すこと
ができる。また、低コスト化を図るために導電性ペース
トをNi等の卑金属ペーストとすることができる。ま
た、導電性ペーストに磁器に拡散するガラス成分を含め
ることが望ましい。
Further, after the heat treatment step in the weakly oxidizing atmosphere, heat treatment at 500 ° C. to 800 ° C. can be performed in an atmosphere (preferably in the air) having a stronger oxidizing property than the weakly oxidizing atmosphere. In addition, the conductive paste may be a base metal paste such as Ni in order to reduce the cost. Further, it is desirable that the conductive paste contains a glass component that diffuses into the porcelain.

【0010】本発明における磁器生シートを作るための
磁器原料は、SrTiO3 、(Sr 1-x Cax )TiO
3 、(Sr1-x Bax )TiO3 又はこれ等を最終的に
得ることができる化合物の1種又は複数種から成るチタ
ン酸ストロンチウム系の主成分と、Nb2 5 、Ta2
5 、WO3 、La2 3 、CeO2 、Nd2 3 、Y
2 3 、Sm2 3 、Pr6 11、Dy2 3 の内の1
種又は複数種から成る半導体化促進剤との混合物を大気
中、1000℃〜1200℃で仮焼したものであること
が望ましい。
For making a porcelain green sheet in the present invention
Porcelain raw material is SrTiO3, (Sr 1-xCax) TiO
3, (Sr1-xBax) TiO3Or finally these
Titanium comprising one or more of the compounds obtainable
Strontium acid-based main component and Nb2OFive, Ta2
OFive, WO3, La2O3, CeO2, Nd2O3, Y
2O3, Sm2O3, Pr6O11, Dy2O31 of
The mixture with one or more semiconducting accelerators
Medium, calcined at 1000 ° C to 1200 ° C
Is desirable.

【0011】絶縁化物質としては、Na2 O、Li
2 O、MnO2 、CuOの内の1種又は複数種が望まし
い。導電性ペーストにはSiO2 、B2 3 、Al2
3 の内の1種又は複数種を含むガラス成分を含有させる
ことが望ましい。
Insulating substances include Na 2 O and Li
One or more of 2 O, MnO 2 and CuO are desirable. The conductive paste is SiO 2 , B 2 O 3 , Al 2 O
It is desirable to include a glass component containing one or more of the three .

【0012】弱酸化性雰囲気はN2 、He、Ne、Ar
ガスの内の1種又は複数種から成る不純性ガスに、1〜
1000ppm 程度の酸素(O2 )を含めたものであるこ
とが望ましい。なお、この弱酸化性雰囲気にH2 O(成
分)を含めることができる。
The weakly oxidizing atmosphere is N 2 , He, Ne, Ar.
Impurity gas consisting of one or more of the gases, 1 to
It is desirable that oxygen (O 2 ) of about 1000 ppm is included. In addition, H 2 O (component) can be included in this weakly oxidizing atmosphere.

【0013】導電性ペーストの電極金属としてはNi等
の卑金属が低コスト化の点から望ましいが、Pd、P
t、Ag−Pd等の貴金属を使用することもできる。
A base metal such as Ni is preferable as the electrode metal of the conductive paste from the viewpoint of cost reduction, but Pd, P
It is also possible to use a noble metal such as t or Ag-Pd.

【0014】[0014]

【作用及び発明の効果】本発明における磁器生シートの
磁器原料には還元性雰囲気中で高温の仮焼処理が施され
ていない。従って、本発明に従う磁器生シートを還元性
雰囲気で焼成すると、緻密な焼結体が得られる。即ち、
従来方法では、仮焼が第1回目の焼成となり、磁器生シ
ートの焼成が第2回目の焼成となり、第2回目の焼成時
に緻密な磁器が得られない。これに対し、本発明では磁
器原料が酸化性雰囲気で仮焼されているのみであるか
ら、磁器生シートの焼成時における焼結性が仮焼のため
に低下しない。また、仮焼において主成分と半導体化促
進剤が反応しているので、還元性雰囲気中の焼成で磁器
の半導体化が絶縁化物質の影響をあまり受けないで均一
に進み、且つ絶縁化物質の拡散が半導体化促進剤の影響
をあまり受けないで均一に進む。弱酸化性雰囲気で焼結
体を熱処理すると、磁器層の内部まで酸化が均一に進
み、結晶粒界に均一な絶縁化層が形成される。焼成は還
元性雰囲気で行われ、粒界の絶縁化は弱酸化性雰囲気で
行われるので、電極金属が酸化し難い。従って、電極金
属としてNi等の卑金属を使用することが可能になる。
FUNCTION AND EFFECT OF THE INVENTION The porcelain raw material of the porcelain green sheet according to the present invention is not subjected to high temperature calcination treatment in a reducing atmosphere. Therefore, when the green porcelain sheet according to the present invention is fired in a reducing atmosphere, a dense sintered body is obtained. That is,
In the conventional method, the calcination is the first firing and the porcelain green sheet is the second firing, and a dense porcelain cannot be obtained during the second firing. On the other hand, in the present invention, since the porcelain raw material is only calcined in the oxidizing atmosphere, the sinterability during firing of the porcelain green sheet does not decrease due to calcination. In addition, since the main component and the semiconducting accelerator react with each other in the calcination, the semiconducting porcelain progresses uniformly without being significantly affected by the insulating substance by the firing in the reducing atmosphere, and the insulating substance The diffusion proceeds uniformly without being affected by the semiconducting promoter. When the sintered body is heat-treated in a weakly oxidizing atmosphere, the oxidation uniformly proceeds inside the porcelain layer, and a uniform insulating layer is formed at the crystal grain boundaries. Since firing is performed in a reducing atmosphere and insulation of grain boundaries is performed in a weakly oxidizing atmosphere, the electrode metal is hard to oxidize. Therefore, a base metal such as Ni can be used as the electrode metal.

【0015】[0015]

【第1の実施例】バリスタ機能(電圧−電流非直線特
性)を有する粒界絶縁型半導体積層磁器コンデンサの製
造方法を説明する。まず、磁器主成分であるSiTiO
3 (チタン酸ストロンチウム)100モル部に対して半
導体化促進剤としてのNb2 5 (酸化ニオブ)0.5
モル部が含まれた磁器原料を得るために、SrCO
3 (炭酸ストロンチウム)を100モル部、TiO
2 (酸化チタン)を100モル部、Nb2 5 を0.5
モル部秤量し、これ等をボールミルで15時間湿式混合
した後、大気中(酸化性雰囲気中)、1150℃で2時
間仮焼した。次に、この仮焼物を粗粉砕して磁器原料粉
末を得た。
[First Embodiment] A method of manufacturing a grain boundary insulation type semiconductor multilayer ceramic capacitor having a varistor function (voltage-current non-linear characteristic) will be described. First, SiTiO which is the main component of porcelain
Nb 2 O 5 (niobium oxide) 0.5 as a semiconducting accelerator for 100 mol parts of 3 (strontium titanate)
In order to obtain a porcelain raw material containing a molar part, SrCO
100 parts by mol of 3 (strontium carbonate), TiO
2 (titanium oxide) 100 parts by mole, Nb 2 O 5 0.5
Molar parts were weighed and wet-mixed with a ball mill for 15 hours, and then calcined in the air (in an oxidizing atmosphere) at 1150 ° C. for 2 hours. Next, this calcined product was roughly pulverized to obtain a porcelain raw material powder.

【0016】次に、上記磁器原料粉末に8重量%のポリ
ビニールブチラール(有機バインダー)を加えてスラリ
ー状にし、ドクターブレード法により60μmの厚さの
磁器生シート(グリーンシート)を複数枚作成した。
Next, 8% by weight of polyvinyl butyral (organic binder) was added to the above porcelain raw material powder to form a slurry, and a plurality of porcelain green sheets (green sheets) having a thickness of 60 μm were prepared by the doctor blade method. .

