JPH05251762A - Oxide superconductive current limiting conductor - Google Patents

Oxide superconductive current limiting conductor

Info

Publication number
JPH05251762A
JPH05251762A JP4050474A JP5047492A JPH05251762A JP H05251762 A JPH05251762 A JP H05251762A JP 4050474 A JP4050474 A JP 4050474A JP 5047492 A JP5047492 A JP 5047492A JP H05251762 A JPH05251762 A JP H05251762A
Authority
JP
Japan
Prior art keywords
film
layer
current limiting
silver
silver layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4050474A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuno
繁 松野
Hidefusa Uchikawa
英興 内川
Shinichi Kinouchi
伸一 木ノ内
Sadajiro Mori
貞次郎 森
Tatsuya Hayashi
龍也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4050474A priority Critical patent/JPH05251762A/en
Publication of JPH05251762A publication Critical patent/JPH05251762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent the current limiting effect and prevent the drop on standing of stabilized performance extending for a longer period by providing a silver layer on the oxide superconductive film provided on a base material, and providing a gold layer hereon. CONSTITUTION:A Y (YBa2Cu3O7-x) oxide superconductive film in is made, using an MGO substrate as a base material and next, using a metal of each ingredient as a starting material. A silver layer, hereon, and next, a gold layer are stacked hereon. Hereby, at current application of the superconductive current limiting conductor, a current is shunt for the silver layer and the gold layer, and besides the heat is conducted, and also the metal prevents the deterioration by oxidation with the passage of time, especially, of the silver layer and performs the function of suppressing the drop on standing of the stabilized performance. The property to show the change on standing of the voltage V between critical terminals is practically constant with the one 1 where the gold layer is stacked on the silver layer, as against dropping to approximately 80% of the first after six months with the one which has the stabilized film of only silver.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物超電導体を用
いて電流を通電する導体および例えば短絡電流などの過
大電流を限流することの可能な限流素子などに用いる酸
化物超電導限流導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting current limiter for use in a conductor which conducts a current using an oxide superconductor and a current limiting element capable of limiting an excessive current such as a short circuit current. It is about conductors.

【0002】[0002]

【従来の技術】超電導体は、臨界温度、臨界電流、臨界
磁界のうちいずれかひとつがその値を越えると超電導状
態が破壊され、常電導状態となって電気抵抗が発生、増
大する。この現象を利用して過大電流を限流する超電導
限流導体(素子)に関する研究開発が近年盛んになって
いる。この分野全般の技術に関しては、例えば刊行物
{電気学会論文誌B、110巻、9号、705ページ
(平成2年)}に記載されている。これらの中で、酸化
物超電導体を利用した超電導限流導体が最近注目されて
いる。これに用いる素子の構造は、棒状または板状の超
電導体に蒸着やペーストなどを用いて、超電導体の一部
に銀、金、インジウム等の金属を付着させることによっ
て一対の電極を形成した簡単なものである。代表例とし
ては、例えば刊行物{Advances in Sup
erconductivity,691ページ(198
8)}に示されたものがある。これはY−Ba−Cu系
の酸化物超電導粉末の焼結体を用い、ドクターブレード
法によってジグザグ状(ミアンダ構造)のシートを形成
し、臨界電流を越える電流が流れた場合の常電導状態に
おける高抵抗化を利用して限流するものである。しか
し、このような焼結体(線状、棒状、板状のもの)では
一般に臨界電流を高くすることができないため、短絡電
流を限流できる割合が小さいという欠点があった。
2. Description of the Related Art In a superconductor, when any one of the critical temperature, the critical current, and the critical magnetic field exceeds the value, the superconducting state is destroyed, and the superconducting state is established and the electric resistance is increased. In recent years, research and development on superconducting current limiting conductors (elements) that utilize this phenomenon to limit an excessive current have become active. The technology of this entire field is described in, for example, a publication {Journal of the Institute of Electrical Engineers of Japan, Volume 110, No. 9, p. 705 (1990)}. Among these, superconducting current limiting conductors utilizing oxide superconductors have recently received attention. The structure of the element used for this is a simple structure in which a pair of electrodes are formed by depositing a metal such as silver, gold or indium on a part of the superconductor by using vapor deposition or paste on the rod-shaped or plate-shaped superconductor. It is something. As a typical example, for example, a publication {Advances in Sup
erconductivity, page 691 (198
8)}. This uses a sintered body of Y-Ba-Cu-based oxide superconducting powder to form a zigzag-like (meaner structure) sheet by the doctor blade method, in a normal conducting state when a current exceeding a critical current flows. The current is limited by utilizing the high resistance. However, such a sintered body (one having a linear shape, a rod shape, or a plate shape) generally has a drawback that the critical current cannot be increased, and thus the short-circuit current can be limited only in a small proportion.

