JP2003257706A - Compensating thermistor composition for making temperature characteristics rectilinear - Google Patents

Compensating thermistor composition for making temperature characteristics rectilinear

Info

Publication number
JP2003257706A
JP2003257706A JP2002058247A JP2002058247A JP2003257706A JP 2003257706 A JP2003257706 A JP 2003257706A JP 2002058247 A JP2002058247 A JP 2002058247A JP 2002058247 A JP2002058247 A JP 2002058247A JP 2003257706 A JP2003257706 A JP 2003257706A
Authority
JP
Japan
Prior art keywords
constant
thermistor
composition
temperature
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002058247A
Other languages
Japanese (ja)
Other versions
JP3996411B2 (en
Inventor
Hirokazu Kobayashi
寛和 小林
Kazuyuki Saito
和志 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002058247A priority Critical patent/JP3996411B2/en
Publication of JP2003257706A publication Critical patent/JP2003257706A/en
Application granted granted Critical
Publication of JP3996411B2 publication Critical patent/JP3996411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NTC thermistor which is capable of making its output characteristics rectilinear as it is used in combination with another NTC thermis tor having a large B constant of 3000 to 5500 K. <P>SOLUTION: This thermistor main composition is represented by a formula, (AxBy)O<SB>3</SB>, wherein A is one element selected out of Ca, Ba, and Sr, B is one element selected from Mn, Co, and Fe, and x and y are so set as to satisfy formulas; 0.8≤x≤1.4, 0.6≤y≤1.2, and x+y=2. At least, one or more elements are selected as additives from a group of Zn, Sm, Co, Mg, Al, Ti, Y, Zr, Nb, Sn, La, and Ta if necessary, and up to a total amount of 0.20 mol% of the selected additives in terms of element is added to the main composition for the formation of the compensating thermistor main composition of making its output temperature characteristics rectilinear. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はNTC(Negat
ive Temperature Coefficie
nt)サーミスタ組成物に係り、特にB定数の大きなN
TCサーミスタと組み合わせてその出力特性を直線化す
る温度特性補償用のNTCサーミスタ組成物を提供する
ものである。
TECHNICAL FIELD The present invention relates to an NTC (Negat).
Ive Temperature Coefficie
nt) Thermistor composition, especially N with large B constant
Provided is an NTC thermistor composition for temperature characteristic compensation, which linearizes the output characteristic in combination with a TC thermistor.

【0002】[0002]

【従来の技術】NTCサーミスタは温度が変化するとそ
の抵抗値が負性変化するため、例えば各種温度センサ等
に使用されている。そしてサーミスタの特性を示す定数
としてB定数が使用されている。B定数は温度変化対応
して抵抗値が変化する程度を示すものであり、これが大
きい程いわゆる温度変化に対する感度が良好のものとし
て取り扱われる。
2. Description of the Related Art An NTC thermistor is used in various temperature sensors, for example, because its resistance value changes negatively when the temperature changes. The B constant is used as a constant indicating the characteristics of the thermistor. The B constant indicates the degree to which the resistance value changes in response to the temperature change, and the larger the B value, the better the sensitivity to so-called temperature change is treated.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のNT
Cサーミスタ組成物のB定数は、3000K〜5500
Kであり、温度に対して抵抗変化がリニアでなく、曲線
である。このため温度測定に際しては、この非直線性を
補正する補償回路を組む必要性があり、高価なものとな
った。
By the way, the conventional NT
The B constant of the C thermistor composition is 3000K to 5500.
K, which is a curve in which the resistance change is not linear with respect to temperature. For this reason, when measuring the temperature, it is necessary to form a compensating circuit for correcting this non-linearity, which is expensive.

【0004】したがって本発明の目的は、高価な温度補
償用回路を使用する必要もなく、しかもワンチップ型
の、温度特性補正用NTCサーミスタを提供することが
可能なNTCサーミスタ組成物を提供することである。
Therefore, an object of the present invention is to provide an NTC thermistor composition capable of providing a one-chip type NTC thermistor for temperature characteristic correction without the need for using an expensive temperature compensating circuit. Is.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、主成分の組成が(Ax・By)O3
表され、 A=Ca、Ba、Srの1つであり B=Mn、Co、Feの1つであり xが0.8≦x≦1.4、yが0.6≦y≦1.2でか
つx+y=2であり、必要に応じて添加物としてZn、
Sm、Co、Mg、Al、Ti、Ni、Y、Zr、N
b、Sn、La、Ta群から選ばれた少なくとも1種以
上を元素換算で合計0.20mol%まで含有すること
を特徴とする温度特性直線化補償用サーミスタ組成物を
提供するものである。
In order to achieve the above object, in the present invention, the composition of the main component is represented by (Ax · By) O 3 , where A = Ca, Ba, Sr and B = One of Mn, Co and Fe, x is 0.8 ≦ x ≦ 1.4, y is 0.6 ≦ y ≦ 1.2 and x + y = 2, and Zn is added as an additive, if necessary.
Sm, Co, Mg, Al, Ti, Ni, Y, Zr, N
The present invention provides a thermistor composition for temperature characteristic linearization compensation, containing at least one selected from the group consisting of b, Sn, La and Ta up to a total of 0.20 mol% in terms of element.

【0006】そしてこれにより、B定数が500K〜2
500Kと小さな値のNTCサーミスタ組成物を得るこ
とができる。これを従来の3000K〜5500Kとい
う大きな値のNTCサーミスタ組成物と接続して使用す
ることにより、温度特性を直線化することができ、しか
もこれらのNTCサーミスタのグリーンシートを積層す
ることによりワンチップ構成とすることができるので、
非常に安価に、使用面積もほとんど増加することなく、
温度特性を直線化することができる。
As a result, the B constant is 500 K to 2
NTC thermistor compositions with values as low as 500K can be obtained. By using this by connecting it to a conventional NTC thermistor composition having a large value of 3000K to 5500K, the temperature characteristics can be linearized, and moreover, the green sheets of these NTC thermistors can be laminated to form a one-chip structure. So you can
Very inexpensive, with almost no increase in the used area,
The temperature characteristic can be linearized.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を説明する。
出発材料として市販のCa、Mn、Co、Ba、Sr、
Fe、Zn、Sm、Mg、Al、Ti、Ni、Y、Z
r、Nb、Sn、La、Taの酸化物を、焼結後の組成
が後掲の表1〜表3に示す通りの組成比になるように秤
量配合し、ボールミルで16時間湿式混合した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described.
Commercially available Ca, Mn, Co, Ba, Sr, as starting materials,
Fe, Zn, Sm, Mg, Al, Ti, Ni, Y, Z
The oxides of r, Nb, Sn, La, and Ta were weighed and mixed so that the composition after sintering would be the composition ratios shown in Tables 1 to 3 below, and wet-mixed for 16 hours in a ball mill.

【0008】その後、脱水乾燥し、乳鉢、乳棒を用いて
粉体にし、これをアルミナ匣鉢に入れ、1000〜14
00℃で2時間焼成する。この焼成体をボールミルで微
粉砕後、脱水乾燥し、バインダーとしてポリビニールア
ルコールを加え、乳鉢、乳棒で顆粒に造粒した後、直径
16mm、厚さ2.5mmの円板状に加圧成形し、2時
間本焼成して試料を得る。このようにして得られた試料
の両面に銀ペーストをスクリーン印刷し、850℃で焼
付けを行い、電極を形成する。
After that, it is dehydrated and dried, made into a powder by using a mortar and a pestle, and put into an alumina mortar, and 1000 to 14
Bake at 00 ° C. for 2 hours. This fired product was finely pulverized with a ball mill, dehydrated and dried, polyvinyl alcohol was added as a binder, and the mixture was granulated into granules with a mortar and pestle, and then pressure-molded into a disc shape having a diameter of 16 mm and a thickness of 2.5 mm. A sample is obtained by firing for 2 hours. Silver paste is screen-printed on both surfaces of the sample thus obtained and baked at 850 ° C. to form electrodes.

【0009】得られた各試料を直流4端子法を用いて2
5℃の抵抗値(R25)と85℃の抵抗値(R85)を
測定し、後述の数式1を用いてB定数(B25/85)
を算出し、後掲の表1〜表3に示す結果を得た。なお×
印は本発明の範囲外のものであることを示す
Each of the obtained samples was subjected to 2
The resistance value at 5 ° C. (R25) and the resistance value at 85 ° C. (R85) were measured, and the B constant (B25 / 85) was calculated by using the following mathematical formula 1.
Was calculated and the results shown in Tables 1 to 3 below were obtained. Note that ×
Mark indicates outside the scope of the present invention

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】これにより明らかな如く、請求項1の範囲
の組成により、B定数が500〜2500Kの低B定数
のNTCサーミスタ組成物を提供できることがわかる。
主成分はペロブスカイト型結晶構造を有するものであ
り、x+y=2であってもxが0.8未満の場合はB定
数が2500Kを超える(No.1、31、39、4
7、55参照)。
As is apparent from the above, it is understood that the composition within the range of claim 1 can provide an NTC thermistor composition having a low B constant of 500 to 2500K.
The main component has a perovskite type crystal structure, and even if x + y = 2, the B constant exceeds 2500K when x is less than 0.8 (No. 1, 31, 39, 4).
7, 55).

【0015】またxが1.4を超えると、これまたB定
数が2500Kを超える(No.5、35、43、5
1、59参照)。
When x exceeds 1.4, the B constant also exceeds 2500K (No. 5, 35, 43, 5).
1, 59).

【0016】yが0.6未満の場合は、B定数が250
0Kを超える(No.5、35、43、51、59参
照)。
When y is less than 0.6, the B constant is 250.
It exceeds 0K (see No. 5, 35, 43, 51, 59).

【0017】yが1.2を超えると、B定数が2500
Kを超える(No.1、31、39、47、55参
照)。
When y exceeds 1.2, the B constant becomes 2500.
K is exceeded (see No. 1, 31, 39, 47, 55).

【0018】添加物の合計量が0.2mol%を超える
と、B定数が500K以下ときわめて小さな値となる
(No.8、11、16、20参照)。
When the total amount of the additives exceeds 0.2 mol%, the B constant becomes 500 K or less, which is a very small value (see Nos. 8, 11, 16 and 20).

【0019】このような低B定数特性を有する本発明に
よるNTCサーミスタにより、従来の高B定数特性を有
するNTCサーミスタの温度特性の直線化補償状態につ
いて説明する。
The linearization compensation state of the temperature characteristic of the NTC thermistor having the conventional high B constant characteristic by the NTC thermistor according to the present invention having such a low B constant characteristic will be described.

【0020】図1に示す如く、従来の高B定数特性を有
するNTCサーミスタ(NTC1)と、本発明による低
B定数特性を有するNTCサーミスタ(NTC2)と固
定抵抗R1とを直列接続し、入力電圧Eiと出力電圧E
outをそれぞれ測定し、図3〜図7に示す如き特性が
得られた。
As shown in FIG. 1, a conventional NTC thermistor (NTC1) having a high B constant characteristic, an NTC thermistor (NTC2) having a low B constant characteristic according to the present invention, and a fixed resistor R1 are connected in series to obtain an input voltage. Ei and output voltage E
Each out was measured, and the characteristics as shown in FIGS. 3 to 7 were obtained.

【0021】従来のNTC1と本発明のNTC2は、図
2に示す如く、例えばNTCサーミスタをグリーンシー
ト2、3としたものに電極Ag−Pdを塗布した。そし
て、これらを複数枚積層焼結し、端子電極4を形成して
得た、1チップタイプの複合型サーミスタNを構成し
た。
In the conventional NTC1 and the NTC2 of the present invention, as shown in FIG. 2, for example, the electrodes Ag-Pd were applied to the green sheets 2 and 3 of the NTC thermistor. Then, a single chip type composite thermistor N obtained by laminating and sintering a plurality of these to form the terminal electrode 4 was constructed.

【0022】例えば、NTC2については、サーミスタ
を構成する出発材料の酸化物を混合、微粉砕したものを
有機溶剤等によりグリーンシートに成形し、Ag−Pd
電極を塗布してこれを積層する。NTC1についても同
様であり、これら積層したものを一体化し、焼結したの
ち端子電極4を形成し、1チップタイプのサーミスタN
を得る。
For example, with respect to NTC2, a mixture of the starting material oxides forming the thermistor and finely pulverized is molded into a green sheet with an organic solvent or the like, and Ag-Pd is formed.
An electrode is applied and this is laminated. The same applies to the NTC 1, in which these laminated bodies are integrated and sintered to form the terminal electrode 4, and the 1-chip type thermistor N is formed.
To get

【0023】図3に示す例1では従来のNTC1とし
て、主成分としてMn20mol%、Ni75mol
%、Al5mol%の酸化物にZrO2 を10重量%添
加したものを使用した。B25/85は4150Kであ
り、25℃の抵抗値(R25)は500Ωである。また
低B定数のNTC2として、表1のNo.12に示すB
25/85が1740Kのものを使用した。なおR25
は1500Ωであった。また固定抵抗R1 として820
Ωの抵抗値のものを使用した。
In Example 1 shown in FIG. 3, as the conventional NTC1, the main components were Mn 20 mol% and Ni 75 mol.
%, Al 5 mol% oxide to which 10% by weight of ZrO 2 was added was used. B25 / 85 is 4150K, and the resistance value (R25) at 25 ° C is 500Ω. Further, as NTC2 having a low B constant, No. 1 in Table 1 was used. B shown in 12
25/85 used 1740K. R25
Was 1500Ω. Also, as the fixed resistance R 1 , 820
A resistance value of Ω was used.

【0024】温度を−40℃から125℃まで変化させ
たときのNTC1及びNTC2の