【0017】次に、Ni(ニッケル)粉末100重量部
に対して、絶縁化物質としてNa2 O(酸化ナトリウ
ム)を1.0重量部、MnO2 (酸化マンガン)を1.
0重量部、Li2 O(酸化リチウム)を1.0重量部を
添加し、更にガラス成分としてAl2 3 −SiO2
ガラスを5.0重量部及び適当量のビヒクルを添加して
混練したものから成る絶縁化物質混入導電性ペーストを
作った。次に、この導電性ペーストを図1及び図2に示
すように磁器生シート1の主面に縦3mm、横2mmの長方
形に印刷してペースト塗布層2を作った。なお、ペース
ト塗布層2は一辺のみが縁まで達し、残りの三辺には
0.3mmのスペースが生じるように形成した。
Next, with respect to Ni (nickel) powder 100 parts by weight, 1.0 part by weight of Na 2 O (sodium oxide) as the insulating substances, MnO 2 (the manganese oxide) 1.
0 parts by weight, 1.0 parts by weight of Li 2 O (lithium oxide), 5.0 parts by weight of Al 2 O 3 —SiO 2 type glass as a glass component and an appropriate amount of vehicle are added and kneaded. A conductive paste mixed with an insulating substance was prepared. Next, as shown in FIGS. 1 and 2, this conductive paste was printed on the main surface of the porcelain green sheet 1 into a rectangle having a length of 3 mm and a width of 2 mm to form a paste coating layer 2. The paste coating layer 2 was formed so that only one side reaches the edge and a space of 0.3 mm is generated on the remaining three sides.

【0018】次に、20枚の生シート1を図2に示す如
く積層し、ペースト塗布層2が左側面と右側面とに交互
に露出するようにし、100℃で800kg/cm2 の圧力
で圧着して生シート積層体を形成した。
Next, 20 green sheets 1 are laminated as shown in FIG. 2 so that the paste coating layer 2 is alternately exposed on the left side surface and the right side surface, and the pressure is 800 kg / cm 2 at 100 ° C. A green sheet laminate was formed by pressing.

【0019】次に、生シート積層体をN2 98%+H2
2%の還元性雰囲気中で1300℃で2時間熱処理し、
図3に示す磁器層1aと内部電極層2aとが交互に配置
された焼結積層体を形成した。
Next, the green sheet laminate is treated with N 2 98% + H 2
Heat treatment at 1300 ° C. for 2 hours in a 2% reducing atmosphere,
A sintered laminated body in which the porcelain layers 1a and the internal electrode layers 2a shown in FIG. 3 were alternately arranged was formed.

【0020】次に、焼結積層体を酸素(O2 )を100
ppm 含む窒素雰囲気(弱酸化性雰囲気)中、1000℃
で2時間熱処理を行ない、結晶粒界に絶縁層を形成し
た。
Next, the sintered laminated body was mixed with 100% oxygen (O 2 ).
1000 ℃ in a nitrogen atmosphere (weakly oxidizing atmosphere) containing ppm
Was heat-treated for 2 hours to form an insulating layer on the crystal grain boundary.

【0021】次に、内部電極層2aの露出面に接続され
るようにZnペーストを塗布し、大気中、500℃で焼
付けることによって一対の外部電極3、4を形成して粒
界絶縁型半導体積層コンデンサを完成させた。
Next, a Zn paste is applied so as to be connected to the exposed surface of the internal electrode layer 2a and baked at 500 ° C. in the atmosphere to form a pair of external electrodes 3 and 4 to form a grain boundary insulation type. A semiconductor multilayer capacitor was completed.

【0022】上記の還元性雰囲気中の焼成工程におい
て、内部電極を形成するための導電性ペースト中からN
2 O、MnO2 及びLi2 Oから成る絶縁化物質とA
2 3 −SiO2 ガラス成分とが磁器中に熱拡散する
と共に、磁器の緻密化と半導体化が進み、上記の絶縁化
物質及びガラス成分は結晶粒界部分に偏析し、粒界絶縁
層が形成される。ガラス成分は磁器中に拡散して低温焼
結に寄与すると共に、導電性ペーストの無機バインダー
としても寄与する。従来の粒界絶縁化処理は大気中で行
われていたが、本発明者は低酸素濃度の酸化雰囲気中で
の熱処理でも均一な粒界絶縁層の形成が可能であること
を発見した。
In the above firing step in the reducing atmosphere, N is selected from the conductive paste for forming the internal electrodes.
Insulating material consisting of a 2 O, MnO 2 and Li 2 O and A
The l 2 O 3 —SiO 2 glass component thermally diffuses into the porcelain, and the densification and semiconductorization of the porcelain progresses, and the insulating material and the glass component segregate in the crystal grain boundary portion to form the grain boundary insulating layer. Is formed. The glass component diffuses into the porcelain and contributes to low temperature sintering, and also serves as an inorganic binder for the conductive paste. Although the conventional grain boundary insulating treatment has been performed in the air, the present inventor has discovered that a uniform grain boundary insulating layer can be formed even by heat treatment in an oxidizing atmosphere with a low oxygen concentration.

