JPH05251761A - Current limiting conductor using oxide superconductive film - Google Patents

Current limiting conductor using oxide superconductive film

Info

Publication number
JPH05251761A
JPH05251761A JP4046873A JP4687392A JPH05251761A JP H05251761 A JPH05251761 A JP H05251761A JP 4046873 A JP4046873 A JP 4046873A JP 4687392 A JP4687392 A JP 4687392A JP H05251761 A JPH05251761 A JP H05251761A
Authority
JP
Japan
Prior art keywords
film
current limiting
metallic film
metal film
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4046873A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuno
繁 松野
Hidefusa Uchikawa
英興 内川
Shinichi Kinouchi
伸一 木ノ内
Sadajiro Mori
貞次郎 森
Tatsuya Hayashi
龍也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4046873A priority Critical patent/JPH05251761A/en
Publication of JPH05251761A publication Critical patent/JPH05251761A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To raise limit voltage for application to an element without lowering the current limiting performance by forming a lower metallic film on an oxide superconductive film, and forming an upper metallic film high in resistivity than the lower metallic film on this. CONSTITUTION:An oxide superconductive film 6 is made on a substrate 1, and a metallic film 2 is made hereon, and further an upper metallic 3 is made. This upper metallic 3 is a metallic film higher than the lower metallic film 2. Hereby, the stable operation of a current limiting conductor becomes possible without causing the remarkable drop in normal conductive condition. That is, to begin with, the decrease of the resistance in normal conductivity state is minimized by laying most of the role of a shunt current on the upper metallic film 3 high in resistivity. And, for the lightening of the partial heat generation of the superconductive film and the smooth shunting to the metallic film 3 high in resistivity, a lower metallic film 2 to serve as a well electric conductive thermal conductor is made between them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体を用い
て短絡電流などの過大電流を限流することの可能な限流
導体の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a current limiting conductor capable of limiting an excessive current such as a short circuit current by using an oxide superconductor.

【0002】[0002]

【従来の技術】電力回路での短絡発生による過大電流を
抑制することを目的とした素子として、金属ナトリウム
を使用した限流器が実用化されている。しかし、この限
流器は特性、大きさ、寿命などの点で問題があり、その
小型化、高性能化を目的に、超電導体の臨界電流以上に
おける超電導−常電導遷移での抵抗の変化を利用した限
流器も研究されている。この超電導体を用いた限流器の
場合、超電導状態で流すことのできる電流(臨界電流)
が大きく、常電導状態での抵抗が高いことが要求され
る。特に超電導体として膜状のものを用いた場合、臨界
電流と常電導状態での抵抗が大きいことから、比較的限
流特性の良好なものが得られやすい。この分野全般の技
術に関しては、例えば文献(低温工学26巻、4号、2
36頁(1991))に記載されている。
2. Description of the Related Art A current limiting device using metallic sodium has been put into practical use as an element for suppressing an excessive current due to a short circuit in a power circuit. However, this fault current limiter has problems in terms of characteristics, size, life, etc., and for the purpose of miniaturization and high performance, the change in resistance due to superconducting-normal conducting transition above the critical current of the superconductor is required. The current limiting device used is also being researched. In the case of a fault current limiter using this superconductor, the current that can flow in the superconducting state (critical current)
Is required to be high and the resistance in the normal conducting state is high. In particular, when a film-shaped superconductor is used, it is easy to obtain a material having relatively good current limiting characteristics because the critical current and the resistance in the normal conduction state are large. For the technology of this field in general, see, for example, literature (low temperature engineering, Vol.
36 (1991)).

【0003】一般に酸化物超電導膜を用いた限流導体
は、セラミックの基板上に酸化物超電導膜を所望の形状
に形成し、電極を取り付けた後、液体窒素中に含浸して
使用される。しかしこの場合、酸化物超電導体の熱伝導
度が悪い為に限流動作に伴う常電導への遷移による発熱
が局所的となりやすく、この発熱により限流導体が溶断
する場合がある。この問題を解決するために、超電導膜
の上に金属膜を形成し、常電導遷移時の電流の分流と放
熱特性の向上とを同時に行うことが可能である。この技
術は超電導の安定化といわれ、例えば文献(日本物理学
会編「超伝導」、276頁(1979))に金属系超電
導テープ線材における安定化の実例が記載されている。
しかし、このような安定化を施した場合、常電導状態で
の抵抗が著しく低下することから、限流動作後に流れる
続流が増加し、限流導体への用途としては好ましくな
い。
Generally, a current limiting conductor using an oxide superconducting film is used by forming an oxide superconducting film in a desired shape on a ceramic substrate, attaching electrodes and then impregnating it in liquid nitrogen. However, in this case, since the oxide superconductor has poor thermal conductivity, the heat generation due to the transition to the normal conduction accompanying the current limiting operation is likely to be localized, and this heat generation may cause the current limiting conductor to melt. In order to solve this problem, it is possible to form a metal film on the superconducting film and simultaneously divide the current at the time of transition to normal conduction and improve the heat dissipation property. This technique is called stabilization of superconductivity, and examples of stabilization in metal-based superconducting tape wire rods are described in, for example, the literature ("Superconductivity" edited by the Physical Society of Japan, p. 276 (1979)).
However, when such stabilization is carried out, the resistance in the normal conducting state is remarkably lowered, so that the continuous current flowing after the current limiting operation increases, which is not preferable for use as a current limiting conductor.

【0004】[0004]

【発明が解決しようとする課題】以上説明した様に、酸
化物超電導膜を限流導体として溶断させることなく安定
に使用する為には、金属による安定化が有効であるが、
常電導状態における抵抗が著しく減少することから限流
性能が低下してしまうという問題があった。また、抵抗
の減少を押さえる為に、膜厚を薄くすると分流可能な電
流容量が少なくなる。一方、比抵抗の高い金属膜を用い
た場合は超電導膜との界面の接続抵抗が高くなりやすく
分流がうまく行われなくなる。結果として良好な安定化
が行われないことから、限流導体の性能を表す指標の一
つである素子適用限界電圧が低くなり、特性の良い限流
導体が得られなかった。
As described above, in order to stably use an oxide superconducting film as a current limiting conductor without fusing, stabilization with a metal is effective.
There is a problem that the current limiting performance is deteriorated because the resistance in the normal conduction state is significantly reduced. In addition, if the film thickness is reduced in order to suppress the decrease in resistance, the current capacity that can be shunted is reduced. On the other hand, when a metal film having a high specific resistance is used, the connection resistance at the interface with the superconducting film is likely to be high, and shunting cannot be performed properly. As a result, good stabilization is not performed, so that the element application limit voltage, which is one of the indexes showing the performance of the current limiting conductor, becomes low, and a current limiting conductor with good characteristics cannot be obtained.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、限流性能を低下させることなく
素子適用限界電圧の高い酸化物超電導膜限流導体を得る
ことを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain an oxide superconducting film current limiting conductor having a high element application limit voltage without deteriorating the current limiting performance. .

【0006】[0006]

【課題を解決するための手段】本発明に係る酸化物超電
導膜を用いた限流導体は、酸化物超電導膜上に形成され
た下部金属膜、およびこの下部金属膜上に形成され下部
金属膜より比抵抗の高い上部金属膜を備えるものであ
る。
A current limiting conductor using an oxide superconducting film according to the present invention is a lower metal film formed on an oxide superconducting film, and a lower metal film formed on this lower metal film. The upper metal film having a higher specific resistance is provided.

【0007】[0007]

【作用】本発明においては、超電導膜上に金属膜を形成
して下部金属膜とし、更にその上部に上記金属膜より比
抵抗の高い金属膜を上部金属膜として形成した構成とす
ることにより、常電導状態における著しい抵抗の低下を
起こす事なく、限流導体の安定した動作が可能となる。
すなわち、まず電流の分流の役割のほとんどを比抵抗の
高い上部金属膜に負わせることにより、常電導状態での
抵抗の減少を最小限に押さえる。しかし、これだけでは
超電導膜の局所的な発熱の緩和と比抵抗の高い金属膜へ
のスムーズな分流ができないので、良好な電気的、熱的
伝導媒体になる下部金属膜をその間に形成する。
In the present invention, a metal film is formed on the superconducting film to form a lower metal film, and a metal film having a higher specific resistance than the above metal film is formed on the upper metal film as an upper metal film. Stable operation of the current limiting conductor is possible without causing a significant decrease in resistance in the normal conducting state.
That is, first, most of the role of shunting the current is imposed on the upper metal film having a high specific resistance, so that the decrease in the resistance in the normal conducting state is minimized. However, this alone cannot alleviate the local heat generation of the superconducting film and smooth the shunting to the metal film having a high specific resistance, so that a lower metal film serving as a good electrically and thermally conductive medium is formed therebetween.

【0008】[0008]

【実施例】以下に本発明の一実施例を図をもとに説明す
る。図1は本発明の一実施例による酸化物超電導膜を用
いた限流導体を示したものである。図において、1は基
板、2は下部金属膜、3は上部金属膜、4は電流リー
ド、5はインジウム半田である。また、図2は図1にお
ける電極部分付近の断面を拡大したもので、6は酸化物
超電導膜である。なお、電流リード4接続部分はこの下
部金属膜2のみとすることにより、超電導膜6との界面
の接続抵抗の小さい良好な電極接続が可能となるのでよ
り良いが、上部金属膜3があってもよい。これらの結
果、限流動作後の続流を増やす事なく素子適用限界電圧
の高い限流導体が実現できる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a current limiting conductor using an oxide superconducting film according to an embodiment of the present invention. In the figure, 1 is a substrate, 2 is a lower metal film, 3 is an upper metal film, 4 is a current lead, and 5 is indium solder. Further, FIG. 2 is an enlarged cross section near the electrode portion in FIG. 1, and 6 is an oxide superconducting film. It should be noted that the use of only the lower metal film 2 for connecting the current leads 4 enables better electrode connection with a small connection resistance at the interface with the superconducting film 6, which is better, but the upper metal film 3 is present. Good. As a result, a current limiting conductor having a high element application limit voltage can be realized without increasing the follow current after the current limiting operation.

【0009】上記のような酸化物超電導膜を用いた限流
導体は例えば次の様にして製作される。厚さ1mm、大
きさ10mm角の単結晶チタン酸ストロンチウムを基板
1として、この基板1上にスパッタリング法により、基
板温度650℃、圧力50mTorrにおいて、膜厚
0.3μmのc軸配向したY系酸化物超電導膜6を形成
した。また成膜時に白金製のマスクを使用し、超電導膜
6を幅1mm、長さ30mmのパターンとした。臨界温
度は91K、臨界電流は8A、超電導膜6のみの常電導
遷移直後の抵抗は60Ωであった。次に、同一のマスク
を使用して基板1加熱を行わず、膜厚100オングスト
ロームの銀を高純度アルゴン中でのスパッタにより下部
金属膜2として形成した。引き続き、電極接続部を覆う
マスクを追加し、スパッタ雰囲気ガスを酸素20%、窒
素50%を含むアルゴンガスに変え、膜厚400オング
ストロームの銀を上部金属膜3として形成した。この膜
が比抵抗の高い金属膜となる。これらの金属膜2、3の
液体窒素中での抵抗は、同一形状での単独成膜の測定結
果から、下部金属膜2が200Ω、上部金属膜3が18
0Ωであった。安定化金属膜の合成抵抗は95Ωであ
る。この様にして作製した限流導体を液体窒素中に含浸
し限流動作を行ったところ、素子間の電圧が60Vまで
安定な限流動作が可能であった(素子適用限界電圧=6
0V)。この時の続流は1.6Aと十分に低い値であっ
た。比較の為に、下部金属膜2のみのと、上部金属膜3
のみを安定化膜として、それぞれ安定化膜部分の抵抗が
95Ωの抵抗となる様に形成したものについて素子適用
限界電圧を比較した。結果を表1に示す。この表から、
本発明の限流導体での素子適用限界電圧が最も高く、明
らかに優れていることがわかる。
The current limiting conductor using the above oxide superconducting film is manufactured, for example, as follows. A single crystal strontium titanate having a thickness of 1 mm and a size of 10 mm was used as a substrate 1, and a sputtering method was applied to the substrate 1 at a substrate temperature of 650 ° C. and a pressure of 50 mTorr to form a c-axis-oriented Y-based oxidation film having a film thickness of 0.3 μm. The superconducting film 6 was formed. Further, a platinum mask was used during film formation, and the superconducting film 6 was formed into a pattern having a width of 1 mm and a length of 30 mm. The critical temperature was 91 K, the critical current was 8 A, and the resistance of only the superconducting film 6 immediately after transition to normal conduction was 60Ω. Next, using the same mask, the substrate 1 was not heated, and silver having a film thickness of 100 angstrom was formed as the lower metal film 2 by sputtering in high-purity argon. Subsequently, a mask covering the electrode connection portion was added, the sputtering atmosphere gas was changed to an argon gas containing 20% oxygen and 50% nitrogen, and silver having a film thickness of 400 Å was formed as the upper metal film 3. This film becomes a metal film having a high specific resistance. The resistance of these metal films 2 and 3 in liquid nitrogen was 200Ω for the lower metal film 2 and 18 for the upper metal film 3 based on the measurement results of single film formation with the same shape.
It was 0Ω. The combined resistance of the stabilizing metal film is 95Ω. When the current limiting conductor thus produced was impregnated in liquid nitrogen and a current limiting operation was performed, a stable current limiting operation was possible up to a voltage between elements of 60 V (element application limit voltage = 6).
0V). At this time, the follow current was 1.6 A, which was a sufficiently low value. For comparison, only the lower metal film 2 and the upper metal film 3
The device application limit voltages were compared for those formed with only the stabilizing film as the stabilizing film so that the resistance of the stabilizing film portion was 95Ω. The results are shown in Table 1. From this table,
It can be seen that the current limiting conductor of the present invention has the highest element application limit voltage and is obviously excellent.

【0010】[0010]

【表1】 [Table 1]

【0011】なお、本発明の限流導体に用いる下部金属
膜2は上記実施例で述べた銀の他に、金、白金、銅など
多くの金属が可能で、成膜法もスパッタ以外に、真空蒸
着法、CVD法など一般的な金属膜が形成できれば何で
も良いが、比抵抗として4×10-6Ωcm以下ができれ
ば望ましい。
The lower metal film 2 used in the current limiting conductor of the present invention can be made of many metals such as gold, platinum and copper in addition to the silver described in the above embodiment. Any material such as a vacuum vapor deposition method or a CVD method can be used as long as a general metal film can be formed, but it is desirable that the specific resistance be 4 × 10 −6 Ωcm or less.

【0012】また、上部金属膜3に用いる比抵抗の高い
金属膜として実施例で述べた銀のほかにも、比抵抗が下
部金属膜2以上であれば他の金属でもよい。成膜法も下
部金属膜2同様種々の方法が可能である。
Further, in addition to silver described in the embodiment as a metal film having a high specific resistance used for the upper metal film 3, another metal may be used as long as the specific resistance is lower than the lower metal film 2. As the film forming method, various methods like the lower metal film 2 are possible.

【0013】なお実施例で述べた様に、酸素と窒素、ア
ルゴンの混合ガス中で形成したスパッタ膜の比抵抗が増
加するのは、膜の適度な酸化と膜の粒界への不純物の偏
析によるものと思われる。これらの金属膜を安定化膜と
して形成した後の抵抗値は実施例に示した値に限らず、
それぞれの比抵抗に応じて適宜膜厚を変えることにより
調節するが、安定化膜全体としての抵抗が常電導への遷
移後の超電導膜6の抵抗と同程度かあるいはそれに近い
値であることが望ましい。
As described in the examples, the specific resistance of the sputtered film formed in a mixed gas of oxygen, nitrogen and argon is increased by proper oxidation of the film and segregation of impurities at the grain boundaries of the film. It seems to be due to. The resistance value after forming these metal films as a stabilizing film is not limited to the values shown in the examples,
It is adjusted by appropriately changing the film thickness according to each specific resistance, but the resistance of the stabilizing film as a whole may be the same as or close to the resistance of the superconducting film 6 after transition to normal conduction. desirable.

【0014】[0014]

【発明の効果】以上のように、この発明によれば、酸化
物超電導膜上に形成された下部金属膜、およびこの下部
金属膜上に形成され下部金属膜より比抵抗の高い上部金
属膜を備えるので、続流を増やして限流性能を低下させ
ることなく素子適用限界電圧の高い酸化物超電導膜限流
導体が実現できる効果がある。
As described above, according to the present invention, the lower metal film formed on the oxide superconducting film and the upper metal film formed on the lower metal film and having a higher specific resistance than the lower metal film are formed. Since it is provided, there is an effect that an oxide superconducting film current limiting conductor with a high element application limit voltage can be realized without increasing the follow current and lowering the current limiting performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例による酸化物超電導膜
を用いた限流導体を示す斜視図である。
FIG. 1 is a perspective view showing a current limiting conductor using an oxide superconducting film according to an embodiment of the present invention.

【図2】図2は図1における電極部分を拡大して示す断
面図である。
2 is an enlarged sectional view showing an electrode portion in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1 基板 2 下部金属膜 3 上部金属膜 4 電流リード 5 インジウム半田 6 酸化物超電導膜 1 Substrate 2 Lower Metal Film 3 Upper Metal Film 4 Current Lead 5 Indium Solder 6 Oxide Superconducting Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 貞次郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 林 龍也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Sadajiro Mori 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Institute (72) Inventor Tatsuya Hayashi 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導膜上に形成された下部金属
膜、およびこの下部金属膜上に形成され下部金属膜より
比抵抗の高い上部金属膜を備える酸化物超電導膜を用い
た限流導体。
1. A current limiting conductor using an oxide superconducting film comprising a lower metal film formed on the oxide superconducting film and an upper metal film formed on the lower metal film and having a higher specific resistance than the lower metal film. .
JP4046873A 1992-03-04 1992-03-04 Current limiting conductor using oxide superconductive film Pending JPH05251761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046873A JPH05251761A (en) 1992-03-04 1992-03-04 Current limiting conductor using oxide superconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046873A JPH05251761A (en) 1992-03-04 1992-03-04 Current limiting conductor using oxide superconductive film

Publications (1)

Publication Number Publication Date
JPH05251761A true JPH05251761A (en) 1993-09-28

Family

ID=12759468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046873A Pending JPH05251761A (en) 1992-03-04 1992-03-04 Current limiting conductor using oxide superconductive film

Country Status (1)

Country Link
JP (1) JPH05251761A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911890A2 (en) * 1997-10-24 1999-04-28 Abb Research Ltd. Method for alloying a noble metal bypass layer of a high temperature superconductor
EP0911889A2 (en) * 1997-10-24 1999-04-28 Abb Research Ltd. High temperature superconducting device
WO1999025032A1 (en) * 1997-11-11 1999-05-20 Siemens Aktiengesellschaft Current limiting device
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JP2009110906A (en) * 2007-11-01 2009-05-21 Fujikura Ltd High-resistance material composite oxide superconductive tape
WO2012161277A1 (en) 2011-05-24 2012-11-29 古河電気工業株式会社 Superconducting element for superconducting current limiter, method for manufacturing superconducting element for superconducting current limiter, and superconducting current limiter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911890A2 (en) * 1997-10-24 1999-04-28 Abb Research Ltd. Method for alloying a noble metal bypass layer of a high temperature superconductor
EP0911889A2 (en) * 1997-10-24 1999-04-28 Abb Research Ltd. High temperature superconducting device
EP0911890A3 (en) * 1997-10-24 1999-05-12 Abb Research Ltd. Method for alloying a noble metal bypass layer of a high temperature superconductor
EP0911889A3 (en) * 1997-10-24 1999-05-12 Abb Research Ltd. High temperature superconducting device
US6440904B1 (en) 1997-10-24 2002-08-27 Abb Research Ltd High-temperature superconductor arrangement
WO1999025032A1 (en) * 1997-11-11 1999-05-20 Siemens Aktiengesellschaft Current limiting device
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JPWO2006001226A1 (en) * 2004-06-24 2008-04-17 独立行政法人産業技術総合研究所 Superconducting current limiting element and method for manufacturing the same
JP4644779B2 (en) * 2004-06-24 2011-03-02 独立行政法人産業技術総合研究所 Superconducting current limiting element
DE112005001495B4 (en) * 2004-06-24 2011-06-16 National Institute Of Advanced Industrial Science And Technology Superconducting fault current limiting element and method for producing the same
US8088713B2 (en) 2004-06-24 2012-01-03 National Institute Of Advanced Industrial Science And Technology Superconducting fault-current limiting element and the process for producing the same
JP2009110906A (en) * 2007-11-01 2009-05-21 Fujikura Ltd High-resistance material composite oxide superconductive tape
WO2012161277A1 (en) 2011-05-24 2012-11-29 古河電気工業株式会社 Superconducting element for superconducting current limiter, method for manufacturing superconducting element for superconducting current limiter, and superconducting current limiter

Similar Documents

Publication Publication Date Title
JP4162710B2 (en) Current limiting device
US8088713B2 (en) Superconducting fault-current limiting element and the process for producing the same
US6177856B1 (en) Process for producing a current limiter having a high-temperature superconductor, and current limiter
KR970005162B1 (en) Improvements in or relating to high-tc superconducting units having low contact surface resistivity
JPH05251761A (en) Current limiting conductor using oxide superconductive film
JP3254788B2 (en) Current limiting conductor using oxide superconducting film and method of manufacturing the same
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
JP2009049257A (en) Superconducting current-limiting element
JPH0883932A (en) Current limiting element
JPH05250932A (en) Oxide superconductive current limiting conductor and its manufacture
JPH03156809A (en) Application of oxide superconductive conductor
US5179071A (en) High Tc superconductor contact unit having low interface resistivity
JPH07211950A (en) Electrode for superconducting material
JPH0198275A (en) Oxide superconductor
JP3699884B2 (en) Superconducting current limiting element
JP2897542B2 (en) Superconducting switch
JPH05251758A (en) Manufacture of oxide superconductive current limiting conductor
JPH05251762A (en) Oxide superconductive current limiting conductor
JPH05251759A (en) Oxide superconductive current limiting conductor
JP3155558B2 (en) Oxide superconducting wire
JPH05198434A (en) Superconductive current lead
CA2177169C (en) Current-limiting device
JPH05251760A (en) Oxide superconductive current limiting conductor
JPH02281766A (en) Superconducting element using oxide superconductor
JPH05251763A (en) Manufacture of oxide superconductive current limiting conductor