JP3579708B2 - Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device - Google Patents

Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device Download PDF

Info

Publication number
JP3579708B2
JP3579708B2 JP16681193A JP16681193A JP3579708B2 JP 3579708 B2 JP3579708 B2 JP 3579708B2 JP 16681193 A JP16681193 A JP 16681193A JP 16681193 A JP16681193 A JP 16681193A JP 3579708 B2 JP3579708 B2 JP 3579708B2
Authority
JP
Japan
Prior art keywords
magnetic shield
superconducting
superconducting magnetic
limiting device
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16681193A
Other languages
Japanese (ja)
Other versions
JPH0725672A (en
Inventor
利只 大西
勝之 海保
一弘 柁川
聖記 竹林
操 橋本
勝良 宮本
将元 田中
充 森田
英一 手嶋
圭一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP16681193A priority Critical patent/JP3579708B2/en
Publication of JPH0725672A publication Critical patent/JPH0725672A/en
Application granted granted Critical
Publication of JP3579708B2 publication Critical patent/JP3579708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、超電導磁気シールドリアクトル型限流装置用超電導磁気シールド体の製造方法に関するものである。
【0002】
【従来の技術】
網状に接続された電力系統のなかのある一部に事故が発生すると、全域に被害が及ぶ。短絡事故時の電気機器の焼損被害を最小限に抑制するためには、過大電流を局所的に遮断する必要がある。そのための保護手段として限流装置が有効である。限流装置は、事故認識スイッチで過大電流を感知するとすぐに、過大電流を限流部に転流させ、瞬時に消滅させる。定常時の電力損失を最小にするためには、超電導線材の利用が適している。限流装置としては、超電導−常電導転移による高抵抗型、整流器型、三相三巻線リアクトル型、二コイル無誘導接続型、可飽和リアクトル型などが試作または考案されている。
【0003】
このうち、特開平2−105402号公報に開示された誘導電流制限装置は、比較的簡単な構成を有し、小型化できるので、その実用化が強く望まれている。その動作原理は、過飽和リアクトル型を応用したもので、以下に詳細を図1において説明する。限流部は銅巻線製の誘導コイル1、中空形状の超電導磁気シールド体2、高透磁率鉄心3の3つの主要要素からなり、いずれも軸対称な形状で、同軸になるように配置されている。超電導磁気シールド体2は超電導転移温度以下に冷却されている。電力系統5からの通電電流が誘導コイル1を流れるので、誘導コイル1の内部に磁場が発生するが、超電導磁気シールド体2のマイスナー効果により、この誘導磁場は内部の高透磁率鉄心3には侵入しない。そのため通常は誘導コイル1のインダクタンスが低く、限流装置のインピーダンスも小さいため、電力損失が少ない。一方、短絡事故時には、過大電流が誘導コイル1に流れ、超電導磁気シールド体2の最大シールド磁場以上の強磁場が発生し、強磁場は高透磁率鉄心3に侵入し、限流装置のインピーダンスが増加する。そのため、リアクトル効果により電力損失が大きくなり、過大電流は限流される。以上が動作原理である。
【0004】
ここで、事故認識スイッチは、超電導磁気シールド体2であり、限流部と一体となっていることが特徴である。誘導コイル1の巻数を一定とすると、限流装置の最大規格電流値は、超電導磁気シールド体の最大シールド磁束密度で決定される。超電導材料の厚さをa、最大シールド磁束密度をBmax 、臨界電流密度をJc、真空中の透磁率をμとする。MKS単位系では、μは4π×10−7なる定数である。最も簡単な臨界状態モデルでは、
max =μaJc (1)
の関係が成立し、最大シールド磁束密度は、超電導磁気シールド体の厚さと臨界電流密度とで決定される。したがって、限流装置の最大規格電流値は、超電導材料の臨界電流密度に依存する。
【0005】
前記特開平2−105402号公報の手法では、最大シールド磁束密度をマイスナー効果が破れる下部臨界磁場としていた。下部臨界磁場の値は低く、この磁場は充分には高透磁率鉄心3に侵入しないので、すばやい限流効果は期待できない。これとは独立に大西らは、超電導磁気シールドリアクトル型限流装置を考案し、磁気シールド効果が破れる最大シールド磁束密度においてはじめて迅速な限流作用が生じることを見いだし、合金系超電導材料を用いてその動作を確認している。(電気学会全国大会予稿集938頁(1991))
【0006】
しかし、従来の金属系または合金系超電導材料を利用するには、液体ヘリウムを冷媒として冷却する必要があった。液体ヘリウムは液体窒素よりも20倍も高価であり、その取扱いも容易ではなく、その冷却設備が大型化しコスト高を招くという難点があった。そのため、窒素沸点よりも高い臨界温度を有する酸化物超電導体の適用が期待されていた。
【0007】
