JPH0883932A - Current limiting element - Google Patents

Current limiting element

Info

Publication number
JPH0883932A
JPH0883932A JP6216024A JP21602494A JPH0883932A JP H0883932 A JPH0883932 A JP H0883932A JP 6216024 A JP6216024 A JP 6216024A JP 21602494 A JP21602494 A JP 21602494A JP H0883932 A JPH0883932 A JP H0883932A
Authority
JP
Japan
Prior art keywords
current limiting
limiting element
weight
less
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216024A
Other languages
Japanese (ja)
Inventor
Shigeru Okuda
繁 奥田
Noriyuki Yoshida
典之 葭田
Norikata Hayashi
憲器 林
Kozo Fujino
剛三 藤野
Chikushi Hara
築志 原
Hideo Ishii
英雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP6216024A priority Critical patent/JPH0883932A/en
Publication of JPH0883932A publication Critical patent/JPH0883932A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE: To provide an element having a high resistivity at the time of limiting a current in a current limiting element having an yttrium oxide superconductor, and a film for stabilizing and protecting it. CONSTITUTION: A current limiting element 1 comprises a current limiting action unit 3 made of yttrium oxide superconductor, and a protective film 4 made of a stabilized material to cover the superconductor, wherein the stabilized material is made of silver and inert metal for the superconductor except the silver, and has a higher specific resistance than that of the silver. As the metal components for forming the Ag composite material includes Y, Cu, Ba, Au, Pt, In, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導状態から常電導
状態への転移時に発生する抵抗により短絡電流を抑制す
る限流素子に関し、特に、イットリウム系酸化物超電導
体を用いた限流素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current limiting element for suppressing a short-circuit current by a resistance generated at the transition from a superconducting state to a normal conducting state, and more particularly to a current limiting element using an yttrium-based oxide superconductor. .

【0002】[0002]

【従来の技術】従来、短絡電流を抑制する装置として、
限流リアクトル等が用いられているが、限流性能が不十
分であり、負荷運転時の電圧降下が大きいという欠点が
ある。このような欠点を克服する装置として、通常の負
荷運転時は無抵抗である一方、異常な大電流を速やかに
抑制することが可能な、超電導体を用いた限流素子が注
目を集めている。
2. Description of the Related Art Conventionally, as a device for suppressing a short circuit current,
Although current limiting reactors and the like are used, they have drawbacks such as insufficient current limiting performance and large voltage drop during load operation. As a device that overcomes such drawbacks, a current limiting element using a superconductor has attracted attention, which is non-resistance during normal load operation, but can quickly suppress an abnormal large current. .

【0003】超電導体を用いた限流素子は、臨界電流以
上の短絡電流が流れた場合、超電導が破れ抵抗が発生す
ることで限流を行なう。超電導体には、たとえば酸化物
超電導体であるY1 Ba2 Cu3 7 (YBCO)が用
いられる。
A current limiting element using a superconductor limits the current when a short-circuit current exceeding a critical current flows and the superconducting is broken to generate resistance. As the superconductor, for example, Y 1 Ba 2 Cu 3 O 7 (YBCO) which is an oxide superconductor is used.

【0004】酸化物超電導体は、固相、液相および気相
のいずれからでも形成することができる。YBCOの場
合、単結晶基板上に気相からエピタキシャル成長させる
ことによって、固相や液相から形成される超電導材料よ
りも結晶性がよく、高い臨界電流密度を有する超電導薄
膜を得ることができる。このようなYBCO薄膜上に、
超電導体の安定化および環境に対する保護のため、Ag
を堆積して限流素子を構成することができる。
The oxide superconductor can be formed from any of solid phase, liquid phase and gas phase. In the case of YBCO, a superconducting thin film having better crystallinity and a higher critical current density than a superconducting material formed of a solid phase or a liquid phase can be obtained by epitaxially growing from a vapor phase on a single crystal substrate. On such a YBCO thin film,
Ag for stabilizing superconductors and protecting the environment
Can be deposited to form a current limiting device.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うなAgの保護膜を有する限流素子は、Agの高い導電
率のため、時に限流素子として十分な抵抗が得られない
ことがあった。
However, the current limiting device having such a protective film of Ag sometimes cannot obtain sufficient resistance as a current limiting device because of the high conductivity of Ag.

【0006】本発明の目的は、イットリウム系酸化物超
電導体と、その安定化および保護のための被膜とを有す
る限流素子において、限流時に従来より高い抵抗率を実
現することができるものを提供することにある。
An object of the present invention is to provide a current limiting device having a yttrium oxide superconductor and a film for stabilizing and protecting the same, which is capable of realizing a higher resistivity than ever before. To provide.

