JP4112884B2 - Superconducting material - Google Patents

Superconducting material Download PDF

Info

Publication number
JP4112884B2
JP4112884B2 JP2002093241A JP2002093241A JP4112884B2 JP 4112884 B2 JP4112884 B2 JP 4112884B2 JP 2002093241 A JP2002093241 A JP 2002093241A JP 2002093241 A JP2002093241 A JP 2002093241A JP 4112884 B2 JP4112884 B2 JP 4112884B2
Authority
JP
Japan
Prior art keywords
thin film
oxide
electrode
superconducting
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002093241A
Other languages
Japanese (ja)
Other versions
JP2003298129A (en
Inventor
由紀 工藤
宏 久保田
久士 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002093241A priority Critical patent/JP4112884B2/en
Publication of JP2003298129A publication Critical patent/JP2003298129A/en
Application granted granted Critical
Publication of JP4112884B2 publication Critical patent/JP4112884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物超電導薄膜を用いた限流素子、限流ヒューズ、電流リード、永久電流スイッチ、線材を複数接続した超電導部材に関する。
【0002】
【従来の技術】
Y系やBi系などの酸化物超電導体は冷媒として安価な液体窒素を利用できるため、超電導ケーブルや限流器などの電力応用を目指した開発が積極的に進められている。その中でも、酸化物超電導体と格子定数の近い酸化物単結晶基材上に設けられた酸化物超電導薄膜は結晶配向が単結晶的にそろっているため、106A/cm2オーダーの高い臨界電流密度を持つという特徴がある。これにより、高い臨界電流を得るために必要な膜厚を薄くでき、常電導状態に転移した際の単位長さ当りの発生抵抗を大きくすることできる。そのため、近年、酸化物単結晶基材上に設けられた酸化物超電導薄膜は、超電導状態から常電導状態への転移(クエンチ)という抵抗の急激な増加を利用して電力系統の事故電流を抑制する限流素子などの電流制御用超電導素子への応用が注目を集めている。
【0003】
ところで、電力システムの定格容量は大きいため、実用レベルの限流素子においては3〜5m2程度の大面積の超電導薄膜が使用されると想定される。しかしながら、現在、酸化物基材の大きさや超電導薄膜を作製する成膜装置の大きさにより、超電導薄膜1枚の大きさは10〜20cmφ程度に制限されている。そのため、多数の超電導薄膜を直列および並列接続させることが必要である。このような接続の際にはまず、接続により超電導特性の劣化を生じないことが重要である。また、通常通電時のロスを小さくするために、接続により生じる抵抗が小さいことが要求される。さらに、クエンチ時においてはジュール熱により急激に加熱され、その後、超電導状態への復帰時に液体窒素温度まで冷却されるという熱サイクルを繰り返し経験するため、熱サイクルにより接続の劣化がないことも重要である。
【0004】
【発明が解決しようとする課題】
従来、金属系超電導線材やBi系Agシース線材、Y系およびBi系バルク超電導体の接続には主にPbSn合金の半田が用いられていた。しかし、PbSn合金半田を酸化物基材上の酸化物超電導薄膜と線材との接続に適用した場合には、酸化物超電導薄膜上に設けられたAgやAuなどの貴金属電極と反応し、超電導特性を劣化させるという難点があった。また、Pbは有害であり、環境保護の観点からも好ましくない。ここで、本明細書において「半田」とは加熱し溶融させて接続したい材料の一部と反応させることにより電気的な接続を得ることができる低融点金属の総称として用いている。
【0005】
その他、これまでに酸化物超電導薄膜上のAg電極にInを圧着することや(特開平11−204845)、Inを半田に用いて酸化物超電導薄膜のAg電極にリードを接続することも試みられている(特開平5−251761)。
【0006】
しかしながら、本発明者らが酸化物超電導薄膜上のAg電極にInを圧着する方法を追試したところ、接続の剥離がしばしば観測され、接続抵抗が大きくなるという問題があった。
【0007】
また、本発明者らがInを半田として用いる、すなわちInを溶融させて酸化物超電導薄膜上のAg電極と金属線材とを接続する方法を追試したところ、接続抵抗が大きい場合や超電導特性が劣化する場合が観測されたり、接続後、時間の経過とともに超電導特性が劣化するという問題が発生した。これは、InがAg電極と反応し、さらには酸化物超電導薄膜まで拡散して反応したためであると推定される。すなわち、Inは酸化されやすいため、酸化物超電導薄膜の酸素を剥奪して酸化物超電導薄膜の一部が非超電導体に変換される結果、超電導特性が劣化したり、接続抵抗が大きくなったと推定される。
【0008】
また、本発明者らがInを半田として用い酸化物超電導薄膜上のAu電極と金属線材などとの接続を試みたところ、超電導特性の劣化は観測されない反面、接続抵抗が大きかったり、熱サイクルを繰り返した後に接続抵抗が大きくなってしまうという問題が発生した。これは、Auに対するInのぬれ性が悪く、良好な接続が得られにくいため、接続抵抗が大きくなったと推定される。
【0009】
本発明の目的は、酸化物基材上に設けられた酸化物超電導薄膜と金属線材または酸化物超電導線材とを接続した超電導部材において、超電導特性の劣化や熱サイクルによる接続の劣化を防止し、かつ低い接続抵抗を実現することにある。
【0010】
【課題を解決するための手段】
本発明の一態様に係る超電導部材は、酸化物基材上に設けられた酸化物超電導薄膜と;前記酸化物超電導薄膜上に設けられた、Au、AgまたはAgAu合金を含む電極と;前記酸化物超電導薄膜に対して接続される金属線材または酸化物超電導線材と;前記電極と前記線材との間を接続する、Agの添加量が0.5重量%〜10重量%であるInAg合金からなる半田とを有する。
【0011】
本発明の他の態様に係る超電導部材は、酸化物基材上に設けられた酸化物超電導薄膜と;酸化物超電導薄膜上に設けられた、Au層とAg層とを積層した電極と;前記酸化物超電導薄膜に対して接続される金属線材または酸化物超電導線材と;前記電極と前記線材との間を接続する、InまたはInAg合金からなる半田とを有する。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
本発明の一実施形態に係る超電導部材は、酸化物基材上に設けられた酸化物超電導薄膜上に、Au、AgまたはAgAu合金を含む電極を形成し、この電極と金属線材または酸化物超電導線材とを、Agの添加量が0.5重量%〜10重量%であるInAg合金からなる半田で接続したものである。
【0013】
酸化物超電導薄膜上にAu、AgまたはAgAu合金などの貴金属を含む電極を形成すると、酸化物超電導薄膜と貴金属電極との接触抵抗が小さいため、金属線材などと接続したときに接続抵抗を小さくできる。
【0014】
ここで、Ag電極と金属線材などとを接続する半田としてInAg合金を用いた場合、半田に予めAgが添加されているため、電極との反応が少なく、Inが酸化物超電導薄膜と直接反応するのを防止できる。このため、超電導特性の劣化を防止できる。また、電極と酸化物超電導薄膜の界面に非超電導層が生成されないため接続抵抗を小さくできる。
【0015】
上記のようにInとAg電極との反応を抑制するためには、半田として用いるInAg合金中のAg添加量を少なくとも0.5重量%以上にする。一方、InAg合金中のAg添加量が10重量%を超えると、接続抵抗が増加する。これは以下のような理由によると推定される。すなわち、InAg合金中のAg添加量が3重量%以上になると添加量とともに融点が徐々に高くなる傾向がある。このためAg添加量が高いInAg合金では、溶融時の高温下でInが空気中の酸素と反応して酸化インジウムなどの高抵抗体が生成され、その結果として、接続抵抗が大きくなると推定される。したがって、InAg合金中のAg添加量は0.5重量%〜10重量%が好ましく、1重量%〜5重量%がより好ましい。
【0016】
また、Au電極と金属線材などとを接続する半田としてInAg合金を用いた場合、Inを用いた場合に比べて接続抵抗が小さくなることを見出した。これはInよりもInAg合金の方がAu電極に対するぬれ性が高く、良好な接続が得られたためと推定される。
【0017】
なお、以上においてはInAg合金を半田に用いる場合を例に挙げて説明したが、SnAg合金を半田に用いた場合にも上記と同様な効果を得るためには、Ag添加量は0.5重量%〜10重量%が好ましく、1重量%〜5重量%がより好ましい。
【0018】
本発明の他の実施形態に係る超電導部材は、酸化物基材上に設けられた酸化物超電導薄膜上に、Au層とAg層とを積層した電極を形成し、この電極と金属線材または酸化物超電導線材とを、InまたはInAg合金からなる半田で接続したものである。半田として用いられるInまたはInAg合金はAgと反応しやすく、Auと反応しにくいという性質を有する。
【0019】
この実施形態のようにAu層とAg層とを積層した電極を用いた場合には、Ag層を設けないAu層のみの電極と比較して、接続抵抗を一桁程度小さくできることを見出した。これはAg層を設けたことによりInのぬれ性が改善し、良好な接続が得られたためと推定される。また、接続後にも超電導特性の劣化は観測されなかった。これは、AuがAgに比べInと反応しにくいため、Au電極が酸化物超電導薄膜への半田の拡散に対するバリアとして働いたためと推定される。ここで、Auの薄膜成長において、膜厚が薄い場合には島状の成長が生じ、膜厚が厚くなると島同士が接続し層状となることが知られている。したがってAu層をバリアとして機能させるためには、Au層の厚さは層状成長に移行している50nm以上であることが好ましい。一方、Auと酸化物超電導薄膜および酸化物基材との熱膨張係数が異なることに起因する剥離を抑制するためにはAu層の膜厚の上限は10μm以下が好ましい。より好ましいAu層の膜厚の範囲は、100nm〜1μmである。
【0020】
また、半田のぬれ性を改善するためには、Ag層は少なくとも500nm以上の厚さを有することが好ましい。一方、Ag層が厚くなりすぎるとAg層自身が剥離しやすくなるため、厚くても30μm以下が好ましい。より好ましいAg層の膜厚の範囲は、1μm〜10μmである。
【0021】
本発明の実施形態において用いられる酸化物超電導体は特に限定されないが、例えば、下記の一般式で示される酸化物超電導体が挙げられる。
【0022】
La2-xAExCuO4(式中、AEはBa、SrおよびCaからなる群より選択される少なくとも1種の元素であり、xは0.02≦x≦0.08を満足する数である)
REBa2Cu37- δ(式中、REはY、Sc、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luなどの希土類元素から選択される少なくとも一種の元素であり、δは酸素欠損を表し、通常1以下の数である)
Bi2Sr2Ca1Cu28+d
Bi2Sr2Ca2Cu310+d
Bi2Sr2Ca3Cu4O12+d
Tl2Ba2Ca1Cu27+d
Tl2Ba2Ca2Cu310+d
Tl2Ba2Ca2Cu39+d
(上記各式中、dは酸素欠損の微量な変動を表す。なお、BiおよびTlの一部はPbで、Sr、Ca、Baの一部はRE元素で置換可能である)。
【0023】
本発明の実施形態において、超電導薄膜の形成方法としては、例えば蒸着法、スパッタ法、レーザー蒸着法、CVD法、MOD法、LPE法などの各種薄膜および厚膜形成法を適用することが可能である。本発明の実施形態において、AgやAuなどの貴金属電極の形成方法としては、蒸着法、スパッタ法、溶射法などの各種薄膜形成法が適用可能である。貴金属電極と超電導薄膜との接触抵抗を小さくするためには超電導薄膜形成後に空気中に曝すことなく引き続いて電極を作製することが好ましい。超電導薄膜形成後に成膜装置から取り出し空気中に曝した場合、超電導薄膜表面に炭酸ガスや水分などが付着し、表面近傍の超電導特性が劣化することがある。炭酸ガスや水分などが付着した面に電極を作製すると、電極と超電導薄膜との接触抵抗が大きくなったり、超電導特性が大幅に劣化してしまうおそれがある。このような炭酸ガスや水分などを除去するためには、電極作製直前に酸素雰囲気中で熱処理を行うことが効果的である。この熱処理温度は200℃から600℃の範囲であることが好ましく、400℃から550℃であることがより好ましい。熱処理は電気炉中で行ってもよいし、電極作製用の成膜装置内で行ってもよい。また、超電導薄膜の酸素量を補充するために熱処理の雰囲気ガスとして酸素を用いることが好ましいが、真空中においても炭酸ガスや水分などを除去する効果が得られる。さらに、電極作製後に酸素雰囲気中で、熱処理を行うことが接触抵抗の低減に効果的である。この熱処理の温度は350℃から600℃の範囲であることが好ましく、400℃から550℃であることがより好ましい。
【0024】
本発明の実施形態において、半田付けの方法としては一般的な半田ごてを使用する方法を用いることができる。また、温度制御されたホットプレートなどを適用して半田付けすると、広い面積を均一に接続することが可能である。また、接続の際、接続部に冶具などにより圧力を加えることにより、半田層を薄くすることが可能である。半田層は接続抵抗を小さくするためにはできるだけ薄い方がよく、その厚さは300μm以下が好ましく、100μm以下がより好ましい。また、半田層は酸化物超電導薄膜および酸化物基材と金属線材または酸化物超電導線材との熱膨張係数の違いによる歪を緩和させる働きも担うため、少なくとも10μm以上の厚さが好ましい。接続の際にInの酸化を抑制するためには窒素雰囲気などの非酸化雰囲気中で接続を行うことが好ましく、グローブボックス中で接続してもよい。なお、本発明の実施形態において用いられるInAg合金またはSnAg合金の半田には、融点の低減のためにBi、Cu、Sbなどの元素を微量に添加してもよい。また、半田が直接、超電導薄膜に触れないよう、貴金属電極の面積は接続面の面積より大きいことが好ましい。半田の染み出しを考慮すると、貴金属電極の面積は接続面の周囲10μm以上の幅で大きいことが好ましい。電極の大きさに特に上限はないが、クエンチ時に超電導素子が発生する抵抗を大きくするためには、電極を不必要に大きくしないことが好ましい。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0026】
[実施例1]
図1は本発明の一実施形態に係る超伝導部材の斜視図であり、図2は図1に示される超電導部材の接続部の横断面図である。まず、酸化物基材1として10mm幅×120mm長×1mm厚のサファイアを用意し、レーザー蒸着法を用いて、CeO2バッファ層を約40nmの厚さで成膜した後、YBa2Cu37- δで表される酸化物超電導薄膜2を約300nmの厚さで成膜した。なお、サファイア基材をホルダーにより保持する必要があるため、基材端部から0.5mmの領域には超電導薄膜は成長させていない。その後、メタルマスクを用いて長手方向の両端10mm×10mmにスパッタ法により2μm厚のAg電極3を成膜し、電気炉を用いて酸素雰囲気中の熱処理を行った。次に、この超電導薄膜を140〜220℃に加熱し、Ag電極部にInAg半田の粒と電流リード5を重ねて置き、半田が溶融した後、電流リード5上に重石をのせて圧力を加え、その状態で冷却して半田4を固化させた。
【0027】
本実施例においては、Ag添加量が0.5重量%、3重量%、または10重量%である3種のInAg半田のうちいずれかを用いた。また、接続部の抵抗のみを測定するため、電流リード5として液体窒素中で超電導状態を示すBi系Agシース線材を用いた。接続面におけるBi系Agシース線材の大きさは5mm幅×8mm長であり、Ag電極の大きさは10mm×10mmと前者の寸法より大きくした。光学顕微鏡を用いた接続状態の観察により、半田が接続面よりしみ出している部分があるものの、Ag電極の大きさより小さいことを確認した。
【0028】
得られた超電導部材を液体窒素で冷却し、4端子法により臨界電流密度と接続抵抗を測定した。また、熱サイクルの影響を調べるため、測定後に室温まで昇温し、再び液体窒素で冷却して測定を行うという繰り返し試験も行った。さらに、大電流を通電し酸化物超電導薄膜をクエンチさせ限流動作の影響も調べた。その結果、臨界電流密度は2×106A/cm2〜3×106A/cm2、接続抵抗は2×10-8Ωcm2〜8×10-8Ωcm2という良好な値を示し、繰り返し試験後および限流動作後に、臨界電流密度と接続抵抗が変化しないことを確認した。
【0029】
また、後述の比較例1で述べるようにPbSn半田の場合には繰り返し試験後に接続抵抗の増加が見られたが、本実施例においては繰り返し試験後にも接続抵抗の増加は観測されなかった。これはInAgが液体窒素温度においても軟らかいため、酸化物とBi系Agシース線材との熱膨張係数の違いによる歪を緩和する役目を果たしていると推定される。なお、Ag添加量が3重量%であるInAg合金を用いた場合に接続抵抗が最も小さいことを見出した。さらに、1ヶ月後に同様な測定を行い、臨界電流密度や接続抵抗の値に経時変化がないことを確認した。
【0030】
参考例2
実施例1と同様な方法により、酸化物超電導薄膜上に形成したAg電極とBi系Agシース線材とを、半田としてAg添加量が0.5重量%、3重量%または10重量%である3種のSnAg合金のいずれかを用いて接続した。接続の際、試料を220〜300℃に加熱した。
【0031】
得られた超電導部材を液体窒素中にて冷却し臨界電流密度と接続抵抗を評価し結果、臨界電流密度は1.5×106A/cm2〜2×106A/cm2、接続抵抗は5×10-8Ωcm2〜15×10-8Ωcm2という良好な値を示した。本実施例では、実施例1のようにInAg合金を用いた場合に比べて臨界電流密度が低かった。これは、SnAg合金の融点が220〜300℃であり、InAg合金の融点140〜200℃に比べて高いため、超電導薄膜の酸素が抜けやすくなり、臨界温度が低下したためと推定される。
【0032】
[実施例3]
本実施例では図3に示すように、合金上の酸化物基材上に作製されたYBa2Cu37- δで表される酸化物超電導薄膜線材同士の接続を行った。まず、圧延加工を施した約100μm厚のNi合金上に蒸着法により1μm厚のCeO2酸化物層を設けた基材8に、レーザー蒸着法により1μm厚のYBa2Cu37- δで表される酸化物超電導薄膜2を作製した。CeO2酸化物層はNi合金と酸化物超電導体との反応を防止するとともに、Ni合金と酸化物超電導体の格子定数の違いを緩和させる役目も担っている。次に、スパッタ法により10μm厚のAg層7を酸化物超電導薄膜の全面を覆うように成膜して酸化物超電導薄膜線材を構成した。同様な製造方法で2本の酸化物超電導線材を作製した。そして、図3に示すようにそれぞれの線材のAg層7を向かい合わせ160℃に加熱し、半田4としてInAg合金を用いて接続した。
【0033】
得られた超電導部材を液体窒素中で冷却し、接続部の接続抵抗と臨界電流密度を4端子法により測定したところ、接続抵抗は5×10-8Acm2と小さい値を示し、臨界電流密度は1×106A/cm2と大きな値を示した。また、熱サイクルを繰り返した後にも接続抵抗と臨界電流密度の変化はなかった。
【0034】
[実施例4]
図4は本発明の他の実施形態に係る超伝導部材の斜視図であり、図5は図4に示される超電導部材の接続部の横断面図である。実施例1と同様に酸化物基材1としてサファイアを用い、レーザー蒸着法により約40nm厚のCeO2バッファ層および約300nm厚のYBa2Cu37- δ超電導薄膜2を順次成膜した。次に、基板温度を室温まで冷却した後、空気中に曝すことなく蒸着法により超電導薄膜全面に約300nm厚のAu膜を成膜した。このAu膜上にフォトレジストを形成してパターニングを行い、長手方向の両端10mm×10mmのみに電極としてのAu層6を残し、その他の領域のAuをエッチングした。次に、Au層6上に約2μm厚のAg層7をスパッタ法により成膜した。このAg層7の面積は8mm×9mmとAu層6より若干小さくした。この超電導薄膜2を160℃に加熱し、Ag層7上にInまたはInAg半田の粒と電流リード5となるBi系Agシース線材を重ねて置き、半田が溶融した後に重石をのせて圧力を加えた。この状態で冷却して半田4を固化させた。
【0035】
本実施例においては、Ag添加量が0重量%である純In、またはAg添加量が0.5重量%、3重量%もしくは10重量%であるInAg合金の4種のうちいずれかの半田を用いた。なお、半田4の厚さは約50μmであった。
【0036】
得られた超電導部材を液体窒素で冷却し4端子法により臨界電流密度と接続抵抗を測定した。また、測定後に室温まで昇温し、再び液体窒素温度まで冷却して測定を行うという繰り返し試験や、大電流を通電しクエンチさせる限流試験も行った。その結果、臨界電流密度は2×106A/cm2〜3×106A/cm2という良好な値を示し、繰り返し試験後や限流試験後にも変化がないことや、1ヶ月後にも変化がないことを確認した。
【0037】
接続抵抗については、以下のような結果が得られた。Ag添加量が0重量%すなわち純In(純度99.99%)の半田を用いた場合、後述の比較例3で示したAg層がない場合に比べて小さいものの、接続抵抗は2×10-7Ωcm2と若干大きい値であった。一方、Ag添加量が0.5重量%〜10重量%であるInAg合金の半田を用いた場合、接続抵抗は2×10-8Ωcm2〜5×10-8Ωcm2という良好な値を示した。また、繰り返し試験後や限流試験後にも、接続抵抗値が変化しないこと、1ヶ月後に同様な測定を行っても経時変化がないことを確認した。
【0038】
参考例5
実施例3と同様な方法により酸化物超電導薄膜2を作製し、約300nm厚のAu層6と約2μmのAg層7とを積層した電極を設け、SnまたはSnAg合金の半田を用いて接続した。本実施例においては、Ag添加量が0重量%である純Sn、またはAg添加量が0.5重量%、3重量%もしくは10重量%であるSnAg合金の4種のうちいずれかの半田を用いた。
【0039】
得られた超電導部材を液体窒素で冷却し4端子法により臨界電流密度と接続抵抗を測定した。臨界電流密度は1.5×106A/cm2〜2×106A/cm2という値を示した。Ag添加量が0重量%すなわち純Sn(純度99.99%)の半田を用いた場合、接続抵抗は4×10-7Ωcm2と若干大きい値であった。Ag添加量が0.5重量%〜10重量%であるSnAg合金の半田を用いた場合、接続抵抗は5×10-8Ωcm2〜1.5×10-7Ωcm2という値を示した。
【0040】
[比較例1]
実施例1と同様な方法によって作製した酸化物超電導薄膜上の約2μm厚のAg電極とBi系Agシース線材とを、PbSn半田を用いて接続した。この超電導部材を液体窒素中で冷却し、臨界電流密度を測定しようとしたところ、超電導状態になっていないことがわかった。これは、PbがAg電極と反応し、超電導薄膜まで拡散し反応して非超電導層が生成されたためであると推定される。そこで、Ag電極の厚さを約10μmと厚くしたが、接続後の臨界電流密度は103A/cm2台と小さな値であった。また、液体窒素中の冷却と室温までの昇温を繰り返し行ったところ、接続抵抗が増加したうえ、一部で剥離してしまう部分もあった。これは、PbSn合金が硬いため熱歪を緩和することができなかったためと推定される。
【0041】
[比較例2]
実施例1と同様な方法によって作製した酸化物超電導薄膜上の2μm厚のAg電極とBi系Agシース線材とを、In(純度99.99%)を半田として用いて接続した。接続の際の加熱温度は160℃とし、同一条件で5個の試料を作製した。次に、これらの試料を液体窒素中で冷却し、臨界電流密度と接続抵抗を測定したところ、臨界電流密度が1×104A/cm2〜2×104A/cm2と低い値を示し、接続抵抗は5×10-7Ωcm2〜1×10-6Ωcm2と大きい値を示した。これはInと電極材であるAgとが反応し、超電導薄膜へInが拡散してしまったことが原因と推定される。Inは酸化されやすいため超電導体の酸素を剥奪し非超電導層が生成され、その結果として臨界電流密度が低くなったと推定される。
【0042】
そこで、Ag電極の厚さを10μmと厚くした試料を5個作製し、同様な測定を行った。その結果、3個の試料は臨界電流密度が1×106A/cm2以上の値を示したが、2個の試料は104〜105A/cm2と低い値を示した。また、接続抵抗は5×10-8Ωcm2〜1×10-6Ωcm2とばらつきが大きかった。さらに、1ヶ月後に同様な測定を行ったところ、臨界電流密度が低下していた。
【0043】
[比較例3]
実施例3と同様な方法により作製した超電導薄膜上に設けられた厚さ約300nmのAu電極とBi系Agシース線材とを、Inを半田として用いて接続した。同一条件で5個の試料を作製した。これらの試料を液体窒素中で冷却し、臨界電流密度と接続抵抗を測定したところ、臨界電流密度は2×106A/cm2〜3×106A/cm2と高い値を示したが、接続抵抗が1×10-7Ωcm2〜1×10-6Ωcm2と大きい値を示した。また、液体窒素温度と室温までの熱サイクルを繰り返した後、同様な測定を行ったところ、臨界電流密度に変化はなかったが、接続抵抗が大きくなることが分かった。
【0044】
なお、以上の実施例においては、接続抵抗のみを測定するために酸化物超電導薄膜にBi系Agシース線材を接続した場合を例に挙げて主として説明したが、合金基材上に成膜された超電導薄膜線材を接続する場合や、Cu合金やAg合金などの一般的な金属線材を接続する場合においても同じく効果が得られる。また、酸化物超電導薄膜同士、合金基材上に設けられた酸化物超電導線材同士、Bi系Agシース線材同士といった同種の接続においても同じく効果があることはいうまでもない。
【0045】
【発明の効果】
以上詳述したように本発明によれば、酸化物基材上に設けられた酸化物超電導薄膜と金属線材または酸化物超電導線材とを接続した超電導部材において、超電導特性の劣化や熱サイクルによる接続の劣化を防止し、かつ低い接続抵抗を実現できる。
【図面の簡単な説明】
【図1】実施例1の超電導部材を示す斜視図。
【図2】図1の超電導部材の横断面図。
【図3】実施例3の超電導部材を示す斜視図。
【図4】実施例4の超電導部材を示す斜視図。
【図5】図4の超電導部材の横断面図。
【符号の説明】
1…酸化物基材
2…酸化物超電導薄膜
3…Ag電極
4…半田
5…電極リード
6…Au層
7…Ag層
8…基材(Ni合金/CeO2酸化物層)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current limiting element, a current limiting fuse, a current lead, a permanent current switch, and a superconducting member in which a plurality of wires are connected using an oxide superconducting thin film.
[0002]
[Prior art]
Since oxide superconductors such as Y-based and Bi-based materials can use inexpensive liquid nitrogen as a refrigerant, development aimed at power applications such as superconducting cables and current limiters is being actively promoted. Among them, since the oxide superconducting thin film provided on the oxide single crystal base material having a lattice constant close to that of the oxide superconductor has a single crystal orientation, 106A / cm2It has the characteristic of having a high critical current density of the order. As a result, the film thickness necessary for obtaining a high critical current can be reduced, and the generated resistance per unit length when transitioning to the normal conducting state can be increased. Therefore, in recent years, the oxide superconducting thin film provided on the oxide single crystal substrate suppresses the electric power system accident current by utilizing the rapid increase in resistance, ie, the transition from the superconducting state to the normal conducting state (quenching). Applications to current control superconducting elements such as current limiting elements are attracting attention.
[0003]
By the way, since the rated capacity of the power system is large, in a current-limiting element at a practical level, 3-5 m2It is assumed that a superconducting thin film having a large area is used. However, at present, the size of one superconducting thin film is limited to about 10 to 20 cmφ depending on the size of the oxide substrate and the size of the film forming apparatus for producing the superconducting thin film. Therefore, it is necessary to connect a large number of superconducting thin films in series and in parallel. At the time of such connection, it is important that the superconducting characteristics are not deteriorated by the connection. Further, in order to reduce the loss during normal energization, it is required that the resistance generated by the connection is small. In addition, it is important that there is no deterioration of the connection due to the thermal cycle because it is repeatedly heated by Joule heat at the time of quenching and then repeatedly cooled to liquid nitrogen temperature when returning to the superconducting state. is there.
[0004]
[Problems to be solved by the invention]
Conventionally, PbSn alloy solder has been mainly used to connect metallic superconducting wires, Bi-based Ag sheathed wires, Y-based and Bi-based bulk superconductors. However, when PbSn alloy solder is applied to the connection between the oxide superconducting thin film on the oxide substrate and the wire, it reacts with a noble metal electrode such as Ag or Au provided on the oxide superconducting thin film, and the superconducting properties There was a difficulty of deteriorating. Moreover, Pb is harmful and is not preferable from the viewpoint of environmental protection. In this specification, “solder” is used as a general term for low-melting-point metals that can be electrically connected by reacting with a part of a material to be connected by heating and melting.
[0005]
In addition, it has been attempted to press-bond In to an Ag electrode on an oxide superconducting thin film (Japanese Patent Laid-Open No. 11-204845) or connect a lead to an Ag electrode of an oxide superconducting thin film using In as solder. (Japanese Patent Laid-Open No. 5-251761).
[0006]
However, when the present inventors further tried the method of pressure-bonding In to the Ag electrode on the oxide superconducting thin film, there was a problem that connection peeling was often observed and the connection resistance was increased.
[0007]
In addition, when the present inventors re-examined the method of using In as solder, that is, by melting In and connecting the Ag electrode on the oxide superconducting thin film and the metal wire, the connection resistance is large or the superconducting characteristics deteriorate. In some cases, the superconducting properties deteriorate with the passage of time. This is presumably because In reacted with the Ag electrode and further diffused and reacted to the oxide superconducting thin film. In other words, since In is easily oxidized, oxygen in the oxide superconducting thin film is stripped and a part of the oxide superconducting thin film is converted to a non-superconductor, resulting in degradation of superconducting properties and increased connection resistance. Is done.
[0008]
In addition, when the inventors tried to connect the Au electrode on the oxide superconducting thin film to a metal wire using In as solder, the superconducting property was not observed to be deteriorated, but the connection resistance was large or the thermal cycle was reduced. There was a problem that the connection resistance would increase after repeating. This is presumed that the connection resistance was increased because the wettability of In with Au was poor and good connection was difficult to obtain.
[0009]
The purpose of the present invention is to prevent deterioration of superconducting properties and connection due to thermal cycling in a superconducting member in which an oxide superconducting thin film provided on an oxide substrate and a metal wire or an oxide superconducting wire are connected. In addition, it is to realize a low connection resistance.
[0010]
[Means for Solving the Problems]
  A superconducting member according to an aspect of the present invention includes an oxide superconducting thin film provided on an oxide base; an electrode including Au, Ag, or an AgAu alloy provided on the oxide superconducting thin film; A metal wire or an oxide superconducting wire to be connected to the superconducting thin film; an InAg alloy having an additive amount of Ag of 0.5 wt% to 10 wt% connecting between the electrode and the wireConsist ofWith solder.
[0011]
  A superconducting member according to another aspect of the present invention includes an oxide superconducting thin film provided on an oxide substrate; an electrode provided on the oxide superconducting thin film and having an Au layer and an Ag layer laminated; A metal wire or oxide superconducting wire connected to the oxide superconducting thin film; and an In or InAg alloy connecting between the electrode and the wireConsist ofWith solder.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below.
  A superconducting member according to an embodiment of the present invention is formed by forming an electrode containing Au, Ag or an AgAu alloy on an oxide superconducting thin film provided on an oxide substrate, and the electrode and a metal wire or an oxide superconducting material. InAg alloy in which the addition amount of Ag is 0.5 wt% to 10 wt%Consist ofIt is connected with solder.
[0013]
When an electrode containing a noble metal such as Au, Ag or an AgAu alloy is formed on the oxide superconducting thin film, the contact resistance between the oxide superconducting thin film and the noble metal electrode is small, so that the connection resistance can be reduced when connected to a metal wire or the like. .
[0014]
Here, when an InAg alloy is used as a solder for connecting an Ag electrode to a metal wire or the like, since Ag is added to the solder in advance, there is little reaction with the electrode, and In directly reacts with the oxide superconducting thin film. Can be prevented. For this reason, deterioration of superconducting characteristics can be prevented. Further, since a non-superconducting layer is not generated at the interface between the electrode and the oxide superconducting thin film, the connection resistance can be reduced.
[0015]
In order to suppress the reaction between In and the Ag electrode as described above, the amount of Ag added in the InAg alloy used as solder is set to at least 0.5 wt% or more. On the other hand, when the amount of Ag added to the InAg alloy exceeds 10% by weight, the connection resistance increases. This is presumed to be due to the following reason. That is, when the added amount of Ag in the InAg alloy is 3% by weight or more, the melting point tends to gradually increase with the added amount. For this reason, in an InAg alloy with a high Ag addition amount, In reacts with oxygen in the air at a high temperature at the time of melting, a high resistance body such as indium oxide is generated, and as a result, the connection resistance is estimated to increase. . Accordingly, the amount of Ag added to the InAg alloy is preferably 0.5% by weight to 10% by weight, and more preferably 1% by weight to 5% by weight.
[0016]
Further, it has been found that when an InAg alloy is used as a solder for connecting an Au electrode to a metal wire or the like, the connection resistance is reduced as compared with the case where In is used. This is presumably because the InAg alloy has higher wettability to the Au electrode than In, and a good connection was obtained.
[0017]
In the above description, the case where the InAg alloy is used for the solder has been described as an example. However, in order to obtain the same effect as described above even when the SnAg alloy is used for the solder, the Ag addition amount is 0.5 wt. % To 10% by weight is preferable, and 1% to 5% by weight is more preferable.
[0018]
  In a superconducting member according to another embodiment of the present invention, an electrode in which an Au layer and an Ag layer are stacked is formed on an oxide superconducting thin film provided on an oxide substrate, and the electrode and a metal wire or an oxidation material are formed. Superconducting wire with In or InAg alloyConsist ofIt is connected with solder. In or InAg alloy used as solder has a property that it easily reacts with Ag and hardly reacts with Au.
[0019]
  It has been found that when an electrode in which an Au layer and an Ag layer are stacked as in this embodiment is used, the connection resistance can be reduced by an order of magnitude compared to an electrode having only an Au layer without an Ag layer. This is because the Ag layer was providedInThis is presumably because the wettability was improved and a good connection was obtained. In addition, no deterioration of superconducting properties was observed after connection. This is because Au compared to AgInThis is presumably because the Au electrode worked as a barrier against the diffusion of solder to the oxide superconducting thin film. Here, in the thin film growth of Au, it is known that island-like growth occurs when the film thickness is small, and islands are connected and become layered when the film thickness is thick. Therefore, in order for the Au layer to function as a barrier, the thickness of the Au layer is preferably 50 nm or more, which has shifted to layer growth. On the other hand, the upper limit of the film thickness of the Au layer is preferably 10 μm or less in order to suppress peeling due to the difference in thermal expansion coefficient between Au, the oxide superconducting thin film, and the oxide base material. A more preferable range of the thickness of the Au layer is 100 nm to 1 μm.
[0020]
In order to improve the wettability of the solder, the Ag layer preferably has a thickness of at least 500 nm. On the other hand, if the Ag layer becomes too thick, the Ag layer itself tends to peel off. A more preferable range of the thickness of the Ag layer is 1 μm to 10 μm.
[0021]
The oxide superconductor used in the embodiment of the present invention is not particularly limited, and examples thereof include oxide superconductors represented by the following general formula.
[0022]
La2-xAExCuOFour(Wherein AE is at least one element selected from the group consisting of Ba, Sr and Ca, and x is a number satisfying 0.02 ≦ x ≦ 0.08)
REBa2CuThreeO7- δ(Wherein RE is at least one element selected from rare earth elements such as Y, Sc, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and δ is oxygen deficient. And is usually a number of 1 or less)
Bi2Sr2Ca1Cu2O8 + d
Bi2Sr2Ca2CuThreeO10 + d
Bi2Sr2CaThreeCu4O12 + d
Tl2Ba2Ca1Cu2O7 + d
Tl2Ba2Ca2CuThreeO10 + d
Tl2Ba2Ca2CuThreeO9 + d
(In each of the above formulas, d represents a slight variation in oxygen deficiency. Note that part of Bi and Tl can be replaced with Pb, and part of Sr, Ca, and Ba can be replaced with RE elements).
[0023]
In the embodiment of the present invention, as a method for forming a superconducting thin film, for example, various thin films and thick film forming methods such as vapor deposition, sputtering, laser vapor deposition, CVD, MOD, and LPE can be applied. is there. In the embodiment of the present invention, various thin film forming methods such as a vapor deposition method, a sputtering method, and a thermal spraying method can be applied as a method for forming a noble metal electrode such as Ag or Au. In order to reduce the contact resistance between the noble metal electrode and the superconducting thin film, it is preferable to continuously produce the electrode without exposure to the air after the superconducting thin film is formed. When the superconducting thin film is formed and taken out from the film forming apparatus and exposed to the air, carbon dioxide gas, moisture, etc. may adhere to the surface of the superconducting thin film and the superconducting properties near the surface may deteriorate. If an electrode is fabricated on a surface to which carbon dioxide gas or moisture adheres, the contact resistance between the electrode and the superconducting thin film may increase, or the superconducting characteristics may be significantly degraded. In order to remove such carbon dioxide gas and moisture, it is effective to perform a heat treatment in an oxygen atmosphere immediately before the production of the electrode. The heat treatment temperature is preferably in the range of 200 ° C. to 600 ° C., more preferably 400 ° C. to 550 ° C. The heat treatment may be performed in an electric furnace or may be performed in a film forming apparatus for electrode preparation. In order to supplement the oxygen content of the superconducting thin film, it is preferable to use oxygen as the atmosphere gas for the heat treatment, but the effect of removing carbon dioxide gas, moisture and the like can be obtained even in vacuum. Furthermore, it is effective to reduce the contact resistance by performing heat treatment in an oxygen atmosphere after the electrode is manufactured. The temperature of this heat treatment is preferably in the range of 350 ° C. to 600 ° C., more preferably 400 ° C. to 550 ° C.
[0024]
In the embodiment of the present invention, a general method using a soldering iron can be used as a soldering method. In addition, when a temperature-controlled hot plate or the like is applied and soldered, a wide area can be uniformly connected. In addition, the solder layer can be thinned by applying pressure to the connecting portion with a jig or the like when connecting. The solder layer is preferably as thin as possible in order to reduce the connection resistance, and the thickness is preferably 300 μm or less, and more preferably 100 μm or less. The solder layer also has a thickness of at least 10 μm because it also serves to relieve strain due to the difference in thermal expansion coefficient between the oxide superconducting thin film and the oxide substrate and the metal wire or oxide superconducting wire. In order to suppress In oxidation during the connection, the connection is preferably performed in a non-oxidizing atmosphere such as a nitrogen atmosphere, and may be performed in a glove box. Note that trace amounts of elements such as Bi, Cu, and Sb may be added to the InAg alloy or SnAg alloy solder used in the embodiment of the present invention in order to reduce the melting point. Further, the area of the noble metal electrode is preferably larger than the area of the connection surface so that the solder does not directly touch the superconducting thin film. In consideration of solder exudation, the area of the noble metal electrode is preferably large with a width of 10 μm or more around the connection surface. There is no particular upper limit to the size of the electrode, but it is preferable not to increase the electrode unnecessarily in order to increase the resistance generated by the superconducting element during quenching.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0026]
[Example 1]
FIG. 1 is a perspective view of a superconducting member according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a connecting portion of the superconducting member shown in FIG. First, 10 mm width × 120 mm length × 1 mm thickness sapphire is prepared as the oxide base material 1, and CeO is used by laser vapor deposition.2After forming the buffer layer with a thickness of about 40 nm, YBa2CuThreeO7- δAn oxide superconducting thin film 2 represented by the following formula was formed to a thickness of about 300 nm. In addition, since it is necessary to hold | maintain a sapphire base material with a holder, the superconducting thin film is not grown in the area | region of 0.5 mm from the base-material edge part. Thereafter, an Ag electrode 3 having a thickness of 2 μm was formed by sputtering on both ends 10 mm × 10 mm in the longitudinal direction using a metal mask, and heat treatment was performed in an oxygen atmosphere using an electric furnace. Next, this superconducting thin film is heated to 140 to 220 ° C., and the InAg solder particles and the current lead 5 are placed on the Ag electrode portion. After the solder is melted, pressure is applied on the current lead 5 by placing a weight on it. In this state, the solder 4 was solidified by cooling.
[0027]
In this example, any one of three types of InAg solders with an Ag addition amount of 0.5 wt%, 3 wt%, or 10 wt% was used. Further, in order to measure only the resistance of the connection portion, a Bi-based Ag sheath wire that shows a superconducting state in liquid nitrogen was used as the current lead 5. The size of the Bi-based Ag sheath wire on the connection surface was 5 mm wide × 8 mm long, and the size of the Ag electrode was 10 mm × 10 mm, which was larger than the former dimension. By observing the connection state using an optical microscope, it was confirmed that the solder was exuded from the connection surface but was smaller than the size of the Ag electrode.
[0028]
The obtained superconducting member was cooled with liquid nitrogen, and the critical current density and the connection resistance were measured by a four-terminal method. In addition, in order to investigate the influence of the thermal cycle, a repeated test was performed in which the temperature was raised to room temperature after the measurement and the measurement was again performed by cooling with liquid nitrogen. Furthermore, the influence of current limiting operation was investigated by energizing a large current to quench the oxide superconducting thin film. As a result, the critical current density is 2 × 10.6A / cm2~ 3x106A / cm2Connection resistance is 2 × 10-8Ωcm2~ 8x10-8Ωcm2It was confirmed that the critical current density and the connection resistance did not change after the repeated test and the current limiting operation.
[0029]
Further, as described in Comparative Example 1 described later, in the case of PbSn solder, an increase in connection resistance was observed after the repeated test, but in this example, an increase in connection resistance was not observed after the repeated test. This is presumed that InAg is soft even at the temperature of liquid nitrogen, and thus plays a role of relaxing strain due to the difference in thermal expansion coefficient between the oxide and the Bi-based Ag sheath wire. It was found that the connection resistance was the lowest when an InAg alloy with an Ag addition amount of 3 wt% was used. Further, the same measurement was performed one month later, and it was confirmed that there was no change with time in the values of critical current density and connection resistance.
[0030]
  [Reference example 2]
  In the same manner as in Example 1, an Ag electrode formed on an oxide superconducting thin film and a Bi-based Ag sheath wire are added as solder with an Ag addition amount of 0.5 wt%, 3 wt%, or 10 wt% 3 Connection was made using any of the various SnAg alloys. Upon connection, the sample was heated to 220-300 ° C.
[0031]
The obtained superconducting member was cooled in liquid nitrogen and the critical current density and connection resistance were evaluated. As a result, the critical current density was 1.5 × 106A / cm2~ 2x106A / cm2Connection resistance is 5 × 10-8Ωcm2~ 15 × 10-8Ωcm2A good value was shown. In this example, the critical current density was lower than that in the case of using the InAg alloy as in Example 1. This is presumably because the melting point of the SnAg alloy is 220 to 300 ° C., which is higher than the melting point of the InAg alloy, 140 to 200 ° C., so that oxygen in the superconducting thin film is easily released and the critical temperature is lowered.
[0032]
[Example 3]
In this example, as shown in FIG. 3, YBa produced on an oxide base material on an alloy was used.2CuThreeO7- δThe oxide superconducting thin film wires represented by First, a 1 μm-thick CeO film is formed on a Ni alloy having a thickness of about 100 μm by vapor deposition.2On the base material 8 provided with the oxide layer, YBa having a thickness of 1 μm is formed by laser vapor deposition.2CuThreeO7- δAn oxide superconducting thin film 2 represented by CeO2The oxide layer plays a role of preventing a reaction between the Ni alloy and the oxide superconductor, and relaxing a difference in lattice constant between the Ni alloy and the oxide superconductor. Next, a 10 μm thick Ag layer 7 was formed by sputtering to cover the entire surface of the oxide superconducting thin film to form an oxide superconducting thin film wire. Two oxide superconducting wires were produced by the same manufacturing method. Then, as shown in FIG. 3, the Ag layers 7 of the respective wires were faced to each other and heated to 160 ° C., and were connected using an InAg alloy as the solder 4.
[0033]
When the obtained superconducting member was cooled in liquid nitrogen and the connection resistance and critical current density of the connection part were measured by the four-terminal method, the connection resistance was 5 × 10-8Acm2The critical current density is 1 × 106A / cm2And showed a large value. Also, there was no change in connection resistance and critical current density after repeated thermal cycling.
[0034]
  [Example 4]
  FIG. 4 is a perspective view of a superconducting member according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view of the connecting portion of the superconducting member shown in FIG. As in Example 1, sapphire was used as the oxide substrate 1, and CeO having a thickness of about 40 nm was formed by laser vapor deposition.2Buffer layer and about 300 nm thick YBa2CuThreeO7- δSuperconducting thin film 2 was sequentially formed. Next, after cooling the substrate temperature to room temperature, an Au film having a thickness of about 300 nm was formed on the entire surface of the superconducting thin film by vapor deposition without being exposed to the air. Photoresist is formed on this Au film and patterned, and only electrodes 10 mm × 10 mm at both ends in the longitudinal direction are used as electrodes.Au layer 6Then, Au in other regions was etched. Next, an Ag layer 7 having a thickness of about 2 μm was formed on the Au layer 6 by sputtering. thisAg layer 7Area is 8mm x 9mmAu layer 6A little smaller. This superconducting thin film 2 is heated to 160 ° C.Ag layer 7An In or InAg solder grain and a Bi-based Ag sheath wire to be the current lead 5 were placed on top of each other, and after the solder was melted, a weight was placed and pressure was applied. In this state, the solder 4 was solidified by cooling.
[0035]
In this example, any one of four types of solders, pure In with an Ag addition amount of 0 wt%, or an InAg alloy with an Ag addition amount of 0.5 wt%, 3 wt%, or 10 wt% is used. Using. The thickness of the solder 4 was about 50 μm.
[0036]
The obtained superconducting member was cooled with liquid nitrogen, and the critical current density and connection resistance were measured by a four-terminal method. In addition, a repetitive test in which the temperature was raised to room temperature after the measurement and the measurement was again performed by cooling to the liquid nitrogen temperature and a current-limiting test in which a large current was applied to quench the current were performed. As a result, the critical current density is 2 × 10.6A / cm2~ 3x106A / cm2It was confirmed that there was no change after repeated tests and current limiting tests, and no change after one month.
[0037]
Regarding the connection resistance, the following results were obtained. When a solder with an Ag addition amount of 0% by weight, that is, pure In (purity 99.99%) is used, the connection resistance is 2 × 10, although it is smaller than the case where there is no Ag layer shown in Comparative Example 3 described later.-7Ωcm2It was a slightly large value. On the other hand, when an InAg alloy solder with an Ag addition amount of 0.5 wt% to 10 wt% is used, the connection resistance is 2 × 10-8Ωcm2~ 5x10-8Ωcm2A good value was shown. Further, it was confirmed that the connection resistance value did not change even after the repeated test or the current limiting test and that there was no change with time even if the same measurement was performed one month later.
[0038]
  [Reference Example 5]
  The oxide superconducting thin film 2 was prepared by the same method as in Example 3, and an electrode in which an Au layer 6 having a thickness of about 300 nm and an Ag layer 7 having a thickness of about 2 μm were stacked was provided and connected using Sn or SnAg alloy solder. . In this example, either one of four types of solders, pure Sn with an Ag addition amount of 0 wt%, or SnAg alloy with an Ag addition amount of 0.5 wt%, 3 wt%, or 10 wt% is used. Using.
[0039]
The obtained superconducting member was cooled with liquid nitrogen, and the critical current density and connection resistance were measured by a four-terminal method. Critical current density is 1.5 × 106A / cm2~ 2x106A / cm2The value was shown. When a solder with an Ag addition amount of 0 wt%, that is, pure Sn (purity 99.99%) is used, the connection resistance is 4 × 10-7Ωcm2It was a slightly large value. When SnAg alloy solder having an Ag addition amount of 0.5 wt% to 10 wt% is used, the connection resistance is 5 × 10 5.-8Ωcm2~ 1.5 × 10-7Ωcm2The value was shown.
[0040]
[Comparative Example 1]
An Ag electrode having a thickness of about 2 μm on the oxide superconducting thin film manufactured by the same method as in Example 1 and a Bi-based Ag sheath wire were connected using PbSn solder. When this superconducting member was cooled in liquid nitrogen and an attempt was made to measure the critical current density, it was found that the superconducting member was not in a superconducting state. This is presumably because Pb reacted with the Ag electrode, diffused to the superconducting thin film and reacted to form a non-superconducting layer. Therefore, the thickness of the Ag electrode was increased to about 10 μm, but the critical current density after connection was 10 μm.ThreeA / cm2It was a small value with a table. Moreover, when the cooling in liquid nitrogen and the temperature increase to room temperature were repeatedly performed, the connection resistance increased and there was a part that peeled off partly. This is presumably because the thermal strain could not be relieved because the PbSn alloy was hard.
[0041]
[Comparative Example 2]
A 2 μm-thick Ag electrode on the oxide superconducting thin film produced by the same method as in Example 1 and a Bi-based Ag sheath wire were connected using In (purity 99.99%) as solder. The heating temperature at the time of connection was 160 ° C., and five samples were produced under the same conditions. Next, when these samples were cooled in liquid nitrogen and the critical current density and connection resistance were measured, the critical current density was 1 × 10.FourA / cm2~ 2x10FourA / cm2A low value and a connection resistance of 5 × 10-7Ωcm2~ 1x10-6Ωcm2And showed a large value. It is presumed that this is caused by the reaction of In with Ag as the electrode material and the diffusion of In into the superconducting thin film. Since In is easily oxidized, the oxygen in the superconductor is stripped and a non-superconducting layer is generated, and as a result, it is presumed that the critical current density is lowered.
[0042]
Therefore, five samples with a thick Ag electrode of 10 μm were prepared and the same measurement was performed. As a result, the three samples have a critical current density of 1 × 106A / cm2The above values were shown, but two samples were 10Four-10FiveA / cm2And showed a low value. The connection resistance is 5 × 10-8Ωcm2~ 1x10-6Ωcm2And the variation was large. Furthermore, when the same measurement was performed one month later, the critical current density was reduced.
[0043]
[Comparative Example 3]
An Au electrode having a thickness of about 300 nm provided on a superconducting thin film manufactured by the same method as in Example 3 and a Bi-based Ag sheath wire were connected using In as solder. Five samples were produced under the same conditions. When these samples were cooled in liquid nitrogen and the critical current density and connection resistance were measured, the critical current density was 2 × 10.6A / cm2~ 3x106A / cm2The connection resistance was 1 × 10-7Ωcm2~ 1x10-6Ωcm2And showed a large value. Moreover, after repeating the thermal cycle to liquid nitrogen temperature and room temperature, when the same measurement was performed, it turned out that there is no change in critical current density, but connection resistance becomes large.
[0044]
In the above examples, the case where a Bi-based Ag sheath wire is connected to an oxide superconducting thin film in order to measure only the connection resistance has been mainly described as an example, but the film was formed on an alloy substrate. The same effect can be obtained when a superconducting thin film wire is connected or when a general metal wire such as a Cu alloy or an Ag alloy is connected. Further, it goes without saying that the same effect can be obtained in the same type of connection such as between the oxide superconducting thin films, between the oxide superconducting wires provided on the alloy substrate, and between Bi-based Ag sheathed wires.
[0045]
【The invention's effect】
As described above in detail, according to the present invention, in a superconducting member in which an oxide superconducting thin film provided on an oxide substrate is connected to a metal wire or an oxide superconducting wire, connection due to deterioration of superconducting characteristics or thermal cycle Can be prevented, and a low connection resistance can be realized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a superconducting member of Example 1. FIG.
2 is a cross-sectional view of the superconducting member of FIG.
3 is a perspective view showing a superconducting member of Example 3. FIG.
4 is a perspective view showing a superconducting member of Example 4. FIG.
FIG. 5 is a cross-sectional view of the superconducting member of FIG.
[Explanation of symbols]
1 ... Oxide base material
2 ... Superconducting oxide thin film
3 ... Ag electrode
4 ... Solder
5 ... Electrode lead
6 ... Au layer
7 ... Ag layer
8 ... Base material (Ni alloy / CeO2Oxide layer)

Claims (3)

酸化物基材上に設けられた酸化物超電導薄膜と、
前記酸化物超電導薄膜上に設けられた、Au、AgまたはAgAu合金を含む電極と、
前記酸化物超電導薄膜に対して接続される金属線材または酸化物超電導線材と、
前記電極と前記線材との間を接続する、Agの添加量が0.5重量%〜10重量%であるInAg合金からなる半田と
を有することを特徴とする超電導部材。
An oxide superconducting thin film provided on an oxide substrate;
An electrode comprising Au, Ag or an AgAu alloy provided on the oxide superconducting thin film;
A metal wire or an oxide superconducting wire connected to the oxide superconducting thin film;
A superconducting member comprising: a solder made of an InAg alloy with an addition amount of Ag of 0.5 wt% to 10 wt% connecting between the electrode and the wire.
酸化物基材上に設けられた酸化物超電導薄膜と、
酸化物超電導薄膜上に設けられた、Au層とAg層とを積層した電極と、
前記酸化物超電導薄膜に対して接続される金属線材または酸化物超電導線材と、
前記電極と前記線材との間を接続する、InまたはInAg合金からなる半田と
を有することを特徴とする超電導部材。
An oxide superconducting thin film provided on an oxide substrate;
An electrode provided on an oxide superconducting thin film, in which an Au layer and an Ag layer are stacked;
A metal wire or an oxide superconducting wire connected to the oxide superconducting thin film;
Superconducting member characterized by having solder Metropolitan composed of the electrode and for connecting between the wire, In or InAg alloy.
前記InAg合金中のAgの添加量が10重量%以下であることを特徴とする請求項2に記載の超電導部材。The superconducting member according to claim 2, wherein the addition amount of Ag in the InAg alloy is 10 wt% or less.
JP2002093241A 2002-03-28 2002-03-28 Superconducting material Expired - Lifetime JP4112884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093241A JP4112884B2 (en) 2002-03-28 2002-03-28 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093241A JP4112884B2 (en) 2002-03-28 2002-03-28 Superconducting material

Publications (2)

Publication Number Publication Date
JP2003298129A JP2003298129A (en) 2003-10-17
JP4112884B2 true JP4112884B2 (en) 2008-07-02

Family

ID=29386734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093241A Expired - Lifetime JP4112884B2 (en) 2002-03-28 2002-03-28 Superconducting material

Country Status (1)

Country Link
JP (1) JP4112884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227828A (en) * 2008-11-29 2011-10-26 阿海珐T&D简易股份公司 Fault current limiter with plurality of superconducting elements having insulated, electrically conducting substrates

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340453A (en) * 2004-05-26 2005-12-08 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing oxide high-temperature superconductor high-frequency element
ATE417396T1 (en) * 2006-01-13 2008-12-15 Europ High Temperature Superco CURRENT LIMITER
JP5118412B2 (en) * 2007-08-08 2013-01-16 株式会社神戸製鋼所 Assembled conductor of oxide superconducting wire and method for producing the assembled conductor
JP5065102B2 (en) * 2008-03-07 2012-10-31 公益財団法人鉄道総合技術研究所 Manufacturing method of high-temperature superconducting current lead
JP5421170B2 (en) * 2010-03-30 2014-02-19 株式会社東芝 Superconducting current lead
JP5611886B2 (en) * 2011-04-19 2014-10-22 Jx日鉱日石金属株式会社 Laminated structure and manufacturing method thereof
JP6046036B2 (en) * 2011-05-24 2016-12-14 古河電気工業株式会社 Superconducting element for superconducting fault current limiter, superconducting element manufacturing method for superconducting fault current limiter, and superconducting fault current limiter
JP2013008962A (en) * 2011-05-24 2013-01-10 Furukawa Electric Co Ltd:The Superconducting element, manufacturing method of superconducting element, and superconducting current limiting device
JP5496175B2 (en) * 2011-12-27 2014-05-21 株式会社東芝 Superconducting current lead
GB201401694D0 (en) * 2014-01-31 2014-03-19 Oxford Instr Nanotechnology Tools Ltd Method of joining a superconductor
JP7279723B2 (en) * 2019-02-08 2023-05-23 住友電気工業株式会社 Superconducting wire and persistent current switch
CN110275122B (en) * 2019-04-23 2021-07-13 上海超导科技股份有限公司 Superconducting tape critical current testing device and testing method
CN114221191B (en) * 2022-01-06 2023-12-01 中国科学院电工研究所 Connection method of second-generation high-temperature superconducting tape and connection superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227828A (en) * 2008-11-29 2011-10-26 阿海珐T&D简易股份公司 Fault current limiter with plurality of superconducting elements having insulated, electrically conducting substrates
CN102227828B (en) * 2008-11-29 2013-08-21 阿海珐T&D简易股份公司 Fault current limiter with plurality of superconducting elements having insulated, electrically conducting substrates

Also Published As

Publication number Publication date
JP2003298129A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
CA2617210C (en) Architecture for high temperature superconductor wire
JP4112884B2 (en) Superconducting material
EP0505015B1 (en) Superconducting wire and method of manufacturing the same
EP0371410B1 (en) Joining of high-temperature oxide superconductors
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
US20070015666A1 (en) Mesh-type stabilizer for filamentary coated superconductors
US8470744B2 (en) High temperature superconductor, in particular improved coated conductor
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
RU2518505C1 (en) Strip high-temperature superconductors
US6440904B1 (en) High-temperature superconductor arrangement
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
US20120252679A1 (en) Flux pump
JP2014220194A (en) Oxide superconductive wire material and production method thereof
JP3699884B2 (en) Superconducting current limiting element
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
US20070191232A1 (en) Superconductor Wire Material Having Structure For Inhibiting Crack, Superconductor Power Cable Using The Same And Manufacturing Method Thereof
JP2888650B2 (en) Superconducting member manufacturing method
JP2015011860A (en) Oxide superconductive wire rod and production method thereof
JP2014022228A (en) Oxide superconductive conductor and production method of oxide superconductive conductor, and superconduction device using the same
JPH05251762A (en) Oxide superconductive current limiting conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R151 Written notification of patent or utility model registration

Ref document number: 4112884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

EXPY Cancellation because of completion of term