JPH10316421A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH10316421A
JPH10316421A JP9137475A JP13747597A JPH10316421A JP H10316421 A JPH10316421 A JP H10316421A JP 9137475 A JP9137475 A JP 9137475A JP 13747597 A JP13747597 A JP 13747597A JP H10316421 A JPH10316421 A JP H10316421A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
current
bulk
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9137475A
Other languages
Japanese (ja)
Other versions
JP3943652B2 (en
Inventor
Mitsuru Sawamura
充 澤村
Keiichi Kimura
圭一 木村
Hidekazu Tejima
英一 手嶋
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13747597A priority Critical patent/JP3943652B2/en
Publication of JPH10316421A publication Critical patent/JPH10316421A/en
Application granted granted Critical
Publication of JP3943652B2 publication Critical patent/JP3943652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To obtain a bulk material of a structure resistant to electromagnetic force, by forming an electric current passage in a superconducting state of a bulk superconductor inside an oxide-based bulk superconductor out of a nonsuperconductor. SOLUTION: This superconductor is an oxide-based superconductor, in which an electric current passage is formed in a superconducting state inside a bulk superconductor represented by formula I REBa2 Cu3 Ox out of a nonsuperconductor represented by formula II Pry RE'1-y Ba2 Cu3 Ox (RE is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu; RE' is Y, La, Ce, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu). The crystallization starting temperature of the bulk superconductor represented by formula I is the same as or higher than that of the nonsuperconductor represented by formula II. The electric current passage can sufficiently be made long by arranging the nonsuperconductor represented by formula II in the interior of the bulk superconductor represented by formula I so as to provide a meander structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導バルク材料を用
いた、超電導・常電導転移抵抗型限流器や永久電流スイ
ッチ、更には超電導コイルに利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a superconducting / normal-conducting transition resistance type current limiter, a persistent current switch, and a superconducting coil using a superconducting bulk material.

【0002】[0002]

【従来の技術】超電導状態と常電導状態では電気抵抗の
比が無限大近くになり、これをスイッチとして利用する
試みが古くからなされている。超電導・常電導転移抵抗
型限流器は、ある過電流が流れた時、電気抵抗ゼロの超
電導状態から、ある有限な抵抗を有する常電導転移をす
ることを利用し、他のバイパス経路に電流のほとんどを
分流させることによって、送電系統あるいはその末端の
電機機器を保護する装置である。一方、永久電流スイッ
チは超電導体にヒーターを付設しておき、主として熱的
に超電導状態と常電導状態を制御し、スイッチとして利
用するものである。
2. Description of the Related Art In a superconducting state and a normal conducting state, the ratio of electric resistance becomes close to infinity, and attempts to use this as a switch have been made for a long time. The superconducting / normal-conducting transition resistance type current limiter utilizes the fact that, when a certain overcurrent flows, it makes a normal-conducting transition with a certain finite resistance from a superconducting state with zero electric resistance, and the current flows to another bypass path. Is a device that protects the power transmission system or the electrical equipment at the end by diverting most of the power. On the other hand, the permanent current switch has a heater attached to the superconductor, and mainly controls the superconducting state and the normal conducting state thermally, and is used as a switch.

【0003】これらの応用に要求される材料特性は、ス
イッチとしての特性が優れた常電導状態での高い抵抗率
である。本発明で挙げたYBa2Cu3Ox系超電導体も
その1つである酸化物超電導体は常電導状態の電気抵抗
率は一般的に高い。加えて臨界電流密度が高いほど、電
流経路の断面積が小さくて済むため、常電導状態の電気
抵抗を相対的に大きく設計することができる。このよう
に臨界電流密度も高い方が好ましい。特にYBa2Cu3
Ox系超電導体の臨界電流密度は高く、限流器などの応
用には適していると考えられる。Yの位置は他のLa,
Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,Yb,Luからなる群から選ば
れた1種類以上の元素で置換してもよく、以下REBa
2 Cu3xと表記する。
A material property required for these applications is a high resistivity in a normal conduction state, which is excellent in a switch property. An oxide superconductor, one of which is the YBa 2 Cu 3 Ox-based superconductor mentioned in the present invention, generally has a high electric resistivity in a normal conducting state. In addition, the higher the critical current density, the smaller the cross-sectional area of the current path, so that the electric resistance in the normal conducting state can be designed to be relatively large. It is preferable that the critical current density be high as described above. Especially YBa 2 Cu 3
The critical current density of the Ox-based superconductor is high and is considered to be suitable for applications such as a current limiter. The position of Y is other La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu, it may be replaced with one or more elements selected from the group consisting of
It is described as 2 Cu 3 O x .

【0004】このREBa2 Cu3x の製法として
は、QuenchandMeltGrowth法(特許
登録番号01869884、および特開平5−1939
38)で代表されるような溶融法が挙げられる。本製法
を用いることによって、臨界電流密度が高く、比較的大
型の超電導材料を得ることができる。
As a method for producing this REBa 2 Cu 3 O x , a QuenchandMeltGrowth method (Patent Registration No. 01869884, and Japanese Patent Application Laid-Open No. H5-1939)
38). By using this manufacturing method, a relatively large superconducting material having a high critical current density can be obtained.

【0005】しかしながら、この方法で得られる形状が
バルク状であるために、直線的な電流経路を長くとるこ
とに限界がある。従って、常電導状態での電気抵抗を大
きくするために、ジグザグな電流経路(ミアンダ構造)
とし、全体としての電流経路を長くとる方法がとられ
る。従来、ミアンダ構造をつくる場合、切断加工を施
し、製造するため、導体の強度は断面積を狭くするほど
低くなる。また通電によって隣り合う導体間に引力が働
くため場合によっては破壊してしまう可能性もある。こ
のため、ミアンダ構造などでは強度が弱く、壊れやすい
難点があった。特に常電導転移時の熱的衝撃や、大電流
を流すことによる電磁力に耐性のある構造が望まれてい
た。
[0005] However, since the shape obtained by this method is bulky, there is a limit to taking a long straight current path. Therefore, in order to increase the electric resistance in the normal conduction state, a zigzag current path (meander structure)
Then, a method of taking a long current path as a whole is adopted. Conventionally, when a meandering structure is formed, the strength of the conductor is reduced as the cross-sectional area is reduced, since the conductor is cut and manufactured. In addition, there is a possibility that the conductors may be destroyed in some cases because an attractive force acts between adjacent conductors due to energization. For this reason, the meander structure and the like have low strength and are fragile. In particular, a structure that is resistant to thermal shock at the time of transition to normal conduction and electromagnetic force caused by flowing a large current has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は電流経路が長
く、常電導転移時の熱的衝撃や大電流を流すことによる
電磁力に耐性のある構造を有するREBa2Cu3Ox系
バルク材料を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a REBa 2 Cu 3 Ox-based bulk material having a long current path and having a structure resistant to an electromagnetic force caused by flowing a large current and a thermal shock at the time of normal conduction transition. To provide.

【0007】[0007]

【課題を解決するための手段及び実施の形態】本発明は
上記の問題を解決するために、Quench and
Melt Growth法によって作製された材料のよ
うに、配向したREBa2 Cu3x系バルク超電導体
のREの組成を部分的にPrに置換させることによって
その部分の超電導性を失わせしめ超電導電流の電流経路
を形成させ、結果的に電流経路を長くとる手段を講じた
ものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems.
Like a material produced by the Melt Growth method, by partially substituting Pr in the RE composition of the oriented REBa 2 Cu 3 O x -based bulk superconductor, the superconductivity of the portion is lost, and the current of the superconducting current is reduced. In this method, a path is formed, and as a result, means for taking a long current path is taken.

【0008】本発明の第1の特徴は、配向したREBa
2 Cu3x 系バルク超電導体(1)の内部にPry
E' 1-yBa2Cu3x系非超電導体(2)により、バル
ク超電導体(1)の超電導状態での電流経路が形成され
ていることを特徴とする酸化物超電導体である。ここで
REはY,La,Ce,Pr,Nd,Pm,Sm,E
u,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu
からなる群から選ばれた1種類以上の元素をさす。また
RE' はY,La,Ce,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Luからな
る群から選ばれた1種類以上の元素をさす。
A first feature of the present invention is that the oriented REBa
Inside Pr y R of 2 Cu 3 O x type bulk superconductor (1)
An oxide superconductor characterized in that a current path in the superconducting state of the bulk superconductor (1) is formed by the E ′ 1-y Ba 2 Cu 3 O x -based non-superconductor (2). Here, RE is Y, La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
Refers to one or more elements selected from the group consisting of RE ′ is Y, La, Ce, Nd, Pm, Sm, Eu, G
One or more elements selected from the group consisting of d, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

【0009】本発明での非超電導体(2)とは、該バル
ク超電導体(1)が超電導状態となる温度(臨界温度)
またはそれ以上の温度において、非電導状態の材料をさ
す。また本発明での非超電導体(2)により、超電導状
態の電流経路を形成されていることとは、該非超電導状
態である材料(2)で、該バルク超電導体(1)を流れ
る電流経路を制限し、電流経路を長くすることを意味す
る。例えばバルク超電導体(1)の電流経路をミアンダ
構造にする場合には、該非超電導状態である材料(2)
を図1の(11)の部分へ配置することが挙げられる。
また図1のような2次元的なミアンダ構造だけでなく、
電流経路を特開平8−18110のように3次元的なミ
アンダ構造となるように形成されていてもよい。
The non-superconductor (2) in the present invention means a temperature (critical temperature) at which the bulk superconductor (1) enters a superconducting state.
Or a non-conductive material at or above the temperature. The fact that the non-superconductor (2) forms a current path in a superconducting state in the present invention means that the current path flowing through the bulk superconductor (1) in the material (2) in the non-superconducting state is used. Limits and lengthens the current path. For example, when the current path of the bulk superconductor (1) has a meander structure, the material (2) in the non-superconducting state is used.
Is arranged in a portion (11) in FIG.
In addition to the two-dimensional meander structure shown in FIG.
The current path may be formed to have a three-dimensional meander structure as disclosed in Japanese Patent Application Laid-Open No. Hei 8-18110.

【0010】本発明の第2の特徴は、請求項1の超電導
導体において、REBa2 Cu3 Ox系バルク超電導体
(1)の結晶開始温度がPryRE' 1-yBa2Cu3x
非超電導体(2)の結晶開始温度と同じ、もしくは高い
ことを特徴とする超電導導体である。本発明の第3の特
徴は、請求項1もしくは2の超電導導体において、非超
電導体(2)のPrの割合yが0.5以上1.0以下で
あることを特徴とする超電導導体である。本発明の第4
の特徴は、請求項1から3の超電導導体を用いたことを
特徴とする超電導・常電導転移抵抗型限流器である。
According to a second feature of the present invention, in the superconductor according to the first aspect, the crystallization onset temperature of the REBa 2 Cu 3 Ox-based bulk superconductor (1) is Pr y RE ′ 1 -y Ba 2 Cu 3 O x.
A superconducting conductor characterized by being equal to or higher in crystallization temperature of the non-superconductor (2). A third feature of the present invention is the superconductor according to claim 1 or 2, wherein the ratio y of Pr in the non-superconductor (2) is 0.5 or more and 1.0 or less. . Fourth Embodiment of the Present Invention
The feature of the present invention is a superconducting / normal conducting transition resistance type current limiting device using the superconducting conductor according to any one of claims 1 to 3.

【0011】本発明は常電導転移時の熱的衝撃や大電流
を流すことによる電磁力に耐性のある構造をもち、機械
的な破壊に強く安定した限流動作などもを長く維持する
ための超電導導体である。以下、本発明について詳細に
説明する。
The present invention has a structure that is resistant to electromagnetic force caused by the flow of a large current and thermal shock at the time of transition to normal conduction, and is intended to maintain a long-term stable current limiting operation that is resistant to mechanical destruction. It is a superconducting conductor. Hereinafter, the present invention will be described in detail.

【0012】PryRE' 1-yBa2Cu3x系非超電導
体(2)でREBa2 Cu3 Ox系バルク超電導体
(1)に電流経路を形成することを以下に説明する。R
EBa2Cu3Ox系バルク超電導体(1)の電流経路
を形成するための材料は、高い電気抵抗率をもち、かつ
冷却や昇温に対してバルク超電導体(1)と同程度の熱
膨張係数をもつことが望まれる。本発明に用いたPry
RE' 1-yBa2Cu3x非超電導体(2)はバルク超
電導体(1)のREをPrで置換する量に応じて急激に
超電導状態を失い、大きな電気抵抗率を示す。加えて結
晶構造がほとんど同じであることから、この非超電導体
(2)の熱膨張係数はバルク超電導体(1)とほとんど
同じである。この材料を一体形成することで、バルク超
電導体(1)の電流経路を長くとることができ、電流経
路を長くしたことによる、材料強度の低下を非超電導体
(2)で補強することができる。
The formation of a current path in the REBa 2 Cu 3 Ox-based bulk superconductor (1) by the Pr y RE ′ 1-y Ba 2 Cu 3 O x -based non-superconductor (2) will be described below. R
The material for forming the current path of the EBa2Cu3Ox-based bulk superconductor (1) has a high electric resistivity and a thermal expansion coefficient similar to that of the bulk superconductor (1) with respect to cooling and temperature rise. Is desired. Pr y used in the present invention
The RE ′ 1-y Ba 2 Cu 3 O x non-superconductor (2) rapidly loses the superconducting state in accordance with the amount of replacement of RE of the bulk superconductor (1) by Pr, and exhibits a large electric resistivity. In addition, since the crystal structure is almost the same, the thermal expansion coefficient of this non-superconductor (2) is almost the same as that of the bulk superconductor (1). By integrally forming this material, the current path of the bulk superconductor (1) can be lengthened, and the decrease in material strength due to the lengthening of the current path can be reinforced by the non-superconductor (2). .

【0013】また該超電導バルク体(1)を該Pry
E' 1-yBa2Cu3x非超電導体(2)によって電流経
路を形成する場合、(1)および(2)が接する端部部
位の角をできるだけ鋭角にせず、できれば丸くしておく
と好ましい。これは、例えば非超電導体(2)の端部部
位(12)を図2のような角にしないようにし、図3の
ように端部部位の角(13)を丸くし、鋭角とならない
ように配置することをさす。もし超電導バルク体(1)
とPryRE' 1−yBa2Cu3Ox非超電導体
(2)とが接する端部部位の角がある場合、端部部位の
角には図4のように負荷通電電流が角の部分に集中しや
すく、結果としてこの部位で常電導転移を起こしやす
い。しかし、この部位は材料強度が弱くなりやすい部分
でもあることから、常電導転移による発熱で生じる熱応
力、もしくは電流が急激に変化することによる電磁力に
よって超電導バルク体(1)が破壊されてしまうことが
ある。それゆえ、端部部位の角をおとして、丸くするこ
とで、上記の障害を回避することができ、電流経路の制
限としては好ましい。以上が理由である。
[0013] The superconductive bulk body (1) said Pr y R
When a current path is formed by the E ′ 1-y Ba 2 Cu 3 O x non-superconductor (2), the corners of the end portions where (1) and (2) are in contact with each other should not be as sharp as possible and should be as round as possible. Is preferred. This is done, for example, by making the end portion (12) of the non-superconductor (2) not to have a corner as shown in FIG. 2 and by making the corner (13) of the end portion round as shown in FIG. To be placed in If superconducting bulk (1)
If there is a corner at the end portion where the PRE and the PRYRE '1-yBa2Cu3Ox non-superconductor (2) are in contact, the load carrying current tends to concentrate on the corner portion as shown in FIG. Normal conduction transition is likely to occur at this site. However, since this portion is also a portion where the material strength is apt to be weakened, the superconducting bulk body (1) is destroyed by thermal stress generated by heat generation due to normal conduction transition or electromagnetic force due to a sudden change in current. Sometimes. Therefore, the above-described obstacle can be avoided by rounding the corners of the end portion, which is preferable as a limitation on the current path. That is the reason.

【0014】次にREBa2 Cu3x 系バルク超電導
体(1)の結晶開始温度がPryRE' 1-yBa2Cu3
x非超電導体(2)の結晶開始温度と同じ、もしくは高
いことについて説明する。REBa2 Cu3x 系バル
ク超電導体(1)の結晶開始温度とは、REBa2 Cu
3x 系バルク超電導体を高温から徐々に温度を下げて
いった場合にREBa2 Cu3x の析出が開始する温
度を指す。つまり、高温時では、RE2BaCuO5相
とBa−Cu−Oを主成分とした液相の共存する半溶融
の状態となるが、徐冷することでREBa2 Cu3x
相の析出が、ある温度から開始する。結晶開始温度は、
この温度を指す。同様にPryRE' 1−yBa2Cu
3Ox非超電導体(2)の結晶開始温度とは、RE電導
体(1)を高温から徐々に温度を下げていった場合にP
yRE' 1-yBa2Cu3x (2)の析出が開始する温
度を指す。もし、REBa2 Cu3xx系バルク超電
導体(1)の結晶開始温度がPryRE' 1-yBa2Cu3
x非超電導体(2)の結晶開始温度よりも低いと、P
yRE' 1-yBa2Cu3x非超電導体(2)が結晶成
長した後に、REBa2 Cu3x 系バルク超電導体
(1)が結晶成長しはじめる。この場合、REBa2
3x 系バルク超電導体(1)の結晶成長は電流経路
の両側から始まってしまい、中央で両側からの結晶成長
面がぶつかり合う。しかし、この結晶成長面のぶつかり
合う面では、結晶成長時に取り込めなかったRE2Ba
CuO5相が析出したり、粒界が発生することが多く、
電流経路としての役割を果たすREBa2 Cu3x
バルク超電導体(1)にとって、大きな電流を流すには
好ましくない導体となる。しかし逆に、REBa2 Cu
3x 系バルク超電導体(1)の結晶開始温度がPry
RE' 1-yBa2 Cu3x非超電導体(2)の結晶開始
温度よりも高いと、偏析や粒界が発生するのはPry
E' 1-yBa2Cu3x非超電導体(2)であり、大きな
電流を流すには好ましい導体となる。以上が理由であ
る。
Next, the crystallization start temperature of the REBa 2 Cu 3 O x -based bulk superconductor (1) is Pr y RE ′ 1 -y Ba 2 Cu 3 O
The fact that the temperature is the same as or higher than the crystallization start temperature of the non-superconductor (2) will be described. The crystallization onset temperature of the REBa 2 Cu 3 O x -based bulk superconductor (1) is defined as REBa 2 Cu
The temperature at which the precipitation of REBa 2 Cu 3 O x starts when the temperature of the 3 O x -based bulk superconductor is gradually lowered from a high temperature. That is, in the high temperature, but becomes a semi-molten state of coexistence of RE2BaCuO5 phase and Ba-Cu-O was used as a main component liquid phase, REBa 2 Cu 3 O x by slow cooling
Phase precipitation begins at a certain temperature. The crystallization onset temperature is
Refers to this temperature. Similarly, PryRE '1-yBa2Cu
The crystallization start temperature of the 3Ox non-superconductor (2) is defined as P when the temperature of the RE conductor (1) is gradually lowered from a high temperature.
refers to the temperature at which r y RE '1-y Ba 2 Cu 3 precipitation of O x (2) is started. If, REBa 2 Cu 3 O x x based crystal starting temperature of the bulk superconductor (1) is Pr y RE '1-y Ba 2 Cu 3
If the temperature is lower than the crystallization start temperature of the O x non-superconductor (2), P
After r y RE '1-y Ba 2 Cu 3 O x non superconductor (2) is crystal-grown, REBa 2 Cu 3 O x type bulk superconductor (1) begins to crystal growth. In this case, REBa 2 C
Crystal growth of the u 3 O x -based bulk superconductor (1) starts from both sides of the current path, and crystal growth surfaces from both sides collide at the center. However, on the surface where the crystal growth surface meets, RE2Ba that could not be incorporated during crystal growth was used.
CuO5 phase precipitates and grain boundaries often occur,
For the REBa 2 Cu 3 O x -based bulk superconductor (1) that functions as a current path, it becomes an undesirable conductor for flowing a large current. However, conversely, REBa 2 Cu
The crystal onset temperature of the 3 O x -based bulk superconductor (1) is Pr y
When the temperature is higher than the crystallization start temperature of the RE ′ 1-y Ba 2 Cu 3 O x non-superconductor (2), segregation and grain boundaries are caused by Pr y R
E ′ 1-y Ba 2 Cu 3 O x non-superconductor (2), which is a preferable conductor for flowing a large current. That is the reason.

【0015】また、非超電導体(2)のPrの割合yが
0.5以上1.0以下であることについて説明する。P
yRE' 1-yBa2Cu3x非超電導体(2)のyは大
きい方が好ましく、具体的には0.5以上が望ましい。
これは、REBa2Cu3Ox系バルク超電導体(1)が
常電導体となる温度100Kにおいてy=0.5以上の
電気抵抗率がy=0.0に比べて少なくとも5倍以上の
大きな電気抵抗率を有するという理由による。この高い
電気抵抗率によって、PryRE' 1-yBa2Cu3x
超電導体(2)はREBa2 Cu3x 系バルク超電導
体(1)の電流経路を有効に形成することができる。以
上が理由である。
The fact that the ratio y of Pr in the non-superconductor (2) is 0.5 or more and 1.0 or less will be described. P
r y RE '1-y Ba 2 Cu 3 O x non superconductor it is preferably y is large (2), in particular desirably 0.5 or more.
This is because at a temperature of 100 K at which the REBa 2 Cu 3 Ox-based bulk superconductor (1) becomes a normal conductor, the electrical resistivity at y = 0.5 or more is at least 5 times as large as y = 0.0. This is because it has resistivity. Due to this high electric resistivity, the Pr y RE ′ 1-y Ba 2 Cu 3 O x non-superconductor (2) can effectively form a current path of the REBa 2 Cu 3 O x -based bulk superconductor (1). it can. That is the reason.

【0016】最後に超電導・常電導転移抵抗型限流器に
ついて説明する。超電導・常電導転移抵抗型限流器と
は、例えば図6のように、超電導導体部(21)、冷却
部(22)、電流導入部(23)で構成される送電系統
あるいはその末端の電機機器などを保護する装置であ
る。また超電導導体の安定動作のために、一部または全
部電流を迂回させる分流部(24)を備えることも多
い。たとえば、上記超電導導体(1)の表面にスパッタ
法などにより銀コーティングした限流器も、本発明の超
電導・常電導転移抵抗型限流器に含まれる。上記の超電
導導体を超電導導体部(21)に適用することで、高い
電気抵抗をもち、常電導転移時の熱的衝撃や大電流を流
すことによる電磁力に耐性があり、機械的な破壊に強く
安定した限流動作などもを長く維持する限流器を得るこ
とができる。以上が理由である。
Finally, the superconducting / normal conducting transition resistance type current limiting device will be described. The superconducting / normal-conducting transition resistance type current limiting device is, for example, a power transmission system including a superconducting conductor (21), a cooling unit (22), and a current introducing unit (23) as shown in FIG. A device that protects equipment. In addition, in order to stably operate the superconducting conductor, the superconducting conductor is often provided with a shunt part (24) for partially or entirely diverting the current. For example, a current limiting device in which the surface of the superconducting conductor (1) is coated with silver by a sputtering method or the like is also included in the superconducting / normal conducting transition resistance type current limiting device of the present invention. By applying the above-described superconducting conductor to the superconducting conductor portion (21), it has a high electric resistance, is resistant to thermal shock at the time of normal conduction transition and electromagnetic force caused by flowing a large current, and is resistant to mechanical destruction. It is possible to obtain a current limiting device that maintains a strong and stable current limiting operation for a long time. That is the reason.

【0017】[0017]

【実施例】実施例について以下に図にて説明する。まず
以下の実施例におけるQuench and Melt
Growth法について説明する。REBa2 Cu3
Oxの原料粉であるRE23、BaO2、CuO粉体
に、微量な白金粉末を加え、混練する。同様にPry
E' 1-yBa2Cu3xの原料粉であるRE2O3、Ba
O2、CuO粉体に、微量な白金粉末を加え、混練した
粉末を作製し、各実施例におけるようなバターンを形成
した成形体を作製する。これをRE2BaCuO5相(ま
たはPr2yRE' 2-2yBaCuO5 )とBa−Cu−O
を主成分とした液相の共存する半溶融状態まで温度を上
げ、その後結晶成長開始温度の高いRE元素を置換した
RE2BaCuO5を種結晶として、上記成形体にシーデ
ィングをおこない、徐冷させて種結晶から結晶成長させ
る。以上がQuenchand Melt Growt
h法についての説明である。
An embodiment will be described below with reference to the drawings. First, Quench and Melt in the following examples
The Growth method will be described. REBa 2 Cu 3
A small amount of platinum powder is added to RE 2 O 3 , BaO 2 , and CuO powder, which are raw material powders of Ox, and kneaded. Similarly Pr y R
RE2O3, Ba, which is a raw material powder of E ' 1-y Ba 2 Cu 3 O x
A very small amount of platinum powder is added to O2 and CuO powders to produce a kneaded powder, and a molded body having a pattern as in each example is produced. This is combined with the RE 2 BaCuO 5 phase (or Pr 2y RE ′ 2-2y BaCuO 5 ) and Ba—Cu—O
The temperature is raised to a semi-molten state in which a liquid phase containing as a main component coexists, and then seeding is performed on the above compact using RE 2 BaCuO 5 substituted with an RE element having a high crystal growth start temperature as a seed crystal, and then gradually cooled. Then, a crystal is grown from the seed crystal. The above is Quenchand Melt Growth
It is an explanation of the h method.

【0018】(実施例1)PryRE' 1-yBa2Cu3
xのyの変化による電気抵抗率の変化を調べるためPry
RE' 1-yBa2Cu3xバルク超電導体を作製し、電気
抵抗率を4端子法にて調べた。試料は最終的に酸素雰囲
気中で400℃で十分アニールされており、xの値は
6.92である。
(Example 1) Pr y RE ' 1-y Ba 2 Cu 3 O
Pr y to investigate the change in electrical resistivity due to the change in x and y
RE ′ 1-y Ba 2 Cu 3 O x bulk superconductor was prepared, and its electrical resistivity was examined by a four-terminal method. The sample was finally sufficiently annealed at 400 ° C. in an oxygen atmosphere, and the value of x was 6.92.

【0019】表1はそれぞれの置換量(y)に対する臨
界温度(Tc)と100KにおけるYBa2Cu3Oxの
電気比抵抗率を1.0としたときのY1-yBa2Cu3
x体の電気比抵抗率の大きさを示したものである。この
結果よりyの値で0.5以上を置換したPryY1−y
Ba2Cu3Oxバルク超電導体が非超電導体(2)と
して有効な組成であるといえる。
Table 1 shows that the critical temperature (Tc) for each substitution amount (y) and the electric resistivity of YBa 2 Cu 3 Ox at 100 K are 1.0, and Y 1 -y Ba 2 Cu 3 O is used.
It shows the magnitude of the electrical resistivity of the x-body. From these results, PryY1-y substituted for 0.5 or more with the value of y
It can be said that the Ba2Cu3Ox bulk superconductor has an effective composition as the non-superconductor (2).

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)試料の超電導導体として、R
EをYとして仕込み組成でY2BaCuO5が25%分散
したYBa2Cu3Ox系バルク超電導体(1)のなか
に、仕込み組成でPr0.70.3BaCuO5が25%分
散したPr0.70.3Ba2Cu3Ox非超電導体(2)を
図5のように配置した直径60mmの前駆体を作成し、
Quench and Melt Growth法で結
晶成長させた。種結晶をつけた面から深さ2mm分を研
磨して削り落とし、ダイヤモンドカッターにて厚さ5m
m分を切り取った。これを超電導導体とした。両端部に
Agを蒸着し、酸素雰囲気中で400℃で十分アニール
した。その後半田にて電流端子と接続した。これを液体
窒素に浸した状態で通電を繰り返しおこなったが、安定
した通電、限流を確認した。
(Example 2) As a superconducting conductor of a sample, R
E the Some YBa 2 Cu 3 Ox-based bulk superconductor Y 2 BaCuO 5 are dispersed 25% charge composition as Y (1), Pr 0.7 Y 0.3 of Pr 0.7 Y 0.3 BaCuO 5 are dispersed 25% charge composition A precursor having a diameter of 60 mm was prepared by arranging Ba 2 Cu 3 Ox non-superconductor (2) as shown in FIG.
Crystals were grown by the Quench and Melt Growth method. 2 mm depth from the seeded surface is polished and shaved off, and 5 m thick with a diamond cutter
m was cut off. This was used as a superconducting conductor. Ag was deposited on both ends and annealed at 400 ° C. in an oxygen atmosphere. Then, it was connected to the current terminal by soldering. The energization was repeated while this was immersed in liquid nitrogen, and stable energization and current limiting were confirmed.

【0022】(実施例3)試料の超電導導体として、R
EをDyとして仕込み組成でDy2BaCuO5が30
%分散したDyBa2Cu3Ox系バルク超電導体(1)
のなかに、仕込み組成でPr0.60.4BaCuO5が2
5%分散したPr0.60.4Ba2Cu3Ox非超電導体
(2)を図6のように配置した直径60mmの前駆体を
作成し、Quench and Melt Growt
h法で結晶成長させた。種結晶をつけた面から深さ2m
m分を研磨して削り落とし、ダイヤモンドカッターにて
厚さ5mm分を切り取った。これを超電導導体とした。
両端部にAgを蒸着し、酸素雰囲気中で400℃で十分
アニールした。その後半田にて電流端子と接続した。こ
れを液体窒素に浸した状態で通電を繰り返し、さらに昇
温、冷却を繰り返しおこなったが、安定した通電、限流
を確認した。
Example 3 As a sample superconducting conductor, R
E is Dy, and Dy 2 BaCuO5 is 30 in the charged composition.
% Dispersed DyBa 2 Cu 3 Ox-based bulk superconductor (1)
Among them, Pr 0.6 Y 0.4 BaCuO 5 was 2 in the charged composition.
5% dispersed Pr 0.6 Y 0.4 Ba 2 Cu 3 Ox non superconductor (2) to create a precursor of the arrangement and diameter 60mm as shown in FIG. 6, Quench and Melt Growt
The crystal was grown by the h method. 2m deep from the seeded surface
m was polished and shaved off, and a 5 mm-thick portion was cut out with a diamond cutter. This was used as a superconducting conductor.
Ag was deposited on both ends and annealed at 400 ° C. in an oxygen atmosphere. Then, it was connected to the current terminal by soldering. This was repeatedly immersed in liquid nitrogen, and the heating and cooling were repeated. However, stable current supply and current limiting were confirmed.

【0023】(実施例4)図7は本発明の第4の発明に
よる超電導・常電導転移抵抗型限流器の一実施例を示す
断面図である。超電導導体部(21)に実施例3で作製
した超電導導体を適用した。これにより、常電導転移時
にも破壊することなく、安定な限流動作を長く維持する
限流器を得ることができた。
(Embodiment 4) FIG. 7 is a sectional view showing an embodiment of a superconducting / normal conducting transition resistance type current limiting device according to the fourth invention of the present invention. The superconducting conductor produced in Example 3 was applied to the superconducting conductor (21). As a result, it was possible to obtain a current limiting device that maintains a stable current limiting operation for a long time without breaking even at the time of normal conduction transition.

【0024】[0024]

【発明の効果】 本発明により、常電導転移時の熱的衝
撃や大電流を流すことによる電磁力に耐え安定して限流
する効果が得られた。
According to the present invention, it is possible to obtain an effect of stably limiting current withstanding electromagnetic shock caused by flowing a large current or thermal shock at the transition of normal conduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バルク超電導体(1)の電流経路をミアンダ構
造にする場合の例
FIG. 1 shows an example in which a current path of a bulk superconductor (1) has a meander structure.

【図2】非超電導体(2)の端部部位に角をつけた場合
の例
FIG. 2 shows an example in which a corner is formed at an end portion of the non-superconductor (2).

【図3】非超電導体(2)の端部部位を丸くした場合の
FIG. 3 shows an example in which the end portion of the non-superconductor (2) is rounded

【図4】非超電導体(2)の端部部位に角がある場合の
電流経路を示した図
FIG. 4 is a diagram showing a current path when an end portion of a non-superconductor (2) has a corner;

【図5】実施例2に使用した超電導導体の概略図FIG. 5 is a schematic view of a superconducting conductor used in Example 2.

【図6】実施例3に使用した超電導導体の概略図FIG. 6 is a schematic diagram of a superconducting conductor used in Example 3.

【図7】実施例4に使用した超電導・常電導転移抵抗型
限流器の一実施例を示す断面図
FIG. 7 is a sectional view showing one embodiment of a superconducting / normal-conducting transition resistance type current limiting device used in Embodiment 4.

【符号の説明】[Explanation of symbols]

1 REBa2 Cu3x 系バルク超電導体 2 PryRE' 1-yBa2Cu3x系でバルク超電導体 11 非超電導状態である材料(2)を配置する部分 12 角をもつ非超電導体(2)の端部部位 13 丸みをもつ非超電導体(2)の端部部位 21 超電導導体部 22 冷却器 23 電流導入部 24 分流部Non-superconductive with partial 12-point placing 1 REBa 2 Cu 3 O x type bulk superconductor 2 Pr y RE '1-y Ba 2 Cu 3 O x is a bulk superconductor 11 nonsuperconducting state based material (2) End part of body (2) 13 End part of rounded non-superconductor (2) 21 Superconducting conductor part 22 Cooler 23 Current introduction part 24 Shunt part

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 39/20 ZAA H01L 39/20 ZAA // H02H 9/02 ZAA H02H 9/02 ZAAB (72)発明者 森田 充 神奈川県川崎市中原区井田3丁目35番1号 新日本製鐵株式会社技術開発本部内Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01L 39/20 ZAA H01L 39/20 ZAA // H02H 9/02 ZAA H02H 9/02 ZABB (72) Inventor Mitsuru Morita Nakahara-ku, Kawasaki-shi, Kanagawa 3-35-1, Ida Nippon Steel Corporation Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 配向したREBa2 Cu3x 系バルク
超電導体の内部にPryRE' 1-yBa2Cu3x系非超
電導体により、超電導状態で電流経路が形成されている
ことを特徴とする酸化物超電導体。ただしここでREは
Y,La,Ce,Pr,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Luからな
る群から選ばれた1種類以上の元素であり、RE' は
Y,La,Ce,Nd,Pm,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,Yb,Luからなる群か
ら選ばれた1種類以上の元素である。
1. A current path is formed in a superconducting state by a Pr y RE ′ 1-y Ba 2 Cu 3 O x -based non-superconductor in an oriented REBa 2 Cu 3 O x -based bulk superconductor. An oxide superconductor characterized by the above-mentioned. Where RE is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
at least one element selected from the group consisting of d, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and RE ′ is Y, La, Ce, Nd, Pm, Sm, Eu, Gd, T
At least one element selected from the group consisting of b, Dy, Ho, Er, Tm, Yb, and Lu.
【請求項2】 請求項1の超電導導体において、REB
2 Cu3x 系バルク超電導体の結晶開始温度がPr
yRE' 1-yBa2Cu3x非超電導体の結晶開始温度と
同じ、もしくは高いことを特徴とする超電導導体。
2. The superconducting conductor according to claim 1, wherein
The crystal onset temperature of a 2 Cu 3 O x -based bulk superconductor is Pr
y RE ′ 1-y Ba 2 Cu 3 O x A superconductor characterized by having a crystallization start temperature equal to or higher than that of a non-superconductor.
【請求項3】 請求項1もしくは2の超電導導体におい
て、非超電導体のPrの割合yが0.5以上1.0以下
であることを特徴とする超電導導体。
3. The superconducting conductor according to claim 1, wherein the ratio y of Pr in the non-superconducting conductor is 0.5 or more and 1.0 or less.
【請求項4】 請求項1から3の超電導導体を用いたこ
とを特徴とする超電導・常電導転移抵抗型限流器。
4. A superconducting / normal-conducting transition resistance type current limiting device using the superconducting conductor according to claim 1.
JP13747597A 1997-05-13 1997-05-13 Superconducting conductor and superconducting / normal conducting transition resistance type fault current limiter Expired - Fee Related JP3943652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13747597A JP3943652B2 (en) 1997-05-13 1997-05-13 Superconducting conductor and superconducting / normal conducting transition resistance type fault current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13747597A JP3943652B2 (en) 1997-05-13 1997-05-13 Superconducting conductor and superconducting / normal conducting transition resistance type fault current limiter

Publications (2)

Publication Number Publication Date
JPH10316421A true JPH10316421A (en) 1998-12-02
JP3943652B2 JP3943652B2 (en) 2007-07-11

Family

ID=15199493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13747597A Expired - Fee Related JP3943652B2 (en) 1997-05-13 1997-05-13 Superconducting conductor and superconducting / normal conducting transition resistance type fault current limiter

Country Status (1)

Country Link
JP (1) JP3943652B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289953A (en) * 2000-04-03 2001-10-19 Seiko Instruments Inc Superconducting radioactive ray detector
WO2003028120A1 (en) * 2001-09-21 2003-04-03 International Superconductivity Technology Center, The Juridical Foundation Permanent current switch material and production method therefor
JP2006086112A (en) * 2004-07-30 2006-03-30 Nexans Cylindrical superconducting component and resistive current limiter using it
US11101059B2 (en) 2017-03-31 2021-08-24 Tokamak Energy Ltd Quench detection in superconducting magnets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289953A (en) * 2000-04-03 2001-10-19 Seiko Instruments Inc Superconducting radioactive ray detector
WO2003028120A1 (en) * 2001-09-21 2003-04-03 International Superconductivity Technology Center, The Juridical Foundation Permanent current switch material and production method therefor
JP2006086112A (en) * 2004-07-30 2006-03-30 Nexans Cylindrical superconducting component and resistive current limiter using it
US11101059B2 (en) 2017-03-31 2021-08-24 Tokamak Energy Ltd Quench detection in superconducting magnets

Also Published As

Publication number Publication date
JP3943652B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US5828291A (en) Multiple compound conductor current-limiting device
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
US5235309A (en) Resistive current limiter
EP0284062A2 (en) Ceramic oxide superconductive composite material
EP0277749A2 (en) Oxide-superconductor
US6869916B2 (en) Protected superconductor component and process for its production
US6762673B1 (en) Current limiting composite material
JP3943652B2 (en) Superconducting conductor and superconducting / normal conducting transition resistance type fault current limiter
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
JP5675232B2 (en) Superconducting current lead
EP0377566A4 (en) Process embodiments for improving the electrical properties of conductors
KR100275091B1 (en) Electric lead
JP2012064323A (en) Superconductive current lead
JPH03226228A (en) Current limit resistance device
JPH10125966A (en) Oxide superconductor and its manufacture
JP2002289049A (en) Low-resistance conductor and its manufacturing method, and electric member using them
JP2788240B2 (en) Current limiting device
JPH10125146A (en) Oxide superconductor current limiter
CA2177169C (en) Current-limiting device
JP3579708B2 (en) Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device
JP2021054688A (en) Oxide superconductive bulk conductor and electrification element
JP2563391B2 (en) Superconducting power lead
JP2006137619A (en) Superconducting bulk body
JPH1094167A (en) Current-limiting element using oxide superconductor and its manufacture
EP1001473A2 (en) Superconducting system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees