JPH05251759A - Oxide superconductive current limiting conductor - Google Patents

Oxide superconductive current limiting conductor

Info

Publication number
JPH05251759A
JPH05251759A JP4046827A JP4682792A JPH05251759A JP H05251759 A JPH05251759 A JP H05251759A JP 4046827 A JP4046827 A JP 4046827A JP 4682792 A JP4682792 A JP 4682792A JP H05251759 A JPH05251759 A JP H05251759A
Authority
JP
Japan
Prior art keywords
current limiting
superconducting
film
layers
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4046827A
Other languages
Japanese (ja)
Inventor
Hidefusa Uchikawa
英興 内川
Shigeru Matsuno
繁 松野
Shinichi Kinouchi
伸一 木ノ内
Sadajiro Mori
貞次郎 森
Tatsuya Hayashi
龍也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4046827A priority Critical patent/JPH05251759A/en
Publication of JPH05251759A publication Critical patent/JPH05251759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To get an oxide superconductive-current limiting conductor the current limiting effect of which is large and in which the voltage between limit terminals is 100 V and over. CONSTITUTION:A Y (YB2Cu3O7-x) oxide superconductive film is made on a base material by electron beam deposition method by introducing oxygen gas. A silver layer is made hereon in vacuum by deposition. Executing these processes three times each, an oxide superconductive current limiting conductor, wherein superconductive layers and silver layers are stacked three layers each alternately, is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物超電導体を用
いて電流を通電する導体および例えば短絡電流などの過
大電流を限流することの可能な限流素子などに用いる高
性能な限流導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance current limiting device for use in a conductor that conducts a current using an oxide superconductor and a current limiting device capable of limiting an excessive current such as a short-circuit current. It is about conductors.

【0002】[0002]

【従来の技術】超電導体は、臨界温度、臨界電流、臨界
磁界のうちいずれかひとつがその値を越えると超電導状
態が破壊され、常電導状態となって電気抵抗が発生、増
大する。この現象を利用して過大電流を限流する超電導
限流導体(素子)に関する研究開発が近年盛んになって
いる。この分野全般の技術に関しては、例えば刊行物
{電気学会論文誌B、110巻、9号、705ページ
(平成2年)}に記載されている。これらの中で、酸化
物超電導体を利用した超電導限流導体が最近注目されて
いる。これに用いる素子の構造は、棒状又は板状の超電
導体に蒸着やペーストなどを用いて、超電導体の一部に
銀、金、インジウム等の金属を付着させることによって
一対の電極を形成した簡単なものである。代表例として
は、刊行物{Advances in Superco
nductivity,691ページ(1988)}に
示されたものがある。これはY−Ba−Cu系の酸化物
超電導粉末の焼結体を用い、ドクターブレード法によっ
てジグザグ状(ミアンダ構造)のシートを形成し、臨界
電流を越える電流が流れた場合の常電導状態における高
抵抗化を利用して限流するものである。しかし、このよ
うな焼結体(線状、棒状、板状のもの)では一般に臨界
電流を高くすることができないため、短絡電流を限流で
きる割合が小さいという欠点があった。
2. Description of the Related Art In a superconductor, when any one of the critical temperature, the critical current, and the critical magnetic field exceeds the value, the superconducting state is destroyed, and the superconducting state is established and the electric resistance is increased. In recent years, research and development on superconducting current limiting conductors (elements) that utilize this phenomenon to limit an excessive current have become active. The technology of this entire field is described in, for example, a publication {Journal of the Institute of Electrical Engineers of Japan, Volume 110, No. 9, p. 705 (1990)}. Among these, superconducting current limiting conductors utilizing oxide superconductors have recently received attention. The structure of the element used for this is a simple structure in which a pair of electrodes are formed by depositing a metal such as silver, gold or indium on a part of the superconductor by using vapor deposition or paste on the rod-shaped or plate-shaped superconductor. It is something. As a typical example, a publication {Advances in Superco
nductivity, page 691 (1988)}. This uses a sintered body of Y-Ba-Cu-based oxide superconducting powder to form a zigzag-like (meaner structure) sheet by the doctor blade method, in a normal conducting state when a current exceeding a critical current flows. The current is limited by utilizing the high resistance. However, such a sintered body (one having a linear shape, a rod shape, or a plate shape) generally has a drawback that the critical current cannot be increased, and thus the short-circuit current can be limited only in a small proportion.

【0003】そこで、基材上に形成された膜状の超電導
体を応用した限流導体が考えられている。成膜技術の進
歩によって、酸化物超電導薄膜において最近非常に大き
な臨界電流を流せるものが得られるようになった。また
膜状のものは線状など前記のものと比較して冷却特性が
良好であり、しかも高抵抗にし易いことなどの限流導体
としての利点もある。ただし、酸化物超電導薄膜を用い
たものでは、膜厚を厚くすると組成ずれを起こしやすい
ことおよび大面積に形成すると組成が不均質になること
などのために、厚く大面積にわたって大きな臨界電流を
もつものを得ることが困難であるという大きな欠点を生
じることが避けられなかった。特に、比較的大面積に成
膜した場合に組成等膜質の不均質性が生じることは、現
状の超電導薄膜作製技術では不可避の課題であり、この
ために通電時に弱い部分が熔断してしまい、限流導体の
限界端子間電圧(熔断するまでの投入パワー又は回路電
圧と等価)を高くすることができなかった。
Therefore, a current limiting conductor to which a film-shaped superconductor formed on a substrate is applied has been considered. Due to the progress of film forming technology, it has recently become possible to obtain an oxide superconducting thin film capable of passing a very large critical current. Further, the film-shaped one has advantages as a current limiting conductor such that it has a better cooling characteristic than the above-mentioned one such as a linear one, and can easily have a high resistance. However, the oxide superconducting thin film has a large critical current over a large area because the composition shift tends to occur when the film thickness is increased and the composition becomes inhomogeneous when formed in a large area. It was unavoidable to give rise to the major drawback of difficulty in obtaining things. In particular, the occurrence of inhomogeneity in film quality such as composition when a film is formed on a relatively large area is an unavoidable problem in the current superconducting thin film manufacturing technology, and therefore a weak portion is melted during energization, It was not possible to increase the limit terminal voltage of the current limiting conductor (equivalent to the input power or circuit voltage until the fuse is cut).

【0004】[0004]

【発明が解決しようとする課題】上記欠点を解消するた
め、素子部の超電導膜上に蒸着等の手法により金属の薄
膜を被覆して、一種の熱的、電気的な安定化を行うこと
が考えられる。このような技術は、例えば刊行物{日本
物理学会編、超電導、276頁、昭和54年(丸善株式
会社)}等に記載されているような従来技術から容易に
考え得るものである。本発明者らは、このような従来技
術の応用による安定化によって限界端子間電圧を数十V
まで高めることが可能であることを見いだした。しか
し、実用レベルとしては不十分で、少なくとも100V
以上の電圧に耐えることが必要であり、限流導体の安定
化性能をさらに高めることが望まれている。
In order to solve the above-mentioned drawbacks, a kind of thermal and electrical stabilization may be performed by coating a metal thin film on the superconducting film of the element portion by a method such as vapor deposition. Conceivable. Such a technique can be easily conceived from the conventional technique described in, for example, a publication {edited by the Physical Society of Japan, Superconductivity, p. 276, 1979 (Maruzen Co., Ltd.)}. The inventors of the present invention have made the limit terminal voltage several tens of V by the stabilization by applying such a conventional technique.
I found that it is possible to raise up to. However, it is insufficient as a practical level, and at least 100V
It is necessary to withstand the above voltage, and it is desired to further improve the stabilizing performance of the current limiting conductor.

【0005】この発明は、かかる課題を解決するために
なされたもので、限流効果が大きく、しかも限界端子間
電圧が100V以上である酸化物超電導限流導体を得る
ことを目的とするものである。
The present invention has been made to solve the above problems, and an object thereof is to obtain an oxide superconducting current limiting conductor having a large current limiting effect and a limit terminal voltage of 100 V or more. is there.

【0006】[0006]

【課題を解決するための手段】この発明の酸化物超電導
限流導体は、基材、およびこの基材に設け、酸化物超電
導層を上記基材側にして、酸化物超電導層と銀層とを交
互にそれぞれ2層以上積層した積層体を備えたものであ
る。
The oxide superconducting current limiting conductor of the present invention is provided on a base material and this base material, and the oxide superconducting layer is on the base material side, and the oxide superconducting layer and the silver layer are provided. And a laminated body in which two or more layers are alternately laminated.

【0007】[0007]

【作用】この発明において、酸化物超電導層を形成し、
その上から銀層を形成して積層構造とする。この際に、
超電導層と銀層とを交互にそれぞれ2層以上積層する
と、超電導限流導体の通電時において、銀層にも電流が
分流されると共に、特に発熱時の熱はけが良くなって、
安定化特性が向上すると考えられる。
In the present invention, an oxide superconducting layer is formed,
A silver layer is formed thereon to form a laminated structure. At this time,
When two or more superconducting layers and two or more silver layers are alternately laminated, when the superconducting current limiting conductor is energized, the current is shunted to the silver layers and the heat dissipation during heat generation is improved.
It is considered that the stabilization characteristics are improved.

【0008】[0008]

【実施例】実施例1.幅5mm×長さ20mmの矩形状
MgO基板を基材として用い、次いで各成分の金属を出
発原料とし、電子ビーム蒸着法によってY系(YBa2
Cu37-X)酸化物超電導膜の形成を行った。この際
に、酸素ガスを導入してガス圧を1.5×10-4Tor
rに調整し、成膜後この雰囲気中において室温まで徐冷
した。その後この上に、1.8×10-6Torrの真空
中において銀層を蒸着によって形成した。上記の工程を
それぞれ3回実施し、超電導層および銀層が交互にそれ
ぞれ3層積層された積層体を基材に設け、この発明の一
実施例の限流導体を製作した。次いで、超電導膜の中央
部を絶縁テープで被覆し、両端部に無電界で金メッキを
施して端子部とし、これにリード線を取り付けた。超電
導層の臨界温度は86K、超電導層および銀層それぞれ
の一層の厚さは、約2000Åおよび100Åであっ
た。
EXAMPLES Example 1. A rectangular MgO substrate having a width of 5 mm and a length of 20 mm is used as a base material, and then each component metal is used as a starting material, and a Y-based (YBa 2
Cu 3 O 7-X) was formed of the oxide superconductor film. At this time, oxygen gas was introduced to adjust the gas pressure to 1.5 × 10 −4 Tor.
The temperature was adjusted to r, and after film formation, the film was gradually cooled to room temperature in this atmosphere. Thereafter, a silver layer was formed thereon by vapor deposition in a vacuum of 1.8 × 10 −6 Torr. Each of the above steps was carried out three times, and a laminated body in which superconducting layers and silver layers were alternately laminated in three layers was provided on the substrate, and a current limiting conductor of one example of the present invention was manufactured. Then, the central portion of the superconducting film was covered with an insulating tape, and both ends were plated with gold without electric field to form terminal portions, and lead wires were attached thereto. The critical temperature of the superconducting layer was 86K, and the thickness of each of the superconducting layer and the silver layer was about 2000Å and 100Å.

【0009】比較例1.実施例1と同じ電子ビーム蒸着
法および同種の基材を用い、実施例1と同一組成で同一
ガス圧の酸素気流中で成膜を行い、約6000ÅのY系
超電導膜を形成して従来の超電導限流導体とした。この
超電導層の臨界温度は86Kであった。
Comparative Example 1. Using the same electron beam evaporation method and the same type of substrate as in Example 1, film formation was performed in the same composition as in Example 1 and in an oxygen gas stream with the same gas pressure to form a Y-based superconducting film of about 6000 Å to obtain the conventional composition. It was a superconducting current limiting conductor. The critical temperature of this superconducting layer was 86K.

【0010】比較例2.比較例1で得られた超電導限流
導体の上に300Åの銀膜を蒸着によって形成して従来
の安定化を施した超電導限流導体とした。この超電導層
の臨界温度は86Kであった。
Comparative Example 2. A 300 Å silver film was formed on the superconducting current limiting conductor obtained in Comparative Example 1 by vapor deposition to obtain a conventional stabilized superconducting current limiting conductor. The critical temperature of this superconducting layer was 86K.

【0011】上記実施例1、比較例1および比較例2の
限流素子について、それぞれ液体窒素中に入れて冷却
し、交流回路(周波数50Hz)を用い、素子にかかる
端子間電圧を変化させて、素子が熔断するまでの限界端
子間電圧を調査した。その結果、実施例1のものは15
5V、比較例2の単に蒸着によって安定化用銀被覆を施
した従来のものは60V、比較例1の全く被覆なしの従
来法のものは6Vであった。すなわち、従来のものはい
ずれも超電導膜が不均質であり、通電時に弱い部分が熱
によって熔断するために、高い端子間電圧を印加できな
かったものと考えられる。これに対して、この発明の一
実施例のものでは、超電導膜が不均質であっても銀層と
の積層により素子の安定化性能が向上したため、100
Vを越える高電圧を印加しても素子が熔断することのな
い限流導体であることが明らかになった。さらに、この
発明の一実施例の限流導体では、上記の限界端子間電圧
155Vの場合に、使用回路の推定短絡電流370Aを
その約1/12以下の30Aに大きく限流することがで
きた。
Each of the current limiting devices of Example 1, Comparative Example 1 and Comparative Example 2 was placed in liquid nitrogen and cooled, and an AC circuit (frequency of 50 Hz) was used to change the terminal voltage applied to the devices. , The limit voltage between terminals until the element was blown was investigated. As a result, in Example 1, 15
The voltage was 5 V, the voltage of Comparative Example 2 was 60 V in the conventional case in which the stabilizing silver coating was applied simply by vapor deposition, and 6 V in Comparative Example 1 in the conventional method without any coating. That is, it is considered that the conventional ones cannot apply a high terminal voltage because the superconducting film is inhomogeneous and the weak portion is melted by heat during energization. On the other hand, according to the embodiment of the present invention, even if the superconducting film is inhomogeneous, the stability performance of the device is improved by the lamination with the silver layer.
It has been revealed that the element is a current limiting conductor that does not melt even when a high voltage exceeding V is applied. Further, in the current limiting conductor of one embodiment of the present invention, in the case of the above limit terminal voltage of 155V, the estimated short circuit current 370A of the used circuit could be greatly limited to 30A which is about 1/12 or less. ..

【0012】実施例2.実施例1と同一サイズの矩形状
SrTiO3基板を基材として用いた。スパッタ法によ
ってYBa2Cu37-X系酸化物超電導層の形成を行っ
た。この際に、酸素ガスを導入してガス圧を1.1×1
-4Torrに調整し、成膜後この雰囲気中において室
温まで徐冷した。超電導層上に1.8×10-6Torr
の真空中において銀層をスパッタによって形成した。上
記の工程を2回行い、超電導層と銀層とを交互にそれぞ
れ2層ずつ積層された積層体を基材に設け、この発明の
他の実施例の限流導体を作製した。次いで、両端部に無
電界で金メッキを施して端子部とし、これにリード線を
取り付けて酸化物超電導限流素子とした。超電導膜の臨
界温度は88K、超電導層および銀層それぞれの一層の
厚さは、約3000Åおよび200Åであった。
Example 2. A rectangular SrTiO 3 substrate having the same size as in Example 1 was used as a base material. A YBa 2 Cu 3 O 7-X- based oxide superconducting layer was formed by the sputtering method. At this time, oxygen gas was introduced to adjust the gas pressure to 1.1 × 1.
It was adjusted to 0 −4 Torr, and after film formation, it was gradually cooled to room temperature in this atmosphere. 1.8 × 10 -6 Torr on superconducting layer
A silver layer was sputtered in vacuum. The above process was performed twice, and a laminated body in which two superconducting layers and two silver layers were alternately laminated was provided on the substrate, and a current limiting conductor of another example of the present invention was produced. Next, both ends were electrolessly plated with gold to form terminals, and lead wires were attached to the terminals to obtain oxide superconducting current limiting devices. The critical temperature of the superconducting film was 88K, and the thickness of each of the superconducting layer and the silver layer was about 3000Å and 200Å.

【0013】比較例3.実施例2と同じスパッタ法およ
び同種の基材を用い、実施例2と同一組成で同一ガス圧
の酸素気流中で成膜を行い、約6000ÅのY系超電導
膜を形成して従来の超電導限流導体とした。この超電導
層の臨界温度は88Kであった。
Comparative Example 3. Using the same sputtering method and the same type of base material as in Example 2, film formation was performed in an oxygen stream of the same composition and gas pressure as in Example 2 to form a Y-based superconducting film of about 6000 Å to obtain a conventional superconducting limit. It was used as a flow conductor. The critical temperature of this superconducting layer was 88K.

【0014】比較例4.比較例3で得られた超電導限流
導体の上に400Åの銀膜を蒸着によって形成して従来
の安定化を施した超電導限流導体とした。この超電導層
の臨界温度は88Kであった。
Comparative Example 4. On the superconducting current limiting conductor obtained in Comparative Example 3, a 400 Å silver film was formed by vapor deposition to obtain a stabilized conventional superconducting current limiting conductor. The critical temperature of this superconducting layer was 88K.

【0015】上記実施例2、比較例3および比較例4の
限流素子について、それぞれ液体窒素中に入れて冷却
し、交流回路(周波数50Hz)を用い、素子にかかる
端子間電圧を変化させて、素子が熔断するまでの限界端
子間電圧を調査した。その結果、実施例2のものは14
7V、比較例4の単に蒸着によって安定化用銀被覆を施
した従来のものは64V、比較例3の全く被覆なしの従
来のものは8Vであった。すなわち、従来のものはいず
れも超電導膜が不均質であり、通電時に弱い部分が熱に
よって熔断するために、高い端子間電圧を印加できなか
ったものと考えられる。これに対して、この発明の他の
実施例のものは、超電導膜が不均質であっても素子の電
気的、熱的な安定化性能が向上したため、100Vを越
える高電圧を印加しても素子が熔断することのない限流
導体であることが明らかになった。さらに、この発明の
他の実施例の限流導体では、上記の限界端子間電圧14
7Vの場合に、使用回路の推定短絡電流360Aをその
約1/13の28Aに大きく限流することができた。
Each of the current limiting elements of Example 2, Comparative Example 3 and Comparative Example 4 was placed in liquid nitrogen and cooled, and an AC circuit (frequency 50 Hz) was used to change the terminal voltage applied to the elements. , The limit voltage between terminals until the element was blown was investigated. As a result, in Example 2, 14
The voltage was 7 V, the voltage of Comparative Example 4 was 64 V in the conventional case where the stabilizing silver coating was applied only by vapor deposition, and the voltage of Comparative Example 3 was 8 V in the conventional case where no coating was applied. That is, it is considered that the conventional ones cannot apply a high terminal voltage because the superconducting film is inhomogeneous and the weak portion is melted by heat during energization. On the other hand, in the other embodiment of the present invention, even if the superconducting film is inhomogeneous, the electric and thermal stabilization performance of the device is improved, and therefore even if a high voltage exceeding 100 V is applied. It was revealed that the element was a current-limiting conductor that never melted. Further, in the current limiting conductor of another embodiment of the present invention, the above-mentioned limit terminal voltage 14
In the case of 7V, the estimated short circuit current 360A of the used circuit could be greatly limited to 28A which is about 1/13 of the estimated short circuit current.

【0016】この発明に係わる基材としては、Al
23、SiO2、MgO、SrTiO3、ZrO2、Y2
3などのセラミックや単結晶、金、銀、ステンレス、
銅、ニッケルなどの金属およびそれらの合金などを使用
することができる。この発明では、超電導層形成後にそ
の上に任意の厚さの銀層を形成する必要があるが、上記
方法としてはいわゆる物理蒸着法、化学気相蒸着法、お
よび電気泳動を利用した電着法などを用いるが、実施例
に示したように、超電導層と銀層の成膜方法を同一の方
法を用いるのが最適である。しかし、この発明では必ず
しもこの限りでなく、超電導層を形成した手法と異なる
成膜手法によって銀層を形成してもよい。超電導層およ
び銀層の厚さも限定するものではなく、任意に選定でき
る。実験によれば、超電導層は一層の厚さが概ね100
〜3000Åが適当であり、銀層は一層の厚さが50〜
500Åが適当である。また、これら両層は、交互にそ
れぞれ2層以上積層すればこの発明の効果が現れること
を確認した。したがって、この発明では実施例で示した
ように2〜3層ずつを積層するのが適当である。
The base material according to the present invention is Al
2 O 3 , SiO 2 , MgO, SrTiO 3 , ZrO 2 , Y 2 O
Ceramics such as 3 and single crystals, gold, silver, stainless steel,
Metals such as copper and nickel and alloys thereof can be used. In the present invention, after forming the superconducting layer, it is necessary to form a silver layer having an arbitrary thickness on the superconducting layer. As the above method, there are so-called physical vapor deposition method, chemical vapor deposition method, and electrophoretic deposition method utilizing electrophoresis. However, as shown in the examples, it is optimal to use the same method for forming the superconducting layer and the silver layer. However, the present invention is not limited to this, and the silver layer may be formed by a film forming method different from the method of forming the superconducting layer. The thicknesses of the superconducting layer and the silver layer are not limited and can be arbitrarily selected. According to experiments, the superconducting layer has a thickness of about 100.
~ 3000Å is suitable, and the thickness of the silver layer is 50 ~.
500Å is suitable. Further, it was confirmed that the effect of the present invention can be obtained by alternately laminating two or more layers of these two layers. Therefore, in the present invention, it is suitable to stack two to three layers as shown in the embodiment.

【0017】この発明の実施例で基材へ酸化物超電導膜
を形成する際には、一般に酸素ガスを導入して成膜を行
う。その酸素ガス圧としては、用いる手法によって大き
く異なるため、任意の値を用いてよい。例えばCVD法
では、一般にガス圧を高く取る必要があり、スパッタ法
や蒸着法ではガス圧は低い(真空度が高い)のが普通で
ある。
In forming the oxide superconducting film on the substrate in the embodiment of the present invention, oxygen gas is generally introduced to form the film. An arbitrary value may be used as the oxygen gas pressure because it greatly differs depending on the method used. For example, in the CVD method, it is generally necessary to have a high gas pressure, and in the sputtering method and the vapor deposition method, the gas pressure is usually low (the degree of vacuum is high).

【0018】この発明の実施例の酸化物超電導体限流導
体を形成した後に、電極端子となる金属被覆を形成する
方法としては、気相成膜法、無電解メッキ法、電解メッ
キ法もしくは圧着法いずれを用いてもよい。電極端子と
しては、銀および金が好ましい。
As a method of forming a metal coating to be an electrode terminal after forming the oxide superconductor current-limiting conductor of the embodiment of the present invention, a vapor phase film forming method, an electroless plating method, an electrolytic plating method, or pressure bonding. Either method may be used. Silver and gold are preferable for the electrode terminals.

【0019】ところで、実施例では酸化物系超電導材料
の一例としてY系材料を用いたが、この発明の効果はY
系に限らずBi系、Tl系、Nd系等のいずれの酸化物
超電導材料においても発現することを実施例と同様の検
討によって確認した。また、上記実施例では限流導体を
限流素子に用いる場合について説明したが、これに限る
ものではなく、例えば通常の電流を通電する導体として
用いた場合には、通電時の抵抗をほとんどゼロにするこ
とができるので、電力ロスがなくしかも過大電流が流れ
たときにはこれを限流することができることは言うまで
もない。
By the way, in the embodiment, the Y-based material is used as an example of the oxide-based superconducting material, but the effect of the present invention is Y.
It was confirmed by the same examination as in the example that it is not limited to the system but is expressed in any oxide superconducting material such as Bi type, Tl type, Nd type and the like. Further, in the above embodiment, the case where the current limiting conductor is used for the current limiting element has been described, but the present invention is not limited to this. It goes without saying that there is no power loss and the current can be limited when an excessive current flows.

【0020】[0020]

【発明の効果】この発明は以上説明したように、基材、
およびこの基材に設け、酸化物超電導層を上記基材側に
して、酸化物超電導層と銀層とを交互にそれぞれ2層以
上積層した積層体を備えたものを用いることにより、限
流効果が大きく、しかも限界端子間電圧が100V以上
である酸化物超電導限流導体を得ることができる。
As described above, the present invention provides a substrate,
And a current limiting effect by using a laminate provided on this substrate and having the oxide superconducting layer on the substrate side and alternately laminating two or more oxide superconducting layers and silver layers, respectively. It is possible to obtain an oxide superconducting current limiting conductor having a large value and a limit terminal voltage of 100 V or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 貞次郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 林 龍也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Sadajiro Mori 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Institute (72) Inventor Tatsuya Hayashi 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材、およびこの基材に設け、酸化物超
電導層を上記基材側にして、酸化物超電導層と銀層とを
交互にそれぞれ2層以上積層した積層体を備えた酸化物
超電導限流導体。
1. An oxidation comprising a base material and a laminate provided on the base material, wherein the oxide superconducting layer is on the base material side and two or more oxide superconducting layers and two or more silver layers are alternately laminated. Superconducting fault current limiter.
JP4046827A 1992-03-04 1992-03-04 Oxide superconductive current limiting conductor Pending JPH05251759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046827A JPH05251759A (en) 1992-03-04 1992-03-04 Oxide superconductive current limiting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046827A JPH05251759A (en) 1992-03-04 1992-03-04 Oxide superconductive current limiting conductor

Publications (1)

Publication Number Publication Date
JPH05251759A true JPH05251759A (en) 1993-09-28

Family

ID=12758164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046827A Pending JPH05251759A (en) 1992-03-04 1992-03-04 Oxide superconductive current limiting conductor

Country Status (1)

Country Link
JP (1) JPH05251759A (en)

Similar Documents

Publication Publication Date Title
US5828291A (en) Multiple compound conductor current-limiting device
JP5806302B2 (en) Multifilament superconductor with reduced AC loss and its formation method
US7763343B2 (en) Mesh-type stabilizer for filamentary coated superconductors
JP2001527298A (en) Superconductor with superconducting material having high critical temperature, method of manufacturing the same, and current limiting device with the superconductor
US8088713B2 (en) Superconducting fault-current limiting element and the process for producing the same
US7048840B1 (en) Method for metal coating the surface of high temperature superconductors
JP2005044636A (en) Superconductive wire rod
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JPH0883932A (en) Current limiting element
JPH05251759A (en) Oxide superconductive current limiting conductor
JPH05251758A (en) Manufacture of oxide superconductive current limiting conductor
JPH05251761A (en) Current limiting conductor using oxide superconductive film
JPH05251762A (en) Oxide superconductive current limiting conductor
JP5764421B2 (en) Oxide superconducting conductor
JPH05250932A (en) Oxide superconductive current limiting conductor and its manufacture
JPH05251760A (en) Oxide superconductive current limiting conductor
JPH05251763A (en) Manufacture of oxide superconductive current limiting conductor
JP3155558B2 (en) Oxide superconducting wire
JP2003173718A (en) Low resistance compound conductor and its manufacturing method
CA2177169C (en) Current-limiting device
JPH01221810A (en) Oxide superconductive mold and its manufacture
JP2515930B2 (en) Superconducting element
JPH0446098A (en) Superconducting member
JPH0891964A (en) Superconducting oxide compact