焼結法で作製された酸化物超電導体は、大傾角の結晶粒界を含む。そのため、粒界が電流通路の妨げとなり、臨界電流密度はまだ実用水準に至っていない。特願昭63−261607号に開示された溶融法(以下ではQMG法という)で作製されたREBaCu系バルク超電導材料は、大傾角粒界を含まず、その臨界電度は高い。しかし、下記の二つの克服すべき問題点があった。
【0008】
第一に、超電導材料の接合の問題である。近年の電力需要の増大により、電気容量は大型化する傾向にある。そのため、臨界電流密度の高い大型超電導材料を製造し、最大規格電流の高い限流装置が必要とされている。大型材料を作製するためには、複数の超電導材料を接合しなくてはならないが、接合部における臨界電流密度が低く、しかも制御することができなかった。
第二には、個々の超伝導材料の臨界電流密度にばらつきがあるため、限流装置の最大電流を規格化することができないという問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、最大規格電流値の高い限流装置及び最大規格電流値精度の高い限流装置用超電導磁気シールド体の開発を目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するために、MG超電導接合法(特願平4−109088号)で、QMG材料を接合することにより、大型超電導磁気シールド体を実現する。また、本発明者らが発見した、接合時に冷却速度を制御することにより接合部の臨界電流密度を精度よく規定できることを利用して、最大規格電流値精度の高い限流装置用超電導磁気シールド体を実現する。以下に詳細を説明する。
【0011】
QMG材料は、大傾角粒界を含まず、臨界電流密度の高い大型単一粒結晶である。6.5≦y≦7として、QMG材料はREBaCu超電導体を主要マトリックスとし、微細なREBaCuOを第二相として5〜50mol %含む。原料粉は、RE、BaO、CuOを用い、RE,Ba,Cuが所定の元素比になるように混合し、仮焼したものである。白金添加法(特願平4−143670号)を利用すると更に臨界電流密度の高い材料を作製することができ、種結晶法(特願平4−55203号)を利用すると大型の材料を作製することができる。最後に、QMGバルク材料を酸素アニールして、6.9≦y≦7となるように酸化すると、92Kの臨界温度を示す。
【0012】
MG超電導接合法によれば、複数の超電導材料を組み合わせ、最大シールド磁束密度の高い大型超電導磁気シールド体を製造することができる。その手法を以下に説明する。REBaCu超電導板を、接合しようとする面で結晶方位を合わせ、REBaCuの包晶温度よりも低い包晶温度を有するRE′BaCuの原料粉を接合面間にソルダーとして挿入する。RE′については後で述べる。RE′BaCu原料粉を介したREBaCu超電導板同士をRE′BaCuの包晶温度以上REBaCuの包晶温度未満に加熱し、REBaCuを固相に保ったままでRE′BaCu半溶融状態にする。その後、RE′BaCuの包晶温度の前後10℃程度の範囲を、1〜5℃/時間の冷却速度で徐冷する。このように冷却速度を十分に遅くすると、接合部のRE′BaCuはREBaCuの結晶方位と同じ方位に結晶成長する。そのため、接合部の臨界電流密度はRE′BaCu系QMGバルク材料のそれとほとんど同じ値を達成することができる。このように接合部での臨界電流密度を損なうことなく、最大シールド磁束密度の高い超電導磁気シールド体を製造することができる。また、複数の超電導材料を接合することにより、任意の大きさの超電導磁気シールド体を製造することができる。
【0013】
RE′の選択には、RE′3+のイオン半径が小さいほどREBaCuの包晶温度が低いことを利用する。つまり、RE3+のイオン半径よりも小さいイオン半径を有するRE′3+を選択すると、RE′BaCuの包晶温度はREBaCuの包晶温度より低い。例えば、RE=Gd,RE′=Tm、あるいは、RE=0.5Dy+0.5Ho,RE′=Yb等にすればよい。
【0014】
最大シールド磁束密度を制御するためには、MG超電導接合法において、冷却速度と接合部の臨界電流密度との関係を利用する。接合部の臨界電流密度は冷却速度が速いほど低下するという知見が得られた。この関係を利用すると、冷却速度を変化させることにより、臨界電流密度を制御し、更に(1)式の通り最大シールド磁束密度も制御することが可能となる。
【0015】
【作用】
焼結体と比較してQMG材料の臨界電流密度は高いので、最大シールド磁束密度の高い超電導磁気シールド体を製造することができる。また、複数のQMG超電導材料をMG超電導接合することにより、大型の超電導磁気シールド体を製造することができる。更に、MG超電導接合法において、冷却速度を変化させて、臨界電流密度を制御することができるので、目的とする最大シールド磁束密度を有する超電導磁気シールド体を製造することができる。以上から、最大規格電流が高くかつその精度の高い限流装置を製造することが可能となる。
【0016】
【実施例】
実施例1
MG超電導接合法において、冷却速度と接合部の臨界電流密度との関係を以下のように測定した。
【0017】
まず、QMG法によりYBaCu超電導材料を作製し、3×4×20mmの大きさに切り出した。4×20mmの面がc面である。c軸方向に5Tの磁束密度をかけたとき、前記超電導材料の臨界電流密度Jcは、窒素沸点において40,000kA/mであった。前記超電導材料2本を、YbBaCu原料粉をソルダーとして介し、3×4mmの面で接合する。YBaCuの包晶温度は1000℃であり、YbBaCuの包晶温度は900℃である。そこで、ソルダーを介した材料を炉中で950℃まで加熱してYbBaCu原料粉を半溶融状態にし、30分間保持した。その後、910℃まで1時間で降温し、910℃から890℃まで10時間かけて徐冷した。890℃から室温までは、100℃/時間の速さで冷却した。
【0018】
窒素沸点、5Tにおいて、接合された超電導材料の臨界電流密度は、36,000kA/mであった。この値は、元のYBaCu系超電導材料の値よりも1割低下しているだけである。このことから、冷却速度を2度/時間とした場合、接合部が良好な超電導状態を保っていることがわかった。
【0019】
次に、上記と同様なMG超電導接合において、冷却速度を、1,5,10,20度/時間の4種類とた。各接合材料の接合部の臨界電流密度の測定結果を図2に示す。これから、冷却速度が速いほど臨界電流密度が低下することがわかる。臨界電流密度Jc(kA/m)と冷却速度v(度/時間)との関係は、最も簡単な近似式を仮定すれば、
Jc=−Kv+Jc (2)
なる実験式で表すことができる。ここで、k=1730は臨界電流密度の冷却速度存係数、Jc=40,000kA/mは最大臨界電流密度、冷却速度は1≦v≦20である。
【0020】
実施例2
大型限流部材を構成するために、QMG法により10×50×5mmの大きさのYBaCu超電導板を6枚作製した。10×5mmの面が結晶のc面である。各超電導板の50×5mmの面を接合面として合わせ、向かい合う接合面が平行になるように研磨し、六角筒を形成する。接合面間にYbBaCu原料粉をソルダーとして挿入する。この六角筒の目的とする最大シールド磁束密度が0.5Tとなるように、MG超電導接合する。冷却速度は、(1)式と(2)式から決める。厚さの超電導材料を利用する場合、目的とする最大シールド磁束密度Bmax において、超電導材料の臨界電流密度Jcを測定し、接合部の臨界電流密度の冷却速度依存係数kを測定する。これより冷却速度は、
v=(Jc−Bmax /μa)/k (3)
のように選べばよい。ここで、a=5×10−3m、Bmax =0.5T、Jc=400,000kA/m、k=64,000(kA/m)/(度/時間)を(3)式に代入して、冷却速度はv=5度/時と算出される。
【0021】
このようにして作製した中空形状のQMG超電導磁気シールド体を、液体窒素により冷却する。図3に示すように、超伝導磁気シールド体2の外周に、誘導コイル1を設置し、内側中心部に磁束密度計測器4を設置する。誘導コイル1に通電して0. 5T未満の磁束密度を発生させても、超電導磁気シールド体2の内側中心部の磁束密度は0であり、超電導磁気シールド体2は磁束を完全にシールドしていた。誘導コイル1にさらに電流を流して0. 5Tの磁束密度を発生させると、内側中心部の磁束密度は有限になった。これは超電導磁気シールド体2の磁気シールド効果が破れ、最大シールド磁束密度が0. 5Tであることを示している。
【0022】
図1のように、誘導コイル1を外側にして、接合した六角筒状超伝導磁気シールド体2と同軸になるように組み合わせ、さらに超伝導磁気シールド体2内部に高透磁率鉄心3として軟鉄を同軸に設置する。これらにより、目的とする最大規格電流を有する限流装置を構成することができた。
【0023】
【発明の効果】
以上の通り、QMG材料をMG超伝導接合すると、接合された超電導材料の臨界電流密度は高くかつ制御可能であり、最大シールド磁束密度も高くかつ制御可能である。したがって、限流装置の最大規格電流値を高くとることができ、超電導磁気シールド板厚を一定にしたままで、最大規格電流を制御することができるようになった。
【図面の簡単な説明】
【図1】超電導磁気シールドリアクトル型限流装置の概念図。
【図2】接合部の臨界電流密度の冷却速度依存性。
【図3】六角筒状QMG超電導磁気シールド体を有する限流装置を示す。
【符号の説明】
1 銅巻線で構成される誘導コイル
2 中空形状の超電導磁気シールド体
3 高透磁率鉄心
4 磁束密度計測器
5 電力系統
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a superconducting magnetic shield for a superconducting magnetic shield reactor type current limiting device.
[0002]
[Prior art]
If an accident occurs in any part of the grid-connected power system, the entire area will be damaged. In order to minimize the damage caused by burning of electrical equipment during a short circuit accident, it is necessary to locally cut off excessive current. A current limiting device is effective as a protection means for that purpose. The current limiting device commutates the excessive current to the current limiting portion as soon as the excessive current is detected by the accident recognition switch, and instantaneously disappears. The use of superconducting wires is suitable for minimizing the power loss during steady state. As the current limiting device, a high resistance type by superconducting-normal conduction transition, a rectifier type, a three-phase three-winding reactor type, a two-coil non-inductive connection type, a saturable reactor type, and the like have been prototyped or devised.
[0003]
Among them, the induced current limiting device disclosed in Japanese Patent Application Laid-Open No. 2-105402 has a relatively simple configuration and can be miniaturized. The operation principle is based on the application of a supersaturated reactor type, and the details will be described below with reference to FIG. The current limiting part is composed of three main elements, an induction coil 1 made of copper winding, a hollow superconducting magnetic shield 2, and a high magnetic permeability core 3, all of which are axially symmetric and arranged so as to be coaxial. ing. The superconducting magnetic shield 2 is cooled below the superconducting transition temperature. Since a current flowing from the power system 5 flows through the induction coil 1, a magnetic field is generated inside the induction coil 1. Due to the Meissner effect of the superconducting magnetic shield 2, the induction magnetic field is applied to the high-permeability iron core 3 inside. Do not invade. Therefore, since the inductance of the induction coil 1 is usually low and the impedance of the current limiting device is also small, the power loss is small. On the other hand, in the event of a short circuit, an excessive current flows through the induction coil 1 and a strong magnetic field greater than the maximum shield magnetic field of the superconducting magnetic shield 2 is generated. The strong magnetic field penetrates into the high magnetic permeability core 3 and the impedance of the current limiting device decreases. To increase. Therefore, power loss increases due to the reactor effect, and excessive current is limited. The above is the principle of operation.
[0004]
Here, the accident recognition switch is a superconducting magnetic shield 2 and is characterized by being integrated with the current limiting part. Assuming that the number of turns of the induction coil 1 is constant, the maximum rated current value of the current limiting device is determined by the maximum shield magnetic flux density of the superconducting magnetic shield. The thickness of the superconducting material a, the maximum shielding magnetic flux density B max, in terms of critical current density Jc, and a magnetic permeability mu 0 in vacuum. The MKS unit system, mu 0 is 4 [pi] × 10 -7 becomes constant. In the simplest critical state model,
B max = μ 0 aJc (1)
The maximum shield magnetic flux density is determined by the thickness of the superconducting magnetic shield and the critical current density. Therefore, the maximum specified current value of the current limiting device depends on the critical current density of the superconducting material.
[0005]
In the method disclosed in JP-A-2-105402, the maximum shield magnetic flux density is defined as the lower critical magnetic field at which the Meissner effect can be broken. Since the value of the lower critical magnetic field is low, and this magnetic field does not penetrate sufficiently into the high magnetic permeability core 3, a rapid current limiting effect cannot be expected. Independently of this, Onishi et al. Devised a superconducting magnetic shield reactor type current limiting device, and found that a rapid current limiting effect occurs only at the maximum shield magnetic flux density where the magnetic shielding effect is broken, using alloy superconducting material. The operation has been confirmed. (Proceedings of the IEEJ National Convention 938 pages (1991))
[0006]
However, in order to use a conventional metal or alloy superconducting material, it was necessary to cool liquid helium as a cooling medium. Liquid helium is 20 times more expensive than liquid nitrogen, is not easy to handle, and has the drawback that its cooling equipment becomes large and costs increase. Therefore, application of an oxide superconductor having a critical temperature higher than the nitrogen boiling point has been expected.
[0007]
The oxide superconductor manufactured by the sintering method includes a large-angle tilt grain boundary. Therefore, the grain boundaries hinder the current path, and the critical current density has not yet reached a practical level. The REBa 2 Cu 3 O 7 bulk superconducting material produced by a melting method (hereinafter referred to as a QMG method) disclosed in Japanese Patent Application No. 63-261607 does not include a large tilt grain boundary and has a high critical electricity. . However, there were the following two problems to be overcome.
[0008]
First, there is the problem of joining superconducting materials. Due to an increase in power demand in recent years, the electric capacity tends to increase. Therefore, there is a need for a large current superconducting material having a high critical current density and a current limiting device having a high maximum rated current. In order to produce a large-sized material, a plurality of superconducting materials must be joined, but the critical current density at the joint was low and could not be controlled.
Second, there is a problem that the maximum current of the current limiting device cannot be standardized because the critical current density of each superconducting material varies.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to develop a current limiting device having a high maximum standardized current value and a superconducting magnetic shield for a current limiting device having a high maximum standardized current value accuracy.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention realizes a large-sized superconducting magnetic shield by joining a QMG material by an MG superconducting joining method (Japanese Patent Application No. 4-109088). Also, by utilizing the fact that the present inventors have found that the critical current density of the junction can be accurately defined by controlling the cooling rate at the time of joining, a superconducting magnetic shield for a current limiting device having a high accuracy of the maximum specified current value. To achieve. The details will be described below.
[0011]
QMG materials are large single-grain crystals that do not contain large tilt boundaries and have high critical current densities. Assuming that 6.5 ≦ y ≦ 7, the QMG material contains REBa 2 Cu 3 O y superconductor as a main matrix and contains 5 to 50 mol% of fine RE 2 BaCuO 5 as a second phase. The raw material powder is prepared by mixing RE 2 O 3 , BaO 2 , and CuO so that RE, Ba, and Cu have a predetermined element ratio, and calcined. The use of the platinum addition method (Japanese Patent Application No. 4-143670) can produce a material having a higher critical current density, and the use of the seed crystal method (Japanese Patent Application No. 4-55203) produces a large material. be able to. Finally, the QMG bulk material is annealed with oxygen and oxidized to 6.9 ≦ y ≦ 7, showing a critical temperature of 92K.
[0012]
According to the MG superconducting joining method, a large superconducting magnetic shield having a high maximum shield magnetic flux density can be manufactured by combining a plurality of superconducting materials. The method will be described below. The raw material powder of RE'Ba 2 Cu 3 O y having a peritectic temperature lower than that of REBa 2 Cu 3 O y by aligning the crystal orientation of the REBa 2 Cu 3 O y superconducting plate on the surface to be joined. As a solder between the joining surfaces. RE 'will be described later. RE'Ba 2 Cu 3 O y raw material powder through the REBa 2 Cu 3 O y superconducting plates are heated to peritectic temperature below the RE'Ba 2 Cu 3 O y peritectic temperature or REBa 2 Cu 3 O y of , to RE'Ba 2 Cu 3 O y and a half-molten state while maintaining the REBa 2 Cu 3 O y on the solid phase. Thereafter, a range of about 10 ° C. before and after the peritectic temperature of RE′Ba 2 Cu 3 O y is gradually cooled at a cooling rate of 1 to 5 ° C./hour. When the cooling rate is sufficiently reduced in this way, RE′Ba 2 Cu 3 O y at the junction grows in the same direction as the crystal direction of REBa 2 Cu 3 O y . Therefore, the critical current density of the junction can be achieved almost the same value as that of RE'Ba 2 Cu 3 O y based QMG bulk material. Thus, a superconducting magnetic shield having a high maximum shield magnetic flux density can be manufactured without impairing the critical current density at the junction. Also, by joining a plurality of superconducting materials, a superconducting magnetic shield having an arbitrary size can be manufactured.
[0013]
The selection of RE 'utilizes the fact that the smaller the ionic radius of RE' 3+ , the lower the peritectic temperature of REBa 2 Cu 3 O y . That is, by selecting the RE '3+ having a smaller ionic radius than the ion radius of the RE 3+, peritectic temperature of RE'Ba 2 Cu 3 O y is less than the peritectic temperature of REBa 2 Cu 3 O y. For example, RE = Gd, RE '= Tm, or RE = 0.5 Dy + 0.5Ho, RE' = Yb, or the like.
[0014]
In order to control the maximum shield magnetic flux density, the relationship between the cooling rate and the critical current density at the joint is used in the MG superconducting joining method. It has been found that the critical current density at the junction decreases as the cooling rate increases. By utilizing this relationship, it is possible to control the critical current density by changing the cooling rate, and also to control the maximum shield magnetic flux density as in equation (1).
[0015]
[Action]
Since the critical current density of the QMG material is higher than that of the sintered body, a superconducting magnetic shield having a high maximum shield magnetic flux density can be manufactured. In addition, a large superconducting magnetic shield can be manufactured by joining a plurality of QMG superconducting materials by MG superconducting. Further, in the MG superconducting bonding method, the critical current density can be controlled by changing the cooling rate, so that a superconducting magnetic shield having a desired maximum shield magnetic flux density can be manufactured. As described above, it is possible to manufacture a current limiting device having a high maximum rated current and high accuracy.
[0016]
【Example】
Example 1
In the MG superconducting joining method, the relationship between the cooling rate and the critical current density at the joint was measured as follows.
[0017]
First, a YBa 2 Cu 3 O y superconducting material was produced by the QMG method, and cut into a size of 3 × 4 × 20 mm 3 . The 4 × 20 mm 2 plane is the c-plane. When a magnetic flux density of 5 T was applied in the c-axis direction, the critical current density Jc 0 of the superconducting material was 40,000 kA / m 2 at the nitrogen boiling point. The two superconducting materials are joined at a surface of 3 × 4 mm 2 with YbBa 2 Cu 3 O y raw material powder interposed therebetween as a solder. The peritectic temperature of YBa 2 Cu 3 O y is 1000 ° C., and the peritectic temperature of YbBa 2 Cu 3 O y is 900 ° C. Therefore, the material via the solder was heated to 950 ° C. in a furnace to bring the YbBa 2 Cu 3 O y raw material powder into a semi-molten state and held for 30 minutes. Thereafter, the temperature was lowered to 910 ° C. in 1 hour, and gradually cooled from 910 ° C. to 890 ° C. over 10 hours. Cooling was performed at a rate of 100 ° C./hour from 890 ° C. to room temperature.
[0018]
At a nitrogen boiling point of 5 T, the critical current density of the joined superconducting material was 36,000 kA / m 2 . This value is only 10% lower than the value of the original YBa 2 Cu 3 O y -based superconducting material. From this, it was found that when the cooling rate was set to 2 degrees / hour, the junction maintained a good superconducting state.
[0019]
Next, in the MG superconducting junction similar to the above, the cooling rate was set to four types of 1, 5, 10, and 20 degrees / hour. FIG. 2 shows the measurement results of the critical current density at the joint of each joining material. This indicates that the higher the cooling rate, the lower the critical current density. The relationship between the critical current density Jc (kA / m 2 ) and the cooling rate v (degrees / hour) is as follows, assuming the simplest approximate expression.
Jc = −Kv + Jc 0 (2)
It can be expressed by the following empirical formula. Here, k = 1730 is the cooling rate existence coefficient of the critical current density, Jc 0 = 40,000 kA / m 2 is the maximum critical current density, and the cooling rate is 1 ≦ v ≦ 20.
[0020]
Example 2
In order to form a large current limiting member, six YBa 2 Cu 3 O y superconducting plates having a size of 10 × 50 × 5 mm 3 were produced by the QMG method. The 10 × 5 mm 2 plane is the c-plane of the crystal. A surface of 50 × 5 mm 2 of each superconducting plate is joined as a joining surface, and polished so that facing joining surfaces are parallel to form a hexagonal cylinder. YbBa 2 Cu 3 O y raw material powder is inserted as a solder between the joining surfaces. MG superconducting joining is performed so that the intended maximum shield magnetic flux density of this hexagonal cylinder becomes 0.5T. The cooling rate is determined from equations (1) and (2). When a superconducting material having a thickness is used, the critical current density Jc 0 of the superconducting material is measured at the target maximum shield magnetic flux density B max , and the cooling rate dependence coefficient k of the critical current density of the joint is measured. The cooling rate is
v = (Jc 0 −B max / μ 0 a) / k (3)
You can choose like. Here, a = 5 × 10 -3 m , B max = 0.5T, Jc 0 = 400,000kA / m 2, k = 64,000 and (kA / m 2) / (deg / hr) (3) Substituting into the equation, the cooling rate is calculated as v = 5 degrees / hour.
[0021]
The thus formed hollow QMG superconducting magnetic shield is cooled with liquid nitrogen. As shown in FIG. 3, the induction coil 1 is installed on the outer periphery of the superconducting magnetic shield 2, and the magnetic flux density measuring device 4 is installed on the inner central part. Power is supplied to the induction coil 1 so that Even when a magnetic flux density of less than 5T was generated, the magnetic flux density at the central portion inside the superconducting magnetic shield 2 was 0, and the superconducting magnetic shield 2 completely shielded the magnetic flux. An electric current is further applied to the induction coil 1 to reduce the current to 0. When a magnetic flux density of 5T was generated, the magnetic flux density at the inner center became finite. This is because the magnetic shield effect of the superconducting magnetic shield body 2 is broken, and the maximum shield magnetic flux density becomes 0. 5T.
[0022]
As shown in FIG. 1, the induction coil 1 is placed outside and combined so as to be coaxial with the joined hexagonal cylindrical superconducting magnetic shield 2, and soft iron is further provided inside the superconducting magnetic shield 2 as a high permeability iron core 3. Install coaxially. As a result, a current limiting device having an intended maximum rated current could be constructed.
[0023]
【The invention's effect】
As described above, when a QMG material is subjected to MG superconducting joining, the critical current density of the joined superconducting material is high and controllable, and the maximum shield magnetic flux density is also high and controllable. Accordingly, the maximum rated current value of the current limiting device can be increased, and the maximum rated current can be controlled while keeping the thickness of the superconducting magnetic shield plate constant.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a superconducting magnetic shield reactor type current limiting device.
FIG. 2 shows the cooling rate dependence of the critical current density at the junction.
FIG. 3 shows a current limiting device having a hexagonal cylindrical QMG superconducting magnetic shield.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Induction coil comprised of a copper winding 2 Hollow superconducting magnetic shield 3 High magnetic permeability core 4 Magnetic flux density measuring instrument 5 Power system

Claims (1)

超電導磁気シールドリアクトル型限流装置用超電導磁気シールド板としてQMGバルク材料を用い、接合により超電導磁気シールド体を製造する方法において、REとRE′をNd,Sm,Eu,Gd,Dy,Y,Ho,Er,Tm,Yb,Luからなる群から選ばれた一種類以上の元素とし、配向した複数のREBa2Cu3 7 系QMGバルク材料同士をその接合面で結晶方位を合わせ、接合しようとする面間に該QMGバルク材料よりも低い包晶温度を有するRE′Ba2Cu3 7 系超電導体の原料粉をソルダーとして挿入し、ソルダーを介した該バルク材料をソルダーの包晶温度よりも高くかつREBa2Cu3 7 の包晶温度よりも低い温度に加熱し、ソルダーを半溶融状態に保持して液相を生じさせた後、臨界電流密度をJc(kA/m2 )、冷却速度をv(度/時間)、臨界電流密度の冷却速度(依存)係数をk、最大臨界電流密度をJcとするとき、前記ソルダーを下記の式aから求まる冷却速度vに従って徐冷することによって接合することを特徴とする超電導磁気シールド体の製造方法。
Jc=−kv+Jc (式a)
In a method of manufacturing a superconducting magnetic shield body by bonding using a QMG bulk material as a superconducting magnetic shield plate for a superconducting magnetic shield reactor-type current limiting device, RE and RE 'are converted into Nd, Sm, Eu, Gd, Dy, Y, and Ho. , Er, Tm, Yb, and Lu, one or more elements selected from the group consisting of a plurality of oriented REBa 2 Cu 3 O 7 -based QMG bulk materials with the same crystallographic orientation at their bonding surfaces to join. The raw material powder of the RE'Ba 2 Cu 3 O 7 -based superconductor having a lower peritectic temperature than the QMG bulk material is inserted as a solder between the surfaces to be soldered, and the bulk material via the solder is removed from the peritectic temperature of the solder. After heating to a temperature higher than the peritectic temperature of REBa 2 Cu 3 O 7 to maintain the solder in a semi-molten state to generate a liquid phase, the critical current density is reduced to Jc (k A / m 2 ), the cooling rate is v (degrees / hour), the cooling rate (dependence) coefficient of the critical current density is k, and the maximum critical current density is Jc 0. A method of manufacturing a superconducting magnetic shield, comprising joining by slow cooling according to a speed v.
Jc = −kv + Jc 0 (formula a)
JP16681193A 1993-07-06 1993-07-06 Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device Expired - Lifetime JP3579708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16681193A JP3579708B2 (en) 1993-07-06 1993-07-06 Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16681193A JP3579708B2 (en) 1993-07-06 1993-07-06 Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device

Publications (2)

Publication Number Publication Date
JPH0725672A JPH0725672A (en) 1995-01-27
JP3579708B2 true JP3579708B2 (en) 2004-10-20

Family

ID=15838111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16681193A Expired - Lifetime JP3579708B2 (en) 1993-07-06 1993-07-06 Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device

Country Status (1)

Country Link
JP (1) JP3579708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772674B2 (en) * 2016-08-29 2020-10-21 日本製鉄株式会社 Manufacturing method of superconducting bulk joint and superconducting bulk joint

Also Published As

Publication number Publication date
JPH0725672A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
US5426408A (en) Ceramic superconducting magnet using stacked modules
US7706110B2 (en) Compact superconducting current limiting component in coil configuration with low inductance
JP2726499B2 (en) Superconducting equipment
US6584333B1 (en) Protected superconducting component and method for producing the same
US6344956B1 (en) Oxide bulk superconducting current limiting element current
KR20020070084A (en) Flux pump with high temperature superconductor and superconductive electromagnet operated by the flux pump
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JP3579708B2 (en) Method for manufacturing superconducting magnetic shield body of superconducting magnetic shield reactor type current limiting device
US5110793A (en) Ultra high energy capacitors using intense magnetic field insulation produced by high-Tc superconducting elements for electrical energy storage and pulsed power applications
JP3962107B2 (en) Oxide superconducting composite, method for producing the same, oxide superconducting magnet, and superconducting coil device
US5248660A (en) Process of preparing yttrium based superconductors
Riemersma et al. A Variable Composition, High Field Superconducting Solenoid
JP3943652B2 (en) Superconducting conductor and superconducting / normal conducting transition resistance type fault current limiter
US20020075057A1 (en) Superconducting power circuit
Kuriyama et al. Cryocooler directly cooled 6 T NbTi superconducting magnet system with 180 mmroom temperature bore
JP3699487B2 (en) Superconducting / normal conducting transition type fault current limiter
JPH0984259A (en) Superconducting current limiter
JP2788240B2 (en) Current limiting device
JP6493547B2 (en) Oxide superconducting bulk magnet
JPH10125966A (en) Oxide superconductor and its manufacture
Shimoyama et al. Properties of Bi 2 Sr 2 CaCu 2 O y/Ag Composite Tapes and Coils Melt-Solidified with Bi 2 Al 4 O 9
JPH06244468A (en) Superconducting current limiter
JPH05282967A (en) Superconductive current limiting device
JPH0818110A (en) Superconductor
Matsuda I. HIGH-TEMPERATURE SUPERCONDUCTORS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term