【0003】そこで、基材上に形成された膜状の超電導
体を応用した限流導体が考えられている。成膜技術の進
歩によって、酸化物超電導薄膜において最近非常に大き
な臨界電流を流せるものが得られるようになった。また
膜状のものは線状など前記のものと比較して冷却特性が
良好であり、しかも高抵抗にし易いことなどの限流導体
としての利点もある。ただし、酸化物超電導薄膜を用い
たものでは、膜厚を厚くすると組成ずれを起こしやすい
ことおよび大面積に形成すると組成が不均質になること
などのために、厚く大面積にわたって大きな臨界電流を
もつものを得ることが困難であるという大きな欠点を生
じることが避けられなかった。特に、比較的大面積に成
膜した場合に組成等膜質の不均質性が生じることは、現
状の超電導薄膜作製技術では不可避の課題であり、この
ために通電時に弱い部分が熔断してしまい、限流導体の
限界端子間電圧(熔断するまでの投入パワーまたは回路
電圧と等価)を高くすることができなかった。この欠点
を解消するため、例えば刊行物{日本物理学会編、超電
導、276頁、昭和54年(丸善株式会社)}等に記載
されているような従来技術から容易に、素子部の超電導
膜上に蒸着等の手法により金属の薄膜を被覆して、一種
の熱的、電気的な安定化を行うことが考えられる。
Therefore, a current limiting conductor to which a film-shaped superconductor formed on a substrate is applied has been considered. Due to the progress of film forming technology, it has recently become possible to obtain an oxide superconducting thin film capable of passing a very large critical current. Further, the film-shaped one has advantages as a current limiting conductor such that it has a better cooling characteristic than the above-mentioned one such as a linear one, and can easily have a high resistance. However, the oxide superconducting thin film has a large critical current over a large area because the composition shift tends to occur when the film thickness is increased and the composition becomes inhomogeneous when formed in a large area. It was unavoidable to give rise to the major drawback of difficulty in obtaining things. In particular, the occurrence of inhomogeneity in film quality such as composition when a film is formed in a relatively large area is an unavoidable problem in the current superconducting thin film manufacturing technology, and therefore a weak portion is melted during energization, It was not possible to increase the limit terminal voltage of the current limiting conductor (equivalent to the input power or circuit voltage until the fuse is cut). In order to solve this drawback, it is easy to use the conventional technique as described in, for example, a publication {edited by the Physical Society of Japan, Superconductivity, p. 276, 1979 (Maruzen Co., Ltd.)} on the superconducting film of the element part. It is considered that a kind of thermal and electrical stabilization is performed by coating a metal thin film by a method such as vapor deposition.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の応用に
よる安定化を行う際に、酸化物超電導膜を用いる場合に
は、安定化金属膜として銀が最適であり、これによって
限界端子間電圧を飛躍的に高めることが可能であること
を見いだした。しかし、銀を安定化膜として使用した場
合には、長期間使用すると素子への限界端子間電圧が経
時的に低下することが分かった。この原因を調査したと
ころ、銀安定化膜の経時的な表面酸化が生じ、これによ
って安定化性能が低下した事が原因であることが判明し
た。
When an oxide superconducting film is used for stabilizing by applying the above-mentioned conventional technique, silver is most suitable as a stabilizing metal film, and thereby, the limit terminal voltage is reduced. We have found that it can be dramatically increased. However, it has been found that when silver is used as the stabilizing film, the terminal voltage to the device decreases over time after long-term use. As a result of investigating the cause, it was found that the surface stabilization of the silver stabilizing film occurred over time and the stabilization performance was deteriorated by this.

【0005】この発明は、かかる課題を解決するために
なされたもので、限流効果が大きく、特に、より長期間
にわたって安定化性能の経時的な低下の防止された酸化
物超電導限流導体を得ることを目的とする。
The present invention has been made in order to solve the above problems and has a large current limiting effect, and in particular, an oxide superconducting current limiting conductor in which the deterioration of the stabilizing performance over time is prevented. The purpose is to get.

【0006】[0006]

【課題を解決するための手段】この発明の酸化物超電導
限流導体は、基材、この基材に設けた酸化物超電導膜、
この酸化物超電導膜に設けた銀層およびこの銀層に設け
た金層を備えたものである。
The oxide superconducting current limiting conductor of the present invention is a substrate, an oxide superconducting film provided on the substrate,
The oxide superconducting film has a silver layer and a gold layer provided on the silver layer.

【0007】[0007]

【作用】この発明において、酸化物超電導膜に銀層およ
び金層を設けているので、超電導限流導体の通電時にお
いて、銀層および金層に電流が分流され、かつ熱が伝わ
ると共に、特に銀層の経時的な酸化劣化を金層が防止し
て、安定化性能の経時的な低下を抑制する働きをなす。
In the present invention, since the silver layer and the gold layer are provided on the oxide superconducting film, when the superconducting current limiting conductor is energized, the current is shunted to the silver layer and the gold layer, and heat is transmitted. The gold layer prevents oxidative deterioration of the silver layer over time, and serves to suppress deterioration of the stabilizing performance over time.

【0008】[0008]

【実施例】実施例1.幅5mm×長さ20mmの矩形状
MgO基板を基材として用い、次いで各成分の金属を出
発原料とし、電子ビーム蒸着法によってY系(YBa2
Cu37-X)酸化物超電導膜の形成を行った。この際
に、酸素ガスを導入してガス圧を1.5×10-4Tor
rに調整し、成膜後この雰囲気中において室温まで徐冷
した。その後この上に、1.8×10-6Torrの真空
中において銀層を、次いで金層を蒸着によって積層して
この発明の一実施例の酸化物超電導限流導体を製作し
た。次いで、超電導膜の中央部を絶縁テープで被覆し、
両端部に無電界で金メッキを施して端子部とし、これに
リード線を取り付けた。超電導層の臨界温度は86K、
超電導層、銀層および金層の厚さは、各々約4000
Å、300Åおよび200Åであった。
EXAMPLES Example 1. A rectangular MgO substrate having a width of 5 mm and a length of 20 mm is used as a base material, and then each component metal is used as a starting material, and a Y-based (YBa 2
Cu 3 O 7-X) was formed of the oxide superconductor film. At this time, oxygen gas was introduced to adjust the gas pressure to 1.5 × 10 −4 Tor.
The temperature was adjusted to r, and after film formation, the film was gradually cooled to room temperature in this atmosphere. Thereafter, a silver layer and then a gold layer were laminated thereon by vacuum evaporation under a vacuum of 1.8 × 10 −6 Torr to manufacture an oxide superconducting current limiting conductor according to an embodiment of the present invention. Then, cover the central part of the superconducting film with an insulating tape,
Both ends were electrolessly plated with gold to form terminals, and lead wires were attached thereto. The critical temperature of the superconducting layer is 86K,
The thickness of the superconducting layer, silver layer and gold layer is about 4000 each.
It was Å, 300 Å and 200 Å.

【0009】比較例1.実施例1と同様の電子ビーム蒸
着法および同種の基材を用い、上記実施例1のものと同
一組成で同一ガス圧の酸素気流中で成膜を行い、上記と
同様の約4000ÅのY系超電導膜を形成した後、安定
化のために300Åの銀層を積層して従来の超電導限流
導体とした。この様にして得られた従来の超電導限流導
体における超電導膜の臨界温度は86Kであり、実施例
1のものと同じであった。
Comparative Example 1. Using the same electron beam evaporation method as in Example 1 and the same kind of substrate, film formation was carried out in an oxygen stream having the same composition and the same gas pressure as in Example 1 above, and the same Y-system of about 4000 Å as above was formed. After forming the superconducting film, a 300 Å silver layer was laminated for stabilization to obtain a conventional superconducting current limiting conductor. The critical temperature of the superconducting film in the conventional superconducting current limiting conductor thus obtained was 86K, which was the same as that of Example 1.

【0010】実施例1および比較例1の限流素子につい
て、それぞれ液体窒素中に入れて冷却し、交流回路(周
波数50Hz)を用い、素子にかかる端子間電圧を変化
させて、素子が熔断するまでの限界端子間電圧を調査し
た。その結果、この発明の一実施例のものは75V、金
層を被覆しない従来のものも75Vで同一であった。上
記の限界端子間電圧の場合に、使用回路の推定短絡電流
180Aを両素子ともその約1/9である2Aに大きく
限流することができた。次に、これらの素子を空気中に
放置し、1か月ごとに限界端子間電圧を測定してその経
時変化を調査し、結果を図1に示す。図1は、この発明
と従来例を比較する、限界端子間電圧の経時変化を示す
特性図であり、図において1は実施例1の特性、2は比
較例1の特性である。図1から、従来の銀のみの安定化
膜を有するものは6か月後には、初期の限界端子間電圧
の約80%に低下してしまった。これに対して、実施例
1のものでは、6か月後も限界端子間電圧の値は殆ど一
定であった。これにより、この発明の一実施例の限流導
体の経時的な安定性が明らかになった。
The current limiting elements of Example 1 and Comparative Example 1 were each placed in liquid nitrogen for cooling, and an AC circuit (frequency of 50 Hz) was used to change the terminal voltage applied to the elements to melt the elements. The limit voltage between terminals was investigated. As a result, the one of the embodiment of the present invention was the same at 75V and the conventional one not covering the gold layer was the same at 75V. In the case of the above-mentioned limit terminal voltage, the estimated short circuit current 180A of the used circuit could be greatly limited to 2A which is about 1/9 of both elements. Next, these devices were left in the air and the limit terminal voltage was measured every month to examine the change over time, and the results are shown in FIG. FIG. 1 is a characteristic diagram comparing the present invention with a conventional example and showing a change with time of a limit terminal voltage, wherein 1 is a characteristic of Example 1 and 2 is a characteristic of Comparative Example 1. From FIG. 1, the conventional one having the stabilizing film of only silver dropped to about 80% of the initial limit terminal voltage after 6 months. On the other hand, in Example 1, the value of the limit terminal voltage was almost constant even after 6 months. This revealed the stability of the current limiting conductor of one embodiment of the present invention over time.

【0011】実施例2.実施例1と同様のサイズの矩形
状SrTiO3基板を基材として用い、スパッタ法によ
ってYBa2Cu37-X系酸化物超電導層の形成を行っ
た。この際に、酸素ガスを導入してガス圧を1.1×1
-4Torrに調整し、成膜後この雰囲気中において室
温まで徐冷した。超電導層上に、1.8×10-6Tor
rの真空中において銀層および次いで金層をスパッタに
よって積層し、この発明の他の実施例の酸化物超電導限
流導体を作製した。次いで、両端部に無電界で金メッキ
を施して端子部とし、これにリード線を取り付けて酸化
物超電導限流素子とした。超電導膜の臨界温度は88
K、超電導層、銀層および金層それぞれの厚さは、約3
000Å、200Åおよび200Åであった。
Embodiment 2. Using a rectangular SrTiO 3 substrate having the same size as in Example 1 as a base material, a YBa 2 Cu 3 O 7-X oxide superconducting layer was formed by the sputtering method. At this time, oxygen gas was introduced to adjust the gas pressure to 1.1 × 1.
It was adjusted to 0 −4 Torr, and after film formation, it was gradually cooled to room temperature in this atmosphere. 1.8 × 10 -6 Tor on the superconducting layer
A silver layer and then a gold layer were laminated by sputtering in a vacuum of r to prepare an oxide superconducting current limiting conductor of another example of the present invention. Next, both ends were electrolessly plated with gold to form terminals, and lead wires were attached to the terminals to obtain oxide superconducting current limiting devices. The critical temperature of the superconducting film is 88
The thickness of each of K, superconducting layer, silver layer and gold layer is about 3
They were 000Å, 200Å and 200Å.

【0012】比較例2.実施例2と同様のスパッタ法お
よび同種の基材を用い、上記実施例2と同一の組成で同
一ガス圧の酸素気流中で成膜を行い、上記と同様の約3
000ÅのY系超電導膜を形成した後、安定化のために
200Åの銀層を積層して従来の超電導限流導体とし
た。この様にして得た従来の超電導限流導体における超
電導膜の臨界温度は88Kであり、実施例2のものと同
じであった。
Comparative Example 2. Using the same sputtering method and the same kind of base material as in Example 2, film formation was performed in the oxygen gas flow of the same composition and the same gas pressure as in Example 2 above, and about 3
After forming a 000 Å Y-based superconducting film, a 200 Å silver layer was laminated for stabilization to obtain a conventional superconducting current limiting conductor. The critical temperature of the superconducting film in the conventional superconducting current limiting conductor thus obtained was 88K, which was the same as that of Example 2.

【0013】実施例2および比較例2の限流素子につい
て、それぞれ液体窒素中に入れて冷却し、交流回路(周
波数50Hz)を用い、素子にかかる端子間電圧を変化
させて、素子が熔断するまでの限界端子間電圧を調査し
た。その結果、実施例2のものは71V、金層を被覆し
ない比較例2のものも71Vで同一であった。上記の限
界端子間電圧の場合に、使用回路の推定短絡電流180
Aを両素子ともその約1/10以下である1.5Aに大
きく限流することができた。次に、これらの素子を1日
のうち12時間液体窒素中に浸漬し、後の12時間は空
気中に放置するというサイクルを6か月間繰り返し、途
中1か月ごとに限界端子間電圧を測定してその経時変化
を調査した。結果を図2に示す。図2は、この発明と従
来例を比較する、限界端子間電圧の経時変化を示す特性
図であり、図において3は実施例2の特性、4は比較例
2の特性である。図2から、従来の銀のみの安定化膜を
有するものは6か月後には、初期の限界端子間電圧の約
70%に低下してしまった。これに対して、実施例2の
ものでは、6か月後も限界端子間電圧の値は殆ど一定で
あった。これにより、この発明の他の実施例の限流導体
の経時的な安定性が明らかになった。
The current limiting devices of Example 2 and Comparative Example 2 were each put into liquid nitrogen to be cooled, and an AC circuit (frequency of 50 Hz) was used to change the terminal voltage applied to the devices to melt the devices. The limit voltage between terminals was investigated. As a result, the voltage of Example 2 was 71 V, and the voltage of Comparative Example 2 not covering the gold layer was 71 V, which was the same. In the case of the above-mentioned limit terminal voltage, the estimated short circuit current 180 of the used circuit
It was possible to greatly limit A to 1.5 A, which is about 1/10 or less of both elements. Next, the cycle of soaking these devices in liquid nitrogen for 12 hours a day and leaving them in the air for the next 12 hours is repeated for 6 months, and the limit terminal voltage is measured every month during the cycle. Then, the change with time was investigated. The results are shown in Figure 2. FIG. 2 is a characteristic diagram comparing the present invention with a conventional example and showing a change with time of the limit terminal voltage, in which 3 is the characteristic of Example 2 and 4 is the characteristic of Comparative Example 2. It can be seen from FIG. 2 that the conventional one having the stabilizing film containing only silver dropped to about 70% of the initial limit terminal voltage after 6 months. On the other hand, in Example 2, the value of the limit inter-terminal voltage was almost constant even after 6 months. This has revealed the stability of the current limiting conductor of another embodiment of the present invention over time.

【0014】この発明に係わる膜状の限流導体形成方法
では、いわゆる物理蒸着法、化学気相蒸着法、および電
気泳動を利用した電着法などを用い、酸化物超電導膜を
形成した後に銀層を形成し、その上から金層を形成して
積層構造とする。ところで、この発明に係わる基材とし
ては、Al23、SiO2、MgO、SrTiO3、Zr
2、Y23などのセラミックや単結晶、金、銀、ステ
ンレス、銅、ニッケルなどの金属およびそれらの合金な
どを使用することができる。この発明では、超電導膜形
成後にその上に任意の厚さの銀層および金層を積層する
必要があるが、この方法としては実施例に示したよう
に、超電導膜を成膜する場合と同一の手法を用いるのが
最適である。しかし、この発明では必ずしもこの限りで
なく、超電導層を形成した手法と異なる成膜手法によっ
て積層してもよい。超電導膜、銀層および金層の厚さも
限定するものではなく、任意に選定できる。実験によれ
ば、超電導膜は厚さが概ね1000〜8000Åが適当
であり、銀層および金層は100〜1000Åが適当で
ある。
In the method of forming a film-shaped current limiting conductor according to the present invention, so-called physical vapor deposition method, chemical vapor deposition method, electrodeposition method utilizing electrophoresis, etc. are used, and after forming an oxide superconducting film, silver is formed. A layer is formed, and a gold layer is formed on the layer to form a laminated structure. By the way, as the base material according to the present invention, Al 2 O 3 , SiO 2 , MgO, SrTiO 3 and Zr are used.
Ceramics such as O 2 and Y 2 O 3 and single crystals, metals such as gold, silver, stainless steel, copper and nickel and alloys thereof can be used. In the present invention, after forming the superconducting film, it is necessary to stack a silver layer and a gold layer of arbitrary thickness thereon, but this method is the same as the case of forming the superconducting film as shown in the examples. It is optimal to use the method of. However, the present invention is not limited to this, and the layers may be stacked by a film forming method different from the method of forming the superconducting layer. The thicknesses of the superconducting film, silver layer and gold layer are not limited and can be arbitrarily selected. According to experiments, a suitable thickness of the superconducting film is about 1000 to 8000Å, and a suitable thickness of the silver layer and the gold layer is 100 to 1000Å.

【0015】この発明で基材へ酸化物超電導膜を形成す
る際には、一般に酸素ガスを導入して成膜を行う。その
酸素ガス圧としては、用いる手法によって大きく異なる
ため、任意の値を用いてよい。例えばCVD法では、一
般にガス圧を高く取る必要があり、スパッタ法や蒸着法
ではガス圧は低い(真空度が高い)のが普通である。
When the oxide superconducting film is formed on the substrate in the present invention, oxygen gas is generally introduced to form the film. An arbitrary value may be used as the oxygen gas pressure because it greatly differs depending on the method used. For example, in the CVD method, it is generally necessary to have a high gas pressure, and in the sputtering method and the vapor deposition method, the gas pressure is usually low (the degree of vacuum is high).

【0016】この発明の酸化物超電導体限流導体を形成
した後に、電極端子となる金属被覆を形成する方法とし
ては、気相成膜法、無電解メッキ法、電解メッキ法又は
圧着法いずれを用いてもよい。電極端子としては、銀お
よび金が好ましい。
As a method of forming a metal coating to be an electrode terminal after forming the oxide superconductor current-limiting conductor of the present invention, any one of a vapor phase film forming method, an electroless plating method, an electrolytic plating method and a pressure bonding method can be used. You may use. Silver and gold are preferable for the electrode terminals.

【0017】ところで、実施例では酸化物系超電導材料
の一例としてY系材料を用いたが、この発明の効果はY
系に限らずBi系、Tl系、Nd系等のいずれの酸化物
超電導材料においても発現することを実施例と同様の検
討によって確認した。また、上記実施例では限流導体を
限流素子に用いる場合について説明したが、これに限る
ものではなく、例えば通常の電流を通電する導体として
用いた場合には、通電時の抵抗をほとんどゼロにするこ
とができるので、電力ロスがなくしかも過大電流が流れ
たときにはこれを限流することができることは言うまで
もない。
By the way, in the embodiment, the Y-based material is used as an example of the oxide-based superconducting material, but the effect of the present invention is Y.
It was confirmed by the same examination as in the example that it is not limited to the system but is expressed in any oxide superconducting material such as Bi type, Tl type, Nd type and the like. Further, in the above embodiment, the case where the current limiting conductor is used for the current limiting element has been described, but the present invention is not limited to this. It goes without saying that there is no power loss and the current can be limited when an excessive current flows.

【0018】[0018]

【発明の効果】この発明は、以上説明したように、基
材、この基材に設けた酸化物超電導膜、この酸化物超電
導膜に設けた銀層およびこの銀層に設けた金層を備えた
ものを用いることにより、限流効果が大きく、特に、よ
り長期間にわたって安定化性能の経時的な低下の防止さ
れた酸化物超電導限流導体を得ることができる。
As described above, the present invention comprises a substrate, an oxide superconducting film provided on the substrate, a silver layer provided on the oxide superconducting film, and a gold layer provided on the silver layer. By using such a material, it is possible to obtain an oxide superconducting current limiting conductor having a large current limiting effect, and in particular, a deterioration of the stabilizing performance with time is prevented for a longer period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明と従来例を比較する、限界端子間電圧
の経時変化を示す特性図である。
FIG. 1 is a characteristic diagram showing a change with time of a limit terminal voltage when comparing the present invention with a conventional example.

【図2】この発明と従来例を比較する、限界端子間電圧
の経時変化を示す特性図である。
FIG. 2 is a characteristic diagram showing a change with time of a limit terminal voltage when comparing the present invention with a conventional example.

【符号の説明】[Explanation of symbols]

1 実施例1の特性 2 比較例1の特性 3 実施例2の特性 4 比較例2の特性 1 Characteristics of Example 1 2 Characteristics of Comparative Example 1 3 Characteristics of Example 2 4 Characteristics of Comparative Example 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 貞次郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 林 龍也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Sadajiro Mori 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Institute (72) Inventor Tatsuya Hayashi 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材、この基材に設けた酸化物超電導
膜、この酸化物超電導膜に設けた銀層およびこの銀層に
設けた金層を備えた酸化物超電導限流導体。
1. An oxide superconducting current limiting conductor comprising a substrate, an oxide superconducting film provided on the substrate, a silver layer provided on the oxide superconducting film, and a gold layer provided on the silver layer.
JP4050474A 1992-03-09 1992-03-09 Oxide superconductive current limiting conductor Pending JPH05251762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4050474A JPH05251762A (en) 1992-03-09 1992-03-09 Oxide superconductive current limiting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4050474A JPH05251762A (en) 1992-03-09 1992-03-09 Oxide superconductive current limiting conductor

Publications (1)

Publication Number Publication Date
JPH05251762A true JPH05251762A (en) 1993-09-28

Family

ID=12859897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4050474A Pending JPH05251762A (en) 1992-03-09 1992-03-09 Oxide superconductive current limiting conductor

Country Status (1)

Country Link
JP (1) JPH05251762A (en)

Similar Documents

Publication Publication Date Title
RU2126568C1 (en) Device limiting electric current
JP2001527298A (en) Superconductor with superconducting material having high critical temperature, method of manufacturing the same, and current limiting device with the superconductor
US5266558A (en) Superconducting circuit elements with metallic substrate and method for manufacturing the same
US8470744B2 (en) High temperature superconductor, in particular improved coated conductor
JP4112884B2 (en) Superconducting material
JP2005044636A (en) Superconductive wire rod
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
JP5675232B2 (en) Superconducting current lead
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JPH0883932A (en) Current limiting element
JPH05251762A (en) Oxide superconductive current limiting conductor
JPH05251761A (en) Current limiting conductor using oxide superconductive film
JPH05251758A (en) Manufacture of oxide superconductive current limiting conductor
JPH05251759A (en) Oxide superconductive current limiting conductor
JPH05251760A (en) Oxide superconductive current limiting conductor
JP2002217460A (en) Superconducting component, dielectric resonator, and method of manufacturing the superconducting component
JP5764421B2 (en) Oxide superconducting conductor
JPH05251763A (en) Manufacture of oxide superconductive current limiting conductor
JP3155558B2 (en) Oxide superconducting wire
JP2721322B2 (en) Oxide superconducting compact
JP2774531B2 (en) Superconductor device
JP2003173718A (en) Low resistance compound conductor and its manufacturing method
JP2515930B2 (en) Superconducting element
JPH0446098A (en) Superconducting member
JPH0831623B2 (en) Superconducting joining device