【0023】得られた粒界絶縁型半導体積層コンデンサ
の電気的特性を測定したところ、みかけの誘電率εは1
4000、tan δは1.3%、バリスタ電圧は170
V、電圧非直線係数αは11であった。
When the electrical characteristics of the obtained grain boundary insulation type semiconductor multilayer capacitor were measured, the apparent dielectric constant ε was 1
4000, tan δ 1.3%, varistor voltage 170
The V and voltage nonlinear coefficient α was 11.

【0024】なお、みかけの誘電率εは、20℃、周波
数1kHz 、測定電圧1Vの条件で測定した静電容量と積
層コンデンサの寸法から計算で求めた。
The apparent permittivity ε was calculated from the capacitance measured under the conditions of 20 ° C., frequency 1 kHz and measurement voltage 1 V and the dimensions of the multilayer capacitor.

【0025】tan δは静電容量と同時に測定した。Tan δ was measured at the same time as the capacitance.

【0026】バリスタ電圧V1 はコンデンサに1mAの直
流電流を流した時の端子間電圧を測定することによって
求めた。なお、この値は厚さ1mmの磁器層当りの値を示
す。
The varistor voltage V1 was obtained by measuring the terminal voltage when a direct current of 1 mA was applied to the capacitor. This value is the value per porcelain layer having a thickness of 1 mm.

【0027】電圧非直線係数αはコンデンサに10mAの
電流を流した時の電圧V10を測定し、これとバリスタ電
圧V1 との比log V10/V1 を求めることによって決定
した。
The voltage non-linearity coefficient α was determined by measuring the voltage V10 when a current of 10 mA was applied to the capacitor and determining the ratio log V10 / V1 of this to the varistor voltage V1.

【0028】本実施例に係わるコンデンサは、静電容量
を有するのみでなく、一対の電極間の電圧−電流特性が
非直線となるバリスタ特性を有する。従って、回路装置
におけるサージ吸収に好適なものである。
The capacitor according to this embodiment has not only the electrostatic capacity but also the varistor characteristic in which the voltage-current characteristic between the pair of electrodes is non-linear. Therefore, it is suitable for surge absorption in the circuit device.

【0029】[0029]

【第2の実施例】弱酸化性雰囲気中の熱処理の条件(酸
素濃度、温度、時間)を種々変えた他は、第1の実施例
と同一条件で粒界絶縁型半導体積層コンデンサを作り、
電気的特性を第1の実施例と同一の方法で測定したとこ
ろ、次の結果が得られた。酸素濃度10ppm 、温度90
0℃、時間4時間の条件の場合には、εが16000、
tan δが1.1%、V1 が140V/mm、αが10であ
った。酸素濃度1000ppm 、温度900℃、時間2時
間の条件の場合には、εが13000、tan δが1.4
%、V1が140V/mm、αが12であった。酸素濃度
10ppm 、温度1000℃、時間2時間の条件の場合に
は、εが15000、tan δが1.4%、V1 が180
V/mm、αが11であった。酸素濃度1ppm 、温度11
00℃、時間4時間の条件の場合には、εが1300
0、tan δが1.2%、V1 が160V/mm、αが12
であった。酸素濃度100ppm 、温度1100℃、時間
1時間の条件の場合には、εが12000、tan δが
1.7%、V1 が200V/mm、αが13であった。酸
素濃度1ppm 、温度1200℃、時間2時間の条件の場
合には、εが12000、tan δが1.8%、V1 が2
10V/mm、αが12であった。酸素濃度10ppm 、温
度1200℃、時間1時間の条件の場合には、εが11
000、tan δが2.3%、V1 が230V/mm、αが
10であった。以上の7つの条件では酸素濃度が1〜1
000ppm の範囲、温度が900〜1200℃の範囲で
ある。なお、時間は1〜4時間となっているが、例えば
30分よりも長い時間の範囲で適当に決定することがで
きる。上記の範囲であればεを10000以上、tan δ
を2.5%以下、V1 を100V/mm以上、αを10以
上にすることができる。即ち、コンデンサ特性とバリス
タ特性の両方をほぼ満足させることができる。
[Second Embodiment] A grain boundary insulation type semiconductor multilayer capacitor is manufactured under the same conditions as in the first embodiment except that the heat treatment conditions (oxygen concentration, temperature, time) in a weakly oxidizing atmosphere are variously changed.
When the electrical characteristics were measured by the same method as in the first embodiment, the following results were obtained. Oxygen concentration 10ppm, temperature 90
When the condition is 0 ° C. and time is 4 hours, ε is 16000,
Tan δ was 1.1%, V1 was 140 V / mm, and α was 10. When the oxygen concentration is 1000 ppm, the temperature is 900 ° C., and the time is 2 hours, ε is 13000 and tan δ is 1.4.
%, V1 was 140 V / mm, and α was 12. When the oxygen concentration is 10 ppm, the temperature is 1000 ° C., and the time is 2 hours, ε is 15000, tan δ is 1.4%, and V1 is 180.
V / mm and α were 11. Oxygen concentration 1ppm, temperature 11
When the condition is 00 ° C. and time is 4 hours, ε is 1300.
0, tan δ 1.2%, V1 160 V / mm, α 12
Met. Under the conditions of oxygen concentration of 100 ppm, temperature of 1100 ° C. and time of 1 hour, ε was 12000, tan δ was 1.7%, V1 was 200 V / mm, and α was 13. When the oxygen concentration is 1 ppm, the temperature is 1200 ° C., and the time is 2 hours, ε is 12000, tan δ is 1.8%, and V1 is 2
It was 10 V / mm and α was 12. When the oxygen concentration is 10 ppm, the temperature is 1200 ° C., and the time is 1 hour, ε is 11
000, tan δ was 2.3%, V1 was 230 V / mm, and α was 10. Under the above seven conditions, the oxygen concentration is 1 to 1
The temperature is in the range of 000 ppm and the temperature is in the range of 900 to 1200 ° C. Although the time is 1 to 4 hours, it can be appropriately determined within a range of, for example, longer than 30 minutes. Within the above range, ε is 10,000 or more, tan δ
Can be 2.5% or less, V1 can be 100 V / mm or more, and α can be 10 or more. That is, both the capacitor characteristic and the varistor characteristic can be substantially satisfied.

【0030】比較のために、弱酸化性雰囲気の処理の代
りに大気雰囲気、1000℃で0.5時間の処理を施
し、その他は第1の実施例と同一の条件で積層コンデン
サを作り、その特性を測定したところ、εが1800
0、tan δが14.2%、V1 が40V/mm、αが4で
あった。この比較例では、ニッケルの酸化を防止するた
めに処理時間が0.5時間に制限されている。従って、
粒界絶縁層を十分に形成することが不可能であり、V1
及びαが本発明の実施例に比べて低くなる。
For comparison, a laminated capacitor was prepared under the same conditions as in the first embodiment except that the treatment was performed in the air atmosphere at 1000 ° C. for 0.5 hours instead of the treatment in the weakly oxidizing atmosphere. When the characteristics were measured, ε was 1800
0, tan δ was 14.2%, V1 was 40 V / mm, and α was 4. In this comparative example, the treatment time is limited to 0.5 hour in order to prevent the oxidation of nickel. Therefore,
It is impossible to sufficiently form the grain boundary insulating layer, and V1
And α are lower than in the embodiment of the present invention.

【0031】弱酸化性雰囲気の熱処理温度を900〜1
200℃以外にした場合の特性を調べるために、酸素濃
度1000ppm 、温度800℃、時間4時間の条件にし
たところ、εが22000、tan δが11.2%、V1
が30V/mm、αが3であった。また、酸素濃度1ppm
、温度1300℃、時間1時間の条件にしたところ、
εが6000、tan δが9.5%、V1 が270V/m
m、αが7であった。以上の2つの条件から明らかなよ
うに、処理温度が800℃のように低い場合には、十分
な粒界絶縁層の形成が不可能になり、tan δ及びV1 の
悪化が生じる。また、処理温度が1300℃のように高
過ぎる場合には、ニッケル電極の酸化が生じ、コンデン
サ特性とバリスタ特性の両方が悪化する。
The heat treatment temperature in the weakly oxidizing atmosphere is 900 to 1
In order to investigate the characteristics when the temperature is other than 200 ° C., oxygen concentration is 1000 ppm, temperature is 800 ° C., and time is 4 hours. Ε is 22000, tan δ is 11.2%, V1
Was 30 V / mm and α was 3. Also, oxygen concentration 1ppm
When the temperature was 1300 ° C. and the time was 1 hour,
ε is 6000, tan δ is 9.5%, and V1 is 270 V / m.
m and α were 7. As is clear from the above two conditions, when the processing temperature is as low as 800 ° C., it becomes impossible to form a sufficient grain boundary insulating layer, and tan δ and V1 deteriorate. Further, when the processing temperature is too high as 1300 ° C., the nickel electrode is oxidized and both the capacitor characteristic and the varistor characteristic are deteriorated.

【0032】[0032]

【第3の実施例】第1の実施例における弱酸化性雰囲気
の処理工程の直後に大気中での低温酸化処理工程を追加
しても差し支えないことを確認するために、第1の実施
例における弱酸化性雰囲気の処理条件を酸化濃度10pp
m 、処理温度1100℃、処理時間2時間に変更し、こ
の弱酸化性雰囲気の処理工程の直後に大気中酸化処理工
程を追加した他は第1の実施例と同一の方法で積層コン
デンサを作り、電気的特性を測定したところ次の結果が
得られた。大気中酸化処理の温度が500℃、時間が6
0分の場合には、εが13000、tan δが1.4%、
V1 が190V/mm、αが13であった。大気中酸化処
理の温度が600℃、時間が30分の場合には、εが1
2000、tan δが1.5%、V1 が190V/mm、α
が14であった。大気中酸化処理の温度が700℃、時
間が30分の場合には、εが12000、tan δが1.
5%、V1 が210V/mm、αが14であった。大気中
酸化処理の温度が800℃、時間が30分の場合には、
εが11000、tan δが1.7%、V1 が230V/
mm、αが13であった。大気中酸化処理の温度が900
℃、時間が30分の場合には、εが10000、tan δ
が2.8%、V1 が250V/mm、αが11であった。
大気中酸化処理を施さない場合は、εが13000、ta
n δが1.4%、V1が170V/mm、αが12であっ
た。この実施例から明らかなように、大気中で800℃
以下の低い温度で熱処理を施すと、V1 及びαを向上さ
せることができる。しかし、大気中の熱処理温度が90
0℃になるとニッケル電極の酸化が始まり、tan δが悪
化する。
[Third Embodiment] In order to confirm that it is possible to add a low temperature oxidation treatment step in the atmosphere immediately after the weak oxidation atmosphere treatment step in the first embodiment, the first embodiment Weak oxidizing atmosphere treatment condition is oxidation concentration 10pp
m, the treatment temperature was 1100 ° C., the treatment time was 2 hours, and an oxidation treatment step in the atmosphere was added immediately after the treatment step in this weakly oxidizing atmosphere to make a multilayer capacitor in the same manner as in the first embodiment. When the electrical characteristics were measured, the following results were obtained. Atmospheric oxidation temperature is 500 ° C, time is 6
At 0 minutes, ε is 13000, tan δ is 1.4%,
V1 was 190 V / mm and α was 13. When the temperature of the atmospheric oxidation treatment is 600 ° C and the time is 30 minutes, ε is 1
2000, tan δ 1.5%, V1 190V / mm, α
Was 14. When the temperature of the oxidation treatment in the atmosphere is 700 ° C. and the time is 30 minutes, ε is 12000 and tan δ is 1.
5%, V1 was 210 V / mm, and α was 14. If the temperature of the atmospheric oxidation treatment is 800 ° C and the time is 30 minutes,
ε is 11000, tan δ is 1.7%, V1 is 230V /
mm and α were 13. Atmospheric oxidation temperature is 900
When ℃ and time are 30 minutes, ε is 10,000, tan δ
Was 2.8%, V1 was 250 V / mm, and α was 11.
When no atmospheric oxidation treatment is performed, ε is 13000, ta
n δ was 1.4%, V1 was 170 V / mm, and α was 12. As is clear from this example, the temperature is 800 ° C. in the atmosphere.
When heat treatment is performed at the following low temperature, V1 and α can be improved. However, the heat treatment temperature in the atmosphere is 90
At 0 ° C., oxidation of the nickel electrode begins and tan δ deteriorates.

【0033】[0033]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 外部電極4をZn以外のNi、Ag、Cu等で
形成することができる 。 (2) 焼成前の積層体側面にNi等の導電性ペー
ストを塗布し、これを焼成と同時に焼付けして外部電極
4を得ることができる。 (3) 低温焼結を可能にするためのSiO2 、B2
3 、Al2 3 等のガラス成分を磁器原料に含めること
ができる。 (4) チタン酸ストロンチウム系以外の磁器コンデン
サにも適用可能である。(5) 還元性雰囲気中での焼
成の温度を例えば850℃〜1400℃の範囲で種々変
えることができる。
MODIFICATION The present invention is not limited to the above-mentioned embodiments, and the following modifications are possible. (1) The external electrode 4 can be formed of Ni, Ag, Cu or the like other than Zn. (2) The external electrode 4 can be obtained by applying a conductive paste such as Ni to the side surface of the laminate before firing and baking the same at the same time as firing. (3) SiO 2 and B 2 O for enabling low temperature sintering
Glass components such as 3 , Al 2 O 3 and the like can be included in the porcelain raw material. (4) It can be applied to porcelain capacitors other than strontium titanate type. (5) The firing temperature in the reducing atmosphere can be variously changed within the range of 850 ° C to 1400 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる磁器生シートに導電性
ペーストを塗布した状態を示す平面図である。
FIG. 1 is a plan view showing a state in which a conductive paste is applied to a green porcelain sheet according to an example of the present invention.

【図2】図1の磁器生シートの積層方法を示す正面図で
ある。
FIG. 2 is a front view showing a method of laminating the green porcelain sheet of FIG.

【図3】完成した積層コンデンサの一部を示す断面図で
ある。
FIG. 3 is a sectional view showing a part of the completed multilayer capacitor.

【符号の説明】[Explanation of symbols]

1 磁器生シート 2 導電性ペースト塗布層 1 porcelain raw sheet 2 Conductive paste coating layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体磁器を得るための主成分又はこの
主成分を得るための物質と半導体化促進剤とを含む磁器
原料を酸化性雰囲気中で仮焼する工程と、 前記仮焼した磁器材料を使用して磁器生シートを形成す
る工程と、 前記磁器生シートの主面に前記半導体磁器の粒界を絶縁
化するための物質を混入した導電性ペーストを塗布する
工程と、 前記導電性ペーストが塗布された複数の磁器生シートを
積層して積層体を形成する工程と、 前記積層体を還元性雰囲気中で焼成して焼結体を得る工
程と、 前記焼結体を弱酸化性雰囲気中、900℃〜1200℃
で熱処理する工程とを含むことを特徴とする粒界絶縁型
半導体積層磁器コンデンサの製造方法。
1. A step of calcining a porcelain raw material containing a main component for obtaining a semiconductor porcelain or a substance for obtaining the main component and a semiconducting promoter in an oxidizing atmosphere, and the calcinated porcelain material. A step of forming a porcelain raw sheet using, a step of applying a conductive paste mixed with a substance for insulating the grain boundaries of the semiconductor porcelain on the main surface of the porcelain raw sheet, the conductive paste Laminating a plurality of green porcelain sheets coated with to form a laminated body, firing the laminated body in a reducing atmosphere to obtain a sintered body, and sintering the sintered body in a weakly oxidizing atmosphere. Medium, 900 ℃ ~ 1200 ℃
A method of manufacturing a grain boundary insulating type semiconductor multilayer ceramic capacitor, comprising:
【請求項2】 前記弱酸化性雰囲気中で熱処理する工程
の後に、更に、前記弱酸化性雰囲気よりも酸化性の強い
雰囲気中で500℃〜800℃の範囲の熱処理を施す工
程を有することを特徴とする請求項1記載の粒界絶縁型
半導体積層磁器コンデンサの製造方法。
2. After the step of heat-treating in the weakly oxidizing atmosphere, there is a step of further performing heat treatment in a range of 500 ° C. to 800 ° C. in an atmosphere having a stronger oxidizing property than the weakly oxidizing atmosphere. The method for manufacturing a grain boundary insulating type semiconductor multilayer ceramic capacitor according to claim 1.
【請求項3】 前記導電性ペーストは卑金属を含むペー
ストである請求項1又は2記載の粒界絶縁型半導体積層
磁器コンデンサの製造方法。
3. The method for manufacturing a grain boundary insulation type semiconductor multilayer ceramic capacitor according to claim 1, wherein the conductive paste is a paste containing a base metal.
【請求項4】 前記導電性ペーストは、前記磁器に拡散
することが可能なガラス成分を含むことを特徴とする請
求項1又は2又は3記載の粒界絶縁型半導体積層磁器コ
ンデンサの製造方法。
4. The method for manufacturing a grain boundary insulation type semiconductor multilayer ceramic capacitor according to claim 1, 2 or 3, wherein the conductive paste contains a glass component capable of diffusing into the porcelain.
JP3214310A 1991-07-31 1991-07-31 Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor Expired - Fee Related JP2872454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3214310A JP2872454B2 (en) 1991-07-31 1991-07-31 Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3214310A JP2872454B2 (en) 1991-07-31 1991-07-31 Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH0536561A true JPH0536561A (en) 1993-02-12
JP2872454B2 JP2872454B2 (en) 1999-03-17

Family

ID=16653630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3214310A Expired - Fee Related JP2872454B2 (en) 1991-07-31 1991-07-31 Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2872454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000669T5 (en) 2011-02-04 2013-10-31 Murata Manufacturing Co., Ltd. Laminated semiconductor ceramic capacitor with varistor function and method of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215701A (en) * 1983-05-24 1984-12-05 太陽誘電株式会社 Method of producing composite function element
JPH02215112A (en) * 1989-02-16 1990-08-28 Matsushita Electric Ind Co Ltd Grain boundary insulation type semiconductor ceramic capacitor and manufacture thereof
JPH04251908A (en) * 1990-06-26 1992-09-08 Matsushita Electric Ind Co Ltd Laminated intergranular insulating semiconductor capacitor and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215701A (en) * 1983-05-24 1984-12-05 太陽誘電株式会社 Method of producing composite function element
JPH02215112A (en) * 1989-02-16 1990-08-28 Matsushita Electric Ind Co Ltd Grain boundary insulation type semiconductor ceramic capacitor and manufacture thereof
JPH04251908A (en) * 1990-06-26 1992-09-08 Matsushita Electric Ind Co Ltd Laminated intergranular insulating semiconductor capacitor and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000669T5 (en) 2011-02-04 2013-10-31 Murata Manufacturing Co., Ltd. Laminated semiconductor ceramic capacitor with varistor function and method of making the same

Also Published As

Publication number Publication date
JP2872454B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JP3600553B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
EP2025655B1 (en) Semiconductor ceramic, laminated semiconductor ceramic capacitor, method for fabricating semiconductor ceramic, and method for fabricating laminated semiconductor ceramic capacitor
US20010026865A1 (en) Oxide having perovskite structure, barium titanate, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
KR101994745B1 (en) Low temperature sintering dielectric composition and multilayer cderamic capacitor
JP2019140199A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3838457B2 (en) Ceramic composite laminated parts
US6631070B2 (en) Ceramic capacitor with czt dielectric
JP4654478B2 (en) Dielectric composition and ceramic capacitor using the same
JPH06302403A (en) Lamination type semiconductor ceramic element
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP4267438B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JPH0684608A (en) Ceramic element
JPH04251908A (en) Laminated intergranular insulating semiconductor capacitor and its production
US6743518B2 (en) Ceramic capacitor and method for the manufacture thereof
JP4487371B2 (en) Dielectric composition and ceramic capacitor using the same
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JP2872454B2 (en) Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
KR940008695B1 (en) Particle-boundary-type semiconducting magnetic condenser
JPH11233364A (en) Laminated ceramics capacitor and manufacture of the same
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor
JP4993056B2 (en) Manufacturing method and oxygen supply method of multilayer piezoelectric element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981201

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees