JPH05251758A - Manufacture of oxide superconductive current limiting conductor - Google Patents

Manufacture of oxide superconductive current limiting conductor

Info

Publication number
JPH05251758A
JPH05251758A JP4046826A JP4682692A JPH05251758A JP H05251758 A JPH05251758 A JP H05251758A JP 4046826 A JP4046826 A JP 4046826A JP 4682692 A JP4682692 A JP 4682692A JP H05251758 A JPH05251758 A JP H05251758A
Authority
JP
Japan
Prior art keywords
current limiting
film
oxide superconducting
oxide
oxide superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4046826A
Other languages
Japanese (ja)
Inventor
Hidefusa Uchikawa
英興 内川
Shigeru Matsuno
繁 松野
Shinichi Kinouchi
伸一 木ノ内
Sadajiro Mori
貞次郎 森
Tatsuya Hayashi
龍也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4046826A priority Critical patent/JPH05251758A/en
Publication of JPH05251758A publication Critical patent/JPH05251758A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To get the manufacture of an oxide superconductive current limiting conductor the current limiting effect of which is large and in which the voltage between limit terminals is 100V and over. CONSTITUTION:A Y (YB2Cu3O7-x) oxide superconductive film is made on a base material by electron beam deposition method by introducing oxygen gas. After film formation, the introduction of the oxygen gas is interrupted, and then heat treatment is performed for 30 min. at 300 deg.C in vacuum environment 1.8X10<->Torr in gas pressure. Then, it is covered with silver by deposition in the same atmosphere so as to get an oxide superconductive current limiting conductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物超電導体を用
いて電流を通電する導体および例えば短絡電流などの過
大電流を限流することの可能な限流素子などに用いる高
性能な限流導体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance current limiting device for use in a conductor that conducts a current using an oxide superconductor and a current limiting device capable of limiting an excessive current such as a short-circuit current. The present invention relates to a method for manufacturing a conductor.

【0002】[0002]

【従来の技術】超電導体は、臨界温度、臨界電流、臨界
磁界のうちいずれかひとつがその値を越えると超電導状
態が破壊され、常電導状態となって電気抵抗が発生、増
大する。この現象を利用して過大電流を限流する超電導
限流導体(素子)に関する研究開発が近年盛んになって
いる。この分野全般の技術に関しては、例えば刊行物
{電気学会論文誌B、110巻、9号、705ページ
(平成2年)}に記載されている。これらの中で、酸化
物超電導体を利用した超電導限流導体が最近注目されて
いる。これに用いる素子の構造は、棒状又は板状の超電
導体に蒸着やペーストなどを用いて、超電導体の一部に
銀、金、インジウム等の金属を付着させることによって
一対の電極を形成した簡単なものである。代表例として
は、刊行物{Advances in Superco
nductivity,691ページ(1988)}に
示されたものがある。これはY−Ba−Cu系の酸化物
超電導粉末の焼結体を用い、ドクターブレード法によっ
てジグザグ状(ミアンダ構造)のシートを形成し、臨界
電流を越える電流が流れた場合の常電導状態における高
抵抗化を利用して限流するものである。しかし、このよ
うな焼結体(線状、棒状、板状のもの)では一般に臨界
電流を高くすることができないため、短絡電流を限流で
きる割合が小さいという欠点があった。
2. Description of the Related Art In a superconductor, when any one of the critical temperature, the critical current, and the critical magnetic field exceeds the value, the superconducting state is destroyed, and the superconducting state is established and the electric resistance is increased. In recent years, research and development on superconducting current limiting conductors (elements) that utilize this phenomenon to limit an excessive current have become active. The technology of this entire field is described in, for example, a publication {Journal of the Institute of Electrical Engineers of Japan, Volume 110, No. 9, p. 705 (1990)}. Among these, superconducting current limiting conductors utilizing oxide superconductors have recently received attention. The structure of the element used for this is a simple structure in which a pair of electrodes are formed by depositing a metal such as silver, gold or indium on a part of the superconductor by using vapor deposition or paste on the rod-shaped or plate-shaped superconductor. It is something. As a typical example, a publication {Advances in Superco
nductivity, page 691 (1988)}. This uses a sintered body of Y-Ba-Cu-based oxide superconducting powder to form a zigzag-like (meaner structure) sheet by the doctor blade method, in a normal conducting state when a current exceeding a critical current flows. The current is limited by utilizing the high resistance. However, such a sintered body (one having a linear shape, a rod shape, or a plate shape) generally has a drawback that the critical current cannot be increased, and thus the short-circuit current can be limited only in a small proportion.

【0003】そこで、基材上に形成された膜状の超電導
体を応用した限流導体が考えられている。成膜技術の進
歩によって、酸化物超電導薄膜において最近非常に大き
な臨界電流を流せるものが得られるようになった。また
膜状のものは線状など前記のものと比較して冷却特性が
良好であり、しかも高抵抗にし易いことなどの限流導体
としての利点もある。ただし、酸化物超電導薄膜を用い
たものでは、膜厚を厚くすると組成ずれを起こしやすい
ことおよび大面積に形成すると組成が不均質になること
などのために、厚く大面積にわたって大きな臨界電流を
もつものを得ることが困難であるという大きな欠点を生
じることが避けられなかった。特に、比較的大面積に成
膜した場合に組成等膜質の不均質性が生じることは、現
状の超電導薄膜作製技術では不可避の課題であり、この
ために通電時に弱い部分が熔断してしまい、限流導体の
限界端子間電圧(熔断するまでの投入パワー又は回路電
圧と等価)を高くすることができなかった。
Therefore, a current limiting conductor to which a film-shaped superconductor formed on a substrate is applied has been considered. Due to the progress of film forming technology, it has recently become possible to obtain an oxide superconducting thin film capable of passing a very large critical current. Further, the film-shaped one has advantages as a current limiting conductor such that it has a better cooling characteristic than the above-mentioned one such as a linear one, and can easily have a high resistance. However, the oxide superconducting thin film has a large critical current over a large area because the composition shift tends to occur when the film thickness is increased and the composition becomes inhomogeneous when formed in a large area. It was unavoidable to give rise to the major drawback of difficulty in obtaining things. In particular, the occurrence of inhomogeneity in film quality such as composition when a film is formed on a relatively large area is an unavoidable problem in the current superconducting thin film manufacturing technology, and therefore a weak portion is melted during energization, It was not possible to increase the limit terminal voltage of the current limiting conductor (equivalent to the input power or circuit voltage until the fuse is cut).

【0004】[0004]

【発明が解決しようとする課題】上記欠点を解消するた
め、素子部の超電導膜上に蒸着等の手法により金属の薄
膜を被覆して、一種の熱的、電気的な安定化を行うこと
が考えられる。このような技術は、例えば刊行物{日本
物理学会編、超電導、276頁、昭和54年(丸善株式
会社)}等に記載されているような従来技術から容易に
考え得るものである。本発明者らは、このような従来技
術の応用による安定化によって限界端子間電圧を数十V
まで高めることが可能であることを見いだした。しか
し、実用レベルとしては不十分で、少なくとも100V
以上の電圧に耐えることが必要であり、限流導体の安定
化性能をさらに高めることが望まれている。
In order to solve the above-mentioned drawbacks, a kind of thermal and electrical stabilization may be performed by coating a metal thin film on the superconducting film of the element portion by a method such as vapor deposition. Conceivable. Such a technique can be easily conceived from the conventional technique described in, for example, a publication {edited by the Physical Society of Japan, Superconductivity, p. 276, 1979 (Maruzen Co., Ltd.)}. The inventors of the present invention have made the limit terminal voltage several tens of V by the stabilization by applying such a conventional technique.
I found that it is possible to raise up to. However, it is insufficient as a practical level, and at least 100V
It is necessary to withstand the above voltage, and it is desired to further improve the stabilizing performance of the current limiting conductor.

【0005】この発明は、かかる課題を解決するために
なされたもので、限流効果が大きく、しかも限界端子間
電圧が100V以上である酸化物超電導限流導体の製造
方法を得ることを目的とするものである。
The present invention has been made to solve the above problems, and an object thereof is to obtain a method for manufacturing an oxide superconducting current limiting conductor having a large current limiting effect and a limit terminal voltage of 100 V or more. To do.

【0006】[0006]

【課題を解決するための手段】この発明の酸化物超電導
限流導体の製造方法は、酸化物超電導膜を形成して後、
上記酸化物超電導膜を真空雰囲気中で熱処理し、上記酸
化物超電導膜に銀被覆を施す方法である。
The method for producing an oxide superconducting current limiting conductor according to the present invention comprises the steps of forming an oxide superconducting film,
In this method, the oxide superconducting film is heat-treated in a vacuum atmosphere to coat the oxide superconducting film with silver.

【0007】[0007]

【作用】この発明において、酸化物超電導膜を形成後に
真空熱処理を行ってから銀被覆を形成すると、超電導膜
と銀被覆との界面におけるなじみが良好となり、超電導
膜の発熱時の熱はけが良くなって、安定化特性が向上す
る。
In the present invention, when the silver coating is formed after vacuum heat treatment after forming the oxide superconducting film, the conformability at the interface between the superconducting film and the silver coating becomes good, and the heat dissipation of the superconducting film during heat generation is good. Therefore, the stabilization characteristics are improved.

【0008】[0008]

【実施例】実施例1.幅5mm×長さ20mmの矩形状
MgO基板を基材として用い、次いで各成分の金属を出
発原料とし、電子ビーム蒸着法によってY系(YBa2
Cu37-X)酸化物超電導膜の形成を行った。この際
に、酸素ガスを導入してガス圧を1.5×10-4Tor
rに調整し、成膜後この雰囲気中において一旦300℃
まで徐冷し、酸素ガスの導入を遮断した後、ガス圧1.
8×10-6Torrの真空雰囲気中300℃で30分熱
処理を行った。その後、同一の雰囲気において銀を蒸着
によって被覆しこの発明の一実施例による酸化物超電導
限流導体を得た。次いで、超電導膜の中央部を絶縁テー
プで被覆し、両端部に無電界で金メッキを施して端子部
とし、これにリード線を取り付けて酸化物超電導限流素
子を試作した。超電導膜の臨界温度は86K、厚さは
0.6μm、銀被覆の厚さは約0.3μmであった。
EXAMPLES Example 1. A rectangular MgO substrate having a width of 5 mm and a length of 20 mm is used as a base material, and then each component metal is used as a starting material, and a Y-based (YBa 2
Cu 3 O 7-X) was formed of the oxide superconductor film. At this time, oxygen gas was introduced to adjust the gas pressure to 1.5 × 10 −4 Tor.
adjusted to r, and after film formation, once in this atmosphere, 300 ° C.
After gradually cooling to 0 and cutting off the introduction of oxygen gas, the gas pressure is 1.
Heat treatment was performed at 300 ° C. for 30 minutes in a vacuum atmosphere of 8 × 10 −6 Torr. Then, silver was vapor-deposited in the same atmosphere to obtain an oxide superconducting current limiting conductor according to an example of the present invention. Next, a central portion of the superconducting film was covered with an insulating tape, and both ends were gold-plated with no electric field to form terminal portions, and lead wires were attached to the terminals to fabricate an oxide superconducting current limiting device. The critical temperature of the superconducting film was 86 K, the thickness was 0.6 μm, and the thickness of the silver coating was about 0.3 μm.

【0009】比較例1.実施例1において、銀被覆を行
わず成膜後室温まで徐冷する他は、実施例1と同様にし
て酸化物超電導限流素子を製造した。その超電導体の臨
界温度は86Kで、実施例1と同じであった。
Comparative Example 1. An oxide superconducting current limiting element was manufactured in the same manner as in Example 1, except that the silver coating was not performed in Example 1 and the film was slowly cooled to room temperature. The critical temperature of the superconductor was 86 K, which was the same as in Example 1.

【0010】比較例2.実施例1において、真空中で熱
処理を行わない他は、実施例1と同様にして酸化物超電
導限流素子を製造した。その超電導体の臨界温度は86
Kで、実施例1と同じであった。
Comparative Example 2. An oxide superconducting current limiting element was manufactured in the same manner as in Example 1 except that the heat treatment was not performed in vacuum. The critical temperature of the superconductor is 86
K, the same as in Example 1.

【0011】上記実施例1、比較例1および比較例2の
限流素子について、それぞれ液体窒素中に入れて冷却
し、交流回路(周波数50Hz)を用い、素子にかかる
端子間電圧を変化させて、素子が熔断するまでの限界端
子間電圧を調査した。その結果、実施例1で製造方法し
たものは105V、比較例2の真空熱処理を施さずに単
に蒸着によって銀被覆を施した従来法によるものは68
V、比較例1の全く被覆なしの従来法によるものは8V
であった。すなわち、従来法によるものはいずれも超電
導膜が不均質であり、通電時に弱い部分が熱によって熔
断するために、高い端子間電圧を印加できなかったもの
と考えられる。これに対して、この発明の一実施例によ
れば、超電導膜が不均質であっても素子の安定化性能が
向上したため、熔断する電圧が100Vを越える限流導
体を製造可能であることが明らかになった。さらに、こ
の発明の一実施例による限流導体では、上記の限界端子
間電圧105Vの場合に、使用回路の推定短絡電流35
0Aをその約1/15である24Aに大きく限流するこ
とができた。
Each of the current limiting devices of Example 1, Comparative Example 1 and Comparative Example 2 was placed in liquid nitrogen and cooled, and an AC circuit (frequency of 50 Hz) was used to change the terminal voltage applied to the devices. , The limit voltage between terminals until the element was blown was investigated. As a result, the manufacturing method of Example 1 is 105 V, and the conventional method of Comparative Example 2 in which the silver coating is simply applied by vapor deposition without vacuum heat treatment is 68.
V, 8 V for the conventional method of Comparative Example 1 without any coating
Met. That is, it is considered that the conventional method cannot apply a high terminal voltage because the superconducting film is inhomogeneous and the weak portion is melted by heat during energization. On the other hand, according to one embodiment of the present invention, even if the superconducting film is inhomogeneous, the stabilization performance of the element is improved, so that it is possible to manufacture a current limiting conductor having a melting voltage of more than 100V. It was revealed. Further, in the current limiting conductor according to the embodiment of the present invention, the estimated short circuit current 35 of the used circuit is 35 in the case of the above limit terminal voltage of 105V.
It was possible to greatly limit 0A to 24A which is about 1/15 of that.

【0012】実施例2.実施例1と同一の矩形状MgO
基板を基材として用いた。スパッタ法によってYBa2
Cu37-X系酸化物超電導膜の形成を行った。この際
に、酸素ガスを導入してガス圧を1.1×10-4Tor
rに調整し、成膜後この雰囲気中において一旦200℃
まで徐冷し、酸素ガスの導入を遮断した後、ガス圧1.
8×10-6Torrの真空雰囲気中200℃で30分熱
処理を行った。その後、同一の雰囲気において銀をスパ
ッタによって被覆してこの発明の他の実施例による酸化
物超電導限流導体を得た。次いで、超電導膜の両端部に
無電界で金メッキを施して端子部とし、これにリード線
を取り付けて酸化物超電導限流素子を試作した。超電導
膜の臨界温度は87K、厚さは0.5μm、銀被覆の厚
さは約0.3μmであった。
Example 2. Same rectangular MgO as in Example 1
The substrate was used as the base material. YBa 2 by sputtering method
It was formed Cu 3 O 7-X-based oxide superconducting film. At this time, oxygen gas was introduced to adjust the gas pressure to 1.1 × 10 −4 Tor.
After adjusting the temperature to r, after film formation, once in this atmosphere, 200 ° C.
After gradually cooling to 0 and cutting off the introduction of oxygen gas, the gas pressure is 1.
Heat treatment was performed at 200 ° C. for 30 minutes in a vacuum atmosphere of 8 × 10 −6 Torr. Then, silver was coated by sputtering in the same atmosphere to obtain an oxide superconducting current limiting conductor according to another embodiment of the present invention. Then, gold oxide was applied to both ends of the superconducting film without electric field to form terminals, and lead wires were attached to the terminals to fabricate an oxide superconducting current limiting device. The critical temperature of the superconducting film was 87K, the thickness was 0.5 μm, and the thickness of the silver coating was about 0.3 μm.

【0013】比較例3.実施例2において、銀被覆を行
わず成膜後室温まで徐冷する他は、実施例2と同様にし
て酸化物超電導限流素子を製造した。その超電導体の臨
界温度は87Kで、実施例2と同じであった。
Comparative Example 3. An oxide superconducting current limiting device was manufactured in the same manner as in Example 2, except that the silver coating was not performed in Example 2 and the film was formed and then gradually cooled to room temperature. The critical temperature of the superconductor was 87 K, which was the same as in Example 2.

【0014】比較例4.実施例2において、真空中で熱
処理を行わない他は、実施例2と同様にして酸化物超電
導限流素子を製造した。その超電導体の臨界温度は87
Kで、実施例2と同じであった。
Comparative Example 4. An oxide superconducting current limiting device was manufactured in the same manner as in Example 2 except that heat treatment was not performed in vacuum. The critical temperature of the superconductor is 87
K, the same as in Example 2.

【0015】上記実施例2、比較例3および比較例4の
限流素子について、それぞれ液体窒素中に入れて冷却
し、交流回路(周波数50Hz)を用い、上記素子にか
かる端子間電圧を変化させて、素子が熔断するまでの限
界端子間電圧を調査した。その結果、実施例1で製造し
たものは116V、比較例4の真空熱処理を施さずに単
にスパッタによって銀被覆を施した従来法によるものは
66V、比較例3の全く被覆なしの従来法によるものは
7Vであった。すなわち、従来法によるものはいずれも
超電導膜が不均質であり、通電時に弱い部分が熱によっ
て熔断するために、高い端子間電圧を印加できなかった
ものと考えられる。これに対して、この発明の他の実施
例によれば、超電導膜が不均質であっても素子の安定化
性能が向上したため、熔断するのが100Vを越える限
流導体を製造可能であることが明らかになった。さら
に、実施例2の限流導体では、上記の限界端子間電圧1
16Vの場合に、使用回路の推定短絡電流360Aをそ
の約1/12である30Aに大きく限流することができ
た。
The current limiting devices of Example 2, Comparative Example 3 and Comparative Example 4 were each placed in liquid nitrogen for cooling, and an AC circuit (frequency of 50 Hz) was used to change the terminal voltage applied to the devices. Then, the limit voltage between terminals before the element was blown was investigated. As a result, the one manufactured in Example 1 was 116 V, the conventional method in which the silver coating was simply applied by sputtering without performing the vacuum heat treatment in Comparative Example 4 was 66 V, and the conventional method in Comparative Example 3 in which no coating was applied. Was 7V. That is, it is considered that the conventional method cannot apply a high terminal voltage because the superconducting film is inhomogeneous and the weak portion is melted by heat during energization. On the other hand, according to another embodiment of the present invention, even if the superconducting film is inhomogeneous, the stability performance of the device is improved, and therefore, it is possible to manufacture a current limiting conductor which is to be blown over 100 V Became clear. Furthermore, in the current limiting conductor of Example 2, the above-mentioned limit terminal voltage 1
In the case of 16V, the estimated short circuit current 360A of the used circuit could be greatly limited to 30A which is about 1/12 of the estimated short circuit current.

【0016】ところで、この発明に用いる基材として
は、Al23、SiO2、MgO、SrTiO3、ZrO
2、Y23などのセラミックや単結晶、金、銀、ステン
レス、銅、ニッケルなどの金属およびそれらの合金など
を使用することができる。
By the way, as the base material used in the present invention, Al 2 O 3 , SiO 2 , MgO, SrTiO 3 and ZrO are used.
2 , ceramics such as Y 2 O 3 and single crystals, metals such as gold, silver, stainless steel, copper and nickel and alloys thereof can be used.

【0017】この発明では、超電導膜形成後に任意の真
空雰囲気中で熱処理を行い、任意の厚さの銀被覆を形成
する必要があるが、この方法としては実施例に示したよ
うに、超電導膜を成膜する場合と同一の手法を用いるの
が最適である。しかし、この発明では必ずしもこの限り
でなく、超電導膜を形成した手法と異なる成膜手法によ
って銀の被覆層を形成してもよい。熱処理温度も限定す
るものではなく、任意に選定できる。真空雰囲気によっ
ても異なるが、概ね200〜600℃で行うのが適当
で、超電導膜表面の酸素がある程度除去されればよい。
According to the present invention, after forming the superconducting film, it is necessary to perform a heat treatment in an arbitrary vacuum atmosphere to form a silver coating having an arbitrary thickness. As this method, as shown in the embodiment, the superconducting film is formed. It is optimum to use the same method as that for forming the film. However, the present invention is not limited to this, and the silver coating layer may be formed by a film forming method different from the method of forming the superconducting film. The heat treatment temperature is not limited and can be arbitrarily selected. Although it depends on the vacuum atmosphere, it is suitable to perform the heating at about 200 to 600 ° C., and it is sufficient that oxygen on the surface of the superconducting film is removed to some extent.

【0018】この発明における超電導膜形成方法では、
いわゆる物理蒸着法、化学気相蒸着法、および電気泳動
を利用した電着法などを用いる。この発明で基材へ酸化
物超電導膜を形成する際には、一般に酸素ガスを導入し
て成膜を行う。その酸素ガス圧としては、用いる手法に
よって大きく異なるため、任意の値を用いてよい。例え
ばCVD法では、一般にガス圧を高く取る必要があり、
スパッタ法や蒸着法ではガス圧は低い(真空度が高い)
のが普通である。
In the superconducting film forming method of the present invention,
A so-called physical vapor deposition method, a chemical vapor deposition method, and an electrodeposition method utilizing electrophoresis are used. When the oxide superconducting film is formed on the substrate in the present invention, oxygen gas is generally introduced to form the film. An arbitrary value may be used as the oxygen gas pressure because it greatly differs depending on the method used. For example, in the CVD method, it is generally necessary to have a high gas pressure,
Gas pressure is low (high vacuum) with sputtering and vapor deposition
Is normal.

【0019】基材上にこの発明による酸化物超電導体限
流導体を形成した後に、電極端子となる金属被覆を形成
する方法としては、気相成膜法、無電解メッキ法、電解
メッキ法もしくは圧着法いずれを用いてもよい。電極端
子としては、銀又は金が好ましい。
As a method of forming a metal coating to serve as an electrode terminal after forming the oxide superconductor current-limiting conductor according to the present invention on a substrate, vapor phase film forming method, electroless plating method, electrolytic plating method or Either crimping method may be used. Silver or gold is preferable for the electrode terminals.

【0020】ところで、実施例では酸化物系超電導材料
の一例としてY系材料を用いたが、この発明の効果はY
系に限らずBi系、Tl系、Nd系等のいずれの酸化物
超電導材料においても発現することを実施例と同様の検
討によって確認した。また、上記実施例では限流導体を
限流素子に用いる場合について説明したが、これに限る
ものではなく、例えば通常の電流を通電する導体として
用いた場合には、通電時の抵抗をほとんどゼロにするこ
とができるので、電力ロスがなくしかも過大電流が流れ
たときにはこれを限流することができることは言うまで
もない。
By the way, in the embodiment, the Y-based material is used as an example of the oxide-based superconducting material, but the effect of the present invention is Y.
It was confirmed by the same examination as in the example that it is not limited to the system but is expressed in any oxide superconducting material such as Bi type, Tl type, Nd type and the like. Further, in the above embodiment, the case where the current limiting conductor is used for the current limiting element has been described, but the present invention is not limited to this. It goes without saying that there is no power loss and the current can be limited when an excessive current flows.

【0021】[0021]

【発明の効果】この発明は、以上説明したように、酸化
物超電導膜を形成して後、上記酸化物超電導膜を真空雰
囲気中で熱処理し、上記酸化物超電導膜に銀被覆を施す
ことにより、限流効果が大きく、限界端子間電圧が10
0V以上である酸化物超電導限流導体の製造方法を得る
ことができる。
As described above, according to the present invention, after the oxide superconducting film is formed, the oxide superconducting film is heat-treated in a vacuum atmosphere, and the oxide superconducting film is coated with silver. , The current limiting effect is large, and the voltage between limit terminals is 10
A method for producing an oxide superconducting current limiting conductor having a voltage of 0 V or higher can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 貞次郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 林 龍也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Sadajiro Mori 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Institute (72) Inventor Tatsuya Hayashi 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導膜を形成して後、上記酸化
物超電導膜を真空雰囲気中で熱処理し、上記酸化物超電
導膜に銀被覆を施す酸化物超電導限流導体の製造方法。
1. A method for producing an oxide superconducting current limiting conductor, wherein after forming an oxide superconducting film, the oxide superconducting film is heat-treated in a vacuum atmosphere to coat the oxide superconducting film with silver.
JP4046826A 1992-03-04 1992-03-04 Manufacture of oxide superconductive current limiting conductor Pending JPH05251758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046826A JPH05251758A (en) 1992-03-04 1992-03-04 Manufacture of oxide superconductive current limiting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046826A JPH05251758A (en) 1992-03-04 1992-03-04 Manufacture of oxide superconductive current limiting conductor

Publications (1)

Publication Number Publication Date
JPH05251758A true JPH05251758A (en) 1993-09-28

Family

ID=12758137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046826A Pending JPH05251758A (en) 1992-03-04 1992-03-04 Manufacture of oxide superconductive current limiting conductor

Country Status (1)

Country Link
JP (1) JPH05251758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634424A1 (en) * 1996-08-26 1998-03-05 Abb Research Ltd Method of manufacturing a current limiter with a high temperature superconductor
US6552415B1 (en) 1998-08-14 2003-04-22 Abb Research Ltd Electrically stabilized thin-film high-temperature superconductor and method for the production thereof
JP2007236108A (en) * 2006-03-01 2007-09-13 Toshiba Corp Superconducting current limiting device and power system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634424A1 (en) * 1996-08-26 1998-03-05 Abb Research Ltd Method of manufacturing a current limiter with a high temperature superconductor
DE19634424C2 (en) * 1996-08-26 1998-07-02 Abb Research Ltd Method of manufacturing a current limiter with a high temperature superconductor
US6177856B1 (en) 1996-08-26 2001-01-23 Abb Research Ltd. Process for producing a current limiter having a high-temperature superconductor, and current limiter
US6476706B1 (en) 1996-08-26 2002-11-05 Abb Research Ltd Current limiter having a high-temperature superconductor
US6552415B1 (en) 1998-08-14 2003-04-22 Abb Research Ltd Electrically stabilized thin-film high-temperature superconductor and method for the production thereof
JP2007236108A (en) * 2006-03-01 2007-09-13 Toshiba Corp Superconducting current limiting device and power system

Similar Documents

Publication Publication Date Title
JP5806302B2 (en) Multifilament superconductor with reduced AC loss and its formation method
US7510641B2 (en) High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors
US7763343B2 (en) Mesh-type stabilizer for filamentary coated superconductors
JPS61206279A (en) Superconductive element
JP2003298129A (en) Superconducting member
JPH05251758A (en) Manufacture of oxide superconductive current limiting conductor
JPS5846198B2 (en) Method for manufacturing oxide superconductor Josephson device
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JPH0883932A (en) Current limiting element
JPH05251763A (en) Manufacture of oxide superconductive current limiting conductor
JPH05251759A (en) Oxide superconductive current limiting conductor
JPH03156809A (en) Application of oxide superconductive conductor
JPH05250932A (en) Oxide superconductive current limiting conductor and its manufacture
JP3565881B2 (en) Stabilizer composite superconductor and method of manufacturing the same
JPH05251761A (en) Current limiting conductor using oxide superconductive film
JP3061634B2 (en) Oxide superconducting tape conductor
JPH05251762A (en) Oxide superconductive current limiting conductor
JP2721322B2 (en) Oxide superconducting compact
JPH05251760A (en) Oxide superconductive current limiting conductor
JP5764421B2 (en) Oxide superconducting conductor
JP2009501414A (en) Improvements in and related to superconducting materials
JPH10316421A (en) Superconductor
JP2003173718A (en) Low resistance compound conductor and its manufacturing method
JPH0446098A (en) Superconducting member