【0007】[0007]

【課題を解決するための手段】本発明者は、イットリウ
ム系酸化物超電導体に対し、安定化材および保護材とし
て十分な機能を備え、かつ限流に際してより高い抵抗率
を与えることができる材料について鋭意検討を進めてき
た結果、本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The present inventor has made a material for an yttrium-based oxide superconductor that has a sufficient function as a stabilizing material and a protective material and that can give a higher resistivity during current limiting. As a result of intensive studies, the present invention has been completed.

【0008】本発明に従う限流素子は、超電導状態から
常電導状態への転移時に発生する抵抗により短絡電流を
抑制する素子であって、イットリウム系酸化物超電導体
からなる限流作用部と、イットリウム系酸化物超電導体
を覆い、かつ安定化材からなる保護膜とを備え、上記安
定化材が、銀とそれ以外のイットリウム系酸化物超電導
体に対して不活性な金属とからなる材料であり、かつ銀
よりも高い比抵抗を有することを特徴とする。
A current limiting element according to the present invention is an element for suppressing a short-circuit current by a resistance generated at the transition from a superconducting state to a normal conducting state, and includes a current limiting acting portion made of an yttrium oxide superconductor and yttrium. A protective film which covers the oxide superconductor and which is made of a stabilizing material, wherein the stabilizing material is a material made of silver and a metal inert to the yttrium oxide superconductor other than silver. , And has a higher specific resistance than silver.

【0009】本発明において安定化材は、20重量%以
下のYとAgとからなる材料、15重量%以下のBaと
Agとからなる材料、5重量%以下のCuとAgとから
なる材料、6重量%以下のAuとAgとからなる材料、
6重量%以下のPtとAgとからなる材料、5重量%以
下のInとAgとからなる材料、およびそれらの組合わ
せからなる群から選択することができる。これらの複合
材料は、合金または化合物とすることができる。
In the present invention, the stabilizer is a material containing 20% by weight or less of Y and Ag, a material of 15% by weight or less of Ba and Ag, and a material of 5% by weight or less of Cu and Ag. A material consisting of 6 wt% or less of Au and Ag,
It can be selected from the group consisting of a material consisting of 6 wt% or less of Pt and Ag, a material consisting of 5 wt% or less of In and Ag, and a combination thereof. These composite materials can be alloys or compounds.

【0010】安定化材としてこのような複合材料を用い
た場合、Y、Ba、Cu、Au、PtおよびInは、そ
れぞれY系酸化物超電導体に対して実質的に不活性であ
り、かつ添加によってAgの抵抗率の増加を引起こす。
When such a composite material is used as a stabilizer, Y, Ba, Cu, Au, Pt and In are each substantially inactive with respect to the Y-based oxide superconductor and added. Causes an increase in the resistivity of Ag.

【0011】Yは20重量%以下、好ましくは0.1〜
20重量%、より好ましくは1〜20重量%の添加によ
って、Agの抵抗率を顕著に上昇させることができ、し
かもこの範囲内において、Y系材料の超電導特性を劣化
させることもない。この範囲のYを含むAg複合材料
は、Y系超電導材料を十分効果的に安定化できる。一
方、Yを20重量%を超えて添加すると、限流素子の製
造に際し必要な熱処理において添加元素の移行により、
Y系酸化物超電導体の組成ずれを引起こすおそれが生じ
る。組成ずれは超電導特性の劣化につながる。
Y is 20% by weight or less, preferably 0.1 to
By adding 20% by weight, more preferably 1 to 20% by weight, the resistivity of Ag can be remarkably increased, and within this range, the superconducting property of the Y-based material is not deteriorated. The Ag composite material containing Y in this range can sufficiently and effectively stabilize the Y-based superconducting material. On the other hand, if Y is added in an amount of more than 20% by weight, due to the transfer of additional elements in the heat treatment required in the production of the current limiting element,
There is a risk of causing a composition shift of the Y-based oxide superconductor. The composition shift leads to deterioration of superconducting properties.

【0012】Baは15重量%以下、好ましくは0.1
〜15重量%、より好ましくは1〜15重量%の添加に
よって、Agの抵抗率を顕著に上昇させることができ、
しかも、この範囲内においてY系材料の超電導特性を劣
化させることもない。この範囲のBaを含む複合材料
は、Y系超電導材料を十分効果的に安定化できる。一
方、Baを15重量%を超えて添加すると、限流素子の
製造に際し必要な熱処理において添加元素の移行によ
り、Y系酸化物超電導体の組成ずれを引起こすおそれが
生じる。組成ずれは超電導特定の劣化につながる。
Ba is 15% by weight or less, preferably 0.1.
Addition of ˜15% by weight, more preferably 1 to 15% by weight can significantly increase the resistivity of Ag,
Moreover, within this range, the superconducting property of the Y-based material is not deteriorated. The composite material containing Ba in this range can sufficiently and effectively stabilize the Y-based superconducting material. On the other hand, if Ba is added in an amount of more than 15% by weight, the composition shift of the Y-based oxide superconductor may occur due to the migration of additional elements in the heat treatment required for manufacturing the current limiting element. The composition shift leads to specific deterioration of superconductivity.

【0013】Cuは5重量%以下、好ましくは0.1〜
5重量%、より好ましくは1〜5重量%の添加によっ
て、Agの抵抗率を顕著に上昇させることができ、しか
も、この範囲内においてY系材料の超電導特性を劣化さ
せることもない。この範囲のCuを含む複合材料は、Y
系超電導材料を十分効果的に安定化できる。一方、Cu
を5重量%を超えて添加すると、限流素子の製造に際し
必要な熱処理において添加元素の移行により、Y系酸化
物超電導体の組成ずれを引起こすおそれが生じる。組成
ずれは超電導特定の劣化につながる。
Cu is 5% by weight or less, preferably 0.1 to
By adding 5% by weight, more preferably 1 to 5% by weight, the resistivity of Ag can be remarkably increased, and the superconducting property of the Y-based material is not deteriorated within this range. Composite materials containing Cu in this range are
The superconducting material can be stabilized sufficiently effectively. On the other hand, Cu
If added in an amount of more than 5% by weight, the composition of the Y-based oxide superconductor may be shifted due to the transfer of additional elements in the heat treatment required for manufacturing the current limiting element. The composition shift leads to specific deterioration of superconductivity.

【0014】Auは6重量%以下、好ましくは0.1〜
6重量%、より好ましくは1〜6重量%添加することが
できる。添加により、限流素子の常電導時における抵抗
率を顕著に上昇させることができる。しかも、この範囲
内において超電導特性を劣化させることもない。この範
囲のAuを含む複合材料は、超電導材料を十分効果的に
安定化する。一方、Auを6重量%を超えて添加する
と、限流素子の製造に際し必要な熱処理において添加元
素が移行し、Y系酸化物超電導体の組成ずれを引起こす
おそれが生じる。
Au is 6% by weight or less, preferably 0.1 to
6 wt%, more preferably 1 to 6 wt% can be added. The addition can markedly increase the resistivity of the current limiting element during normal conduction. Moreover, within this range, the superconducting characteristics are not deteriorated. The composite material containing Au in this range stabilizes the superconducting material sufficiently effectively. On the other hand, if Au is added in an amount of more than 6% by weight, the additive element may be transferred in the heat treatment necessary for manufacturing the current limiting element, which may cause composition shift of the Y-based oxide superconductor.

【0015】Ptは6重量%以下、好ましくは0.1〜
6重量%、より好ましくは1〜6重量%添加することが
できる。この添加により限流素子の常電導時における抵
抗率を顕著に上昇させることができる。またこの範囲内
において安定化材からなる保護膜はY系材料の超電導特
性を劣化させることもない。この範囲のPtを含む複合
材料は、Y系超電導材料を十分効果的に安定化する。一
方、Ptを6重量%を超えて添加すると、限流素子の製
造に際し必要な熱処理において添加元素が移行し、Y系
酸化物超電導体の組成ずれを引起こすおそれが生じる。
Pt is 6 wt% or less, preferably 0.1 to
6 wt%, more preferably 1 to 6 wt% can be added. By this addition, the resistivity of the current limiting element at the time of normal conduction can be remarkably increased. Further, within this range, the protective film made of the stabilizing material does not deteriorate the superconducting property of the Y-based material. The composite material containing Pt in this range stabilizes the Y-based superconducting material sufficiently effectively. On the other hand, if Pt is added in an amount of more than 6% by weight, the additive element may be transferred in the heat treatment necessary for manufacturing the current limiting element, which may cause composition shift of the Y-based oxide superconductor.

【0016】Inは5重量%以下、好ましくは0.1〜
5重量%、より好ましくは1〜5重量%の添加によっ
て、Agの抵抗率を顕著に上昇させることができる。こ
の範囲内において、安定化材からなる保護膜はY系材料
の超電導特性を劣化させることもない。この範囲のIn
を含む複合材料は、Y系超電導材料を十分効果的に安定
化できる。一方、Inを5重量%を超えて添加すると、
限流素子の製造に際し必要な熱処理において添加元素の
移行により、Y系酸化物超電導体の組成ずれを引起こす
おそれが生じる。
In is 5 wt% or less, preferably 0.1 to
By adding 5% by weight, more preferably 1 to 5% by weight, the resistivity of Ag can be significantly increased. Within this range, the protective film made of the stabilizing material does not deteriorate the superconducting property of the Y-based material. In of this range
The composite material containing Y can sufficiently effectively stabilize the Y-based superconducting material. On the other hand, if In is added in excess of 5% by weight,
There is a possibility that the composition shift of the Y-based oxide superconductor may occur due to the transfer of the additional element in the heat treatment necessary for manufacturing the current limiting element.

【0017】保護膜の厚みは、超電導体の厚みに応じて
安定化および環境に対する保護のため、適宜設定するこ
とができる。保護膜は超電導体よりも薄いことが望まし
いが、超電導体よりも厚く形成してもよい。超電導体よ
りも厚い保護膜を形成する場合、超電導体の厚みの50
倍を超えない範囲で保護膜の厚みを設定することが望ま
しい。保護膜は、たとえばスパッタ法等により酸化物超
電導体上に蒸着することができる。
The thickness of the protective film can be appropriately set depending on the thickness of the superconductor for stabilization and protection against the environment. The protective film is preferably thinner than the superconductor, but may be formed thicker than the superconductor. When forming a protective film thicker than the superconductor,
It is desirable to set the thickness of the protective film within a range not exceeding twice. The protective film can be deposited on the oxide superconductor by, for example, the sputtering method.

【0018】本発明においてイットリウム系酸化物超電
導体には、Y1 Ba2 Cu3 7-Y(0≦Y≦1)を好
ましく用いることができる。またこの材料の他、Y1-X
Tb X Ba2 Cu3 7 (X=0.05〜0.5)、Y
1-X PrX Ba2 Cu3 7(X=0.01〜0.
1)、Y1 Ba2 Cu3-X FeX 7 (X=0.01〜
0.1)、Y1 Ba2 Cu3-X CrX 7 (X=0.0
1〜0.2)等の組成を有する常電導状態においてより
抵抗の高い材料を用いることもできる。
In the present invention, yttrium-based oxide supercurrent is used.
Y for the conductor1Ba2Cu3O7-Y(0 ≦ Y ≦ 1) is preferred
It can be used better. In addition to this material, Y1-X
Tb XBa2Cu3O7(X = 0.05 to 0.5), Y
1-XPrXBa2Cu3O7(X = 0.01-0.
1), Y1Ba2Cu3-XFeXO7(X = 0.01-
0.1), Y1Ba2Cu3-XCrXO7(X = 0.0
1 to 0.2) and the like in a normal conducting state
A material having high resistance can also be used.

【0019】イットリウム系酸化物超電導体は、MgO
等の電気絶縁材からなる単結晶基板上にエピタキシャル
成長させることができる。エピタキシャル成長には、レ
ーザアブレーション等の蒸着法が用いられる。エピタキ
シャル成長により、高い臨界電流密度を有する単結晶性
の超電導薄膜が得られる。Y系超電導体の厚みは限流素
子として所望する性能に応じ適宜設定される。
The yttrium oxide superconductor is MgO.
Can be epitaxially grown on a single crystal substrate made of an electric insulating material such as. A vapor deposition method such as laser ablation is used for the epitaxial growth. By epitaxial growth, a single crystalline superconducting thin film having a high critical current density can be obtained. The thickness of the Y-based superconductor is appropriately set according to the desired performance as a current limiting element.

【0020】本発明に従う素子は、たとえば次の工程を
経て製造することができる。まず、MgO単結晶等の電
気絶縁性基板を準備し、その上にY系酸化物超電導体の
膜を堆積させる。この膜はレーザアブレーション等の蒸
着により堆積させることができる。次いで、その上に上
述した複合材料からなる保護膜をスパッタ法等によって
堆積させる。必要に応じ、この上にレジストパターンを
形成し、エッチングにより積層膜を所望の形状にする。
以上の工程により、超電導体が保護膜で覆われた限流素
子を形成することができる。
The device according to the present invention can be manufactured, for example, through the following steps. First, an electrically insulating substrate such as MgO single crystal is prepared, and a Y-based oxide superconductor film is deposited thereon. This film can be deposited by vapor deposition such as laser ablation. Then, a protective film made of the above-mentioned composite material is deposited thereon by a sputtering method or the like. If necessary, a resist pattern is formed on this, and the laminated film is formed into a desired shape by etching.
Through the above steps, the current limiting element in which the superconductor is covered with the protective film can be formed.

【0021】[0021]

【発明の作用効果】本発明によれば、以下の実施例に示
すとおり、優れた限流特性を有する素子を提供すること
ができる。本発明の素子は、従来の銀からなる保護膜を
有するものより、常電導状態において高い比抵抗を示
し、短絡電流をより抑制することができる。一方、本発
明の素子は、銀の保護膜を有するものと同様に超電導状
態を安定に保持することができる。このように本発明
は、超電導体を安定化する構造において、より抵抗の高
い限流素子を実現するものである。
According to the present invention, as shown in the following examples, it is possible to provide an element having excellent current limiting characteristics. The device of the present invention has a higher specific resistance in the normal conducting state than the device having the conventional protective film made of silver, and can further suppress the short-circuit current. On the other hand, the device of the present invention can stably maintain the superconducting state like the device having the silver protective film. As described above, the present invention realizes a current limiting element having higher resistance in a structure for stabilizing a superconductor.

【0022】[0022]

【実施例】【Example】

実施例1 以下に示すようにY1 Ba2 Cu3 7-Y (0≦Y≦
1)の組成を有する酸化物超電導体を使用し、その上に
安定化および保護のための層を付与した限流素子を作製
した。
Example 1 As shown below, Y 1 Ba 2 Cu 3 O 7-Y (0 ≦ Y ≦
An oxide superconductor having the composition of 1) was used, and a current limiting element having a layer for stabilization and protection provided thereon was produced.

【0023】まず、MgO単結晶基板の(110)面上
に、Y1 Ba2 Cu3 7-Y 酸化物超電導膜をレーザア
ブレーション法により厚さ1.5μmで形成した。次い
で、表1に示すような組成で、0.5μmの厚さの保護
膜をスパッタ法により形成した。すなわち、Agからな
る保護膜(比較例)、AgとYとからなる保護膜でYを
それぞれ2、4、6、8または12重量%含む保護膜
(本発明例)をそれぞれスパッタ法により堆積した。次
に、フォトリソグラフィを用いて保護膜上にレジストパ
ターンを形成した後、エッチングにより保護膜および超
電導体膜を所望の形状にした。
First, a Y 1 Ba 2 Cu 3 O 7 -Y oxide superconducting film having a thickness of 1.5 μm was formed on the (110) plane of a MgO single crystal substrate by a laser ablation method. Then, a protective film having a composition as shown in Table 1 and having a thickness of 0.5 μm was formed by a sputtering method. That is, a protective film made of Ag (comparative example) and a protective film made of Ag and Y containing 2, 4, 6, 8 or 12% by weight of Y (inventive example) were deposited by sputtering. . Next, after forming a resist pattern on the protective film using photolithography, the protective film and the superconductor film were formed into desired shapes by etching.

【0024】図1は、このようにして作製された限流素
子を示す斜視図である。図1を参照して、限流素子1
は、MgO単結晶基板2と、基板2上に形成されたY1
Ba2Cu3 7-Y 膜3、さらにその上に形成された保
護膜4とから構成されている。Y1 Ba2 Cu3 7-Y
膜3と保護膜4はいずれもミアンダ形状にパターニング
されている。
FIG. 1 is a perspective view showing the current limiting element thus manufactured. Referring to FIG. 1, current limiting element 1
Is the MgO single crystal substrate 2 and Y 1 formed on the substrate 2.
It is composed of a Ba 2 Cu 3 O 7-Y film 3 and a protective film 4 formed thereon. Y 1 Ba 2 Cu 3 O 7-Y
Both the film 3 and the protective film 4 are patterned in a meandering shape.

【0025】このように構成される限流素子1につい
て、以下のような限流実験を行なった。図2はこの実験
で用いた測定回路を示す図である。図2を参照して、作
製した限流素子1に、5Ωの負荷抵抗5を直列に接続
し、それを短絡させるためのスイッチ6を並列に接続し
た。この回路に、交流電源7より300Vの交流電圧を
印加し、負荷短絡前と短絡後の電流値を電流計8により
測定した。結果を表1にまとめる。
The following current limiting experiment was conducted on the current limiting element 1 thus constructed. FIG. 2 is a diagram showing the measurement circuit used in this experiment. With reference to FIG. 2, a load resistor 5 of 5Ω was connected in series to the manufactured current limiting element 1, and a switch 6 for short-circuiting it was connected in parallel. An AC voltage of 300 V was applied from the AC power supply 7 to this circuit, and the current value before and after the load short circuit was measured by the ammeter 8. The results are summarized in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1より明らかなように、本発明例の限流
素子は比較例のものより短絡後の電流をより顕著に抑制
することができる。たとえばYの含有量が8重量%の限
流素子は、短絡後の電流が1/10になっており、本発
明の素子が限流作用においてより優れていることがわか
る。このようにYのAgへの添加により、顕著な短絡電
流の抑制が確認された。
As is clear from Table 1, the current limiting device of the present invention example can suppress the current after short circuit more remarkably than that of the comparative example. For example, the current limiting element with a Y content of 8% by weight has a current of 1/10 after a short circuit, indicating that the element of the present invention is superior in current limiting action. Thus, it was confirmed that the addition of Y to Ag significantly suppressed the short-circuit current.

【0028】実施例2 実施例1と同様の方法により、保護膜としてAg中にB
aを含む材料を用いた限流素子を作製した。0〜14重
量%の範囲で保護膜中のBaの含有量を変え、7種類の
素子を作製した。それぞれの素子についてBa含量と限
流実験の結果を表2に示す。表から明らかなように、本
発明の例の限流素子は、比較例よりも優れた限流特性を
示す。
Example 2 In the same manner as in Example 1, B in Ag was used as a protective film.
A current limiting element was produced using a material containing a. Seven kinds of devices were produced by changing the content of Ba in the protective film within the range of 0 to 14% by weight. Table 2 shows the Ba content and the result of the current limiting experiment for each device. As is clear from the table, the current limiting element of the example of the present invention exhibits superior current limiting characteristics to the comparative example.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例3 実施例1と同様の方法により、保護膜としてAg中にC
uを含む材料を用いた限流素子を作製した。0〜5重量
%の範囲で保護膜中のCuの含有量を変え、6種類の素
子を作製した。それぞれの素子についてCu含有量と限
流実験の結果を表3に示す。表から明らかなように、本
発明の例の限流素子は、比較例の素子よりも優れた限流
特性を示す。
Example 3 By the same method as in Example 1, C in Ag was used as a protective film.
A current limiting element was manufactured using a material containing u. Six kinds of devices were manufactured by changing the Cu content in the protective film within the range of 0 to 5% by weight. Table 3 shows the Cu content of each element and the result of the current limiting experiment. As is apparent from the table, the current limiting device of the example of the present invention exhibits superior current limiting characteristics to the device of the comparative example.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例4 実施例1と同様の方法により、保護膜としてAg中にA
uを含む材料を用いた限流素子を作製した。0〜6重量
%の範囲で保護膜中のAuの含有量を変え、7種類の素
子を作製した。それぞれの素子についてAu含量と限流
実験の結果を表4に示す。表から明らかなように、本発
明の例の限流素子は、比較例の素子よりも優れた限流特
性を示す。
Example 4 In the same manner as in Example 1, A in Ag was used as a protective film.
A current limiting element was manufactured using a material containing u. Seven kinds of devices were produced by changing the content of Au in the protective film within the range of 0 to 6% by weight. Table 4 shows the Au content and the result of the current limiting experiment for each device. As is apparent from the table, the current limiting device of the example of the present invention exhibits superior current limiting characteristics to the device of the comparative example.

【0033】[0033]

【表4】 [Table 4]

【0034】実施例5 実施例1と同様の方法により、保護膜としてAg中にP
tを含む材料を用いた限流素子を作製した。0〜6重量
%の範囲で保護膜中のPtの含有量を変え、7種類の素
子を作製した。それぞれの素子についてPt含有量と限
流実験の結果を表5に示す。表から明らかなように、本
発明の例の限流素子は、比較例の素子よりも優れた限流
特性を示す。
Example 5 In the same manner as in Example 1, P was added to Ag as a protective film.
A current limiting device using a material containing t was manufactured. Seven kinds of devices were manufactured by changing the Pt content in the protective film within the range of 0 to 6% by weight. Table 5 shows the Pt content of each device and the result of the current limiting experiment. As is apparent from the table, the current limiting device of the example of the present invention exhibits superior current limiting characteristics to the device of the comparative example.

【0035】[0035]

【表5】 [Table 5]

【0036】実施例6 実施例1と同様の方法により、保護膜としてAg中にI
nを含む材料を用いた限流素子を作製した。0〜5重量
%の範囲で保護膜中のInの含有量を変え、6種類の素
子を作製した。それぞれの素子についてIn含有量と限
流実験の結果を表6に示す。表から明らかなように、本
発明の例の限流素子は、比較例の素子よりも優れた限流
特性を示す。
Example 6 By the same method as in Example 1, I was added to Ag as a protective film.
A current limiting element was manufactured using a material containing n. The In content in the protective film was changed within the range of 0 to 5% by weight to manufacture 6 types of devices. Table 6 shows the In content and the result of the current limiting experiment for each device. As is apparent from the table, the current limiting device of the example of the present invention exhibits superior current limiting characteristics to the device of the comparative example.

【0037】[0037]

【表6】 [Table 6]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において作製された限流素子の形状を示
す斜視図である。
FIG. 1 is a perspective view showing the shape of a current limiting element manufactured in an example.

【図2】実施例において作製された限流素子の限流試験
を行なうための回路を示す図である。
FIG. 2 is a diagram showing a circuit for conducting a current limiting test of a current limiting element manufactured in an example.

【符号の説明】[Explanation of symbols]

1 限流素子 2 基板 3 Y1 Ba2 Cu3 7-Y 膜 4 保護膜1 Current limiting element 2 Substrate 3 Y 1 Ba 2 Cu 3 O 7-Y film 4 Protective film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 憲器 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 藤野 剛三 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 原 築志 東京都調布市西つつじケ丘二丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 石井 英雄 東京都調布市西つつじケ丘二丁目4番1号 東京電力株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenki Hayashi 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Gozo Fujino 1-chome, Shimaya, Osaka No. 3 Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Tsukushi Hara 2-4-1, Nishitsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Co., Inc. Technical Research Institute (72) Hideo Ishii Nishiazajigaoka, Chofu-shi, Tokyo 2-4-1, Tokyo Electric Power Co., Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導状態から常電導状態への転移時に
発生する抵抗により短絡電流を抑制する限流素子であっ
て、 イットリウム系酸化物超電導体からなる限流作用部と、 前記イットリウム系酸化物超電導体を覆い、かつ安定化
材からなる保護膜とを備え、 前記安定化材が、銀とそれ以外の前記イットリウム系酸
化物超電導体に対して不活性な金属とからなる材料であ
り、かつ銀よりも高い比抵抗を有することを特徴とす
る、限流素子。
1. A current limiting element for suppressing a short circuit current by a resistance generated at the time of transition from a superconducting state to a normal conducting state, the current limiting acting portion comprising an yttrium oxide superconductor, and the yttrium oxide. A protective film that covers the superconductor and comprises a stabilizing material, wherein the stabilizing material is a material made of a metal inert to the yttrium oxide superconductor other than silver, and A current limiting device characterized by having a higher specific resistance than silver.
【請求項2】 前記安定化材が、20重量%以下のYと
Agとからなる材料、15重量%以下のBaとAgとか
らなる材料、5重量%以下のCuとAgとからなる材
料、6重量%以下のAuとAgとからなる材料、6重量
%以下のPtとAgとからなる材料、5重量%以下のI
nとAgとからなる材料およびそれらの組合わせからな
る群から選択されることを特徴とする、請求項1に記載
の限流素子。
2. The stabilizing material is a material containing 20% by weight or less of Y and Ag, a material containing 15% by weight or less of Ba and Ag, and a material containing 5% by weight or less of Cu and Ag. Material consisting of 6 wt% or less Au and Ag, material consisting of 6 wt% or less Pt and Ag, 5 wt% or less I
The current limiting element according to claim 1, wherein the current limiting element is selected from the group consisting of materials consisting of n and Ag and combinations thereof.
【請求項3】 前記イットリウム系酸化物超電導体が、
YBa2 Cu3 7- Y (0≦Y≦1)からなることを特
徴とする、請求項1または2に記載の限流素子。
3. The yttrium-based oxide superconductor,
The current limiting element according to claim 1 or 2, characterized in that it is made of YBa 2 Cu 3 O 7- Y (0≤Y≤1).
【請求項4】 前記イットリウム系酸化物超電導体は、
電気絶縁材の単結晶基板上にエピタキシャル成長された
単結晶性薄膜であることを特徴とする、請求項1〜3の
いずれか1項に記載の限流素子。
4. The yttrium-based oxide superconductor comprises:
The current limiting element according to any one of claims 1 to 3, which is a single crystal thin film epitaxially grown on a single crystal substrate of an electrically insulating material.
JP6216024A 1994-09-09 1994-09-09 Current limiting element Pending JPH0883932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216024A JPH0883932A (en) 1994-09-09 1994-09-09 Current limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216024A JPH0883932A (en) 1994-09-09 1994-09-09 Current limiting element

Publications (1)

Publication Number Publication Date
JPH0883932A true JPH0883932A (en) 1996-03-26

Family

ID=16682107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216024A Pending JPH0883932A (en) 1994-09-09 1994-09-09 Current limiting element

Country Status (1)

Country Link
JP (1) JPH0883932A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911890A2 (en) * 1997-10-24 1999-04-28 Abb Research Ltd. Method for alloying a noble metal bypass layer of a high temperature superconductor
WO2003028120A1 (en) * 2001-09-21 2003-04-03 International Superconductivity Technology Center, The Juridical Foundation Permanent current switch material and production method therefor
US6552415B1 (en) 1998-08-14 2003-04-22 Abb Research Ltd Electrically stabilized thin-film high-temperature superconductor and method for the production thereof
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JP2009212522A (en) * 2008-03-05 2009-09-17 Bruker Hts Gmbh Current regulating superconducting device
JP2011139041A (en) * 1999-03-22 2011-07-14 American Superconductor Corp Current-restricting composite material
JP2017103178A (en) * 2015-12-04 2017-06-08 株式会社フジクラ Superconducting wire rod and method of manufacturing superconducting wire rod
CN110112719A (en) * 2019-06-10 2019-08-09 西南交通大学 A kind of restructural current limiter based on double sided superconducting film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911890A2 (en) * 1997-10-24 1999-04-28 Abb Research Ltd. Method for alloying a noble metal bypass layer of a high temperature superconductor
EP0911890A3 (en) * 1997-10-24 1999-05-12 Abb Research Ltd. Method for alloying a noble metal bypass layer of a high temperature superconductor
US6552415B1 (en) 1998-08-14 2003-04-22 Abb Research Ltd Electrically stabilized thin-film high-temperature superconductor and method for the production thereof
JP2011139041A (en) * 1999-03-22 2011-07-14 American Superconductor Corp Current-restricting composite material
WO2003028120A1 (en) * 2001-09-21 2003-04-03 International Superconductivity Technology Center, The Juridical Foundation Permanent current switch material and production method therefor
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JPWO2006001226A1 (en) * 2004-06-24 2008-04-17 独立行政法人産業技術総合研究所 Superconducting current limiting element and method for manufacturing the same
JP4644779B2 (en) * 2004-06-24 2011-03-02 独立行政法人産業技術総合研究所 Superconducting current limiting element
US8088713B2 (en) 2004-06-24 2012-01-03 National Institute Of Advanced Industrial Science And Technology Superconducting fault-current limiting element and the process for producing the same
JP2009212522A (en) * 2008-03-05 2009-09-17 Bruker Hts Gmbh Current regulating superconducting device
JP2017103178A (en) * 2015-12-04 2017-06-08 株式会社フジクラ Superconducting wire rod and method of manufacturing superconducting wire rod
CN110112719A (en) * 2019-06-10 2019-08-09 西南交通大学 A kind of restructural current limiter based on double sided superconducting film

Similar Documents

Publication Publication Date Title
US7627356B2 (en) Multifilament AC tolerant conductor with striated stabilizer and devices incorporating the same
CN1107986C (en) Current-limiting device
KR101419331B1 (en) Multifilament superconductor having reduced ac losses and method for forming the same
US7879763B2 (en) Superconducting article and method of making
US20070015666A1 (en) Mesh-type stabilizer for filamentary coated superconductors
JPS6271271A (en) Electrode structure of silicon carbide semiconductor
KR101247548B1 (en) Superconductive articles having density characteristics
JPH0883932A (en) Current limiting element
JP4112884B2 (en) Superconducting material
JP2011508968A (en) Fault current limiter incorporating superconducting articles
JP2523647B2 (en) Metal oxide superconducting thin film
US7445808B2 (en) Method of forming a superconducting article
JP2008118121A (en) Superconducting element
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
JPH06132571A (en) Current limiting element and current limiting device
Chaddah Critical current densities in superconducting materials
JPH07264774A (en) Current-limiting element
JPH05250932A (en) Oxide superconductive current limiting conductor and its manufacture
JP2017530668A (en) Current limiting device and method of manufacturing current limiting device
US9768370B2 (en) Low AC loss high temperature superconductor tape
JPH02281765A (en) Superconducting element using oxide superconductor thin-film
JP3343946B2 (en) Current limiter
JPH05251758A (en) Manufacture of oxide superconductive current limiting conductor
JP2774713B2 (en) Superconducting element
JPH05251762A (en) Oxide superconductive current limiting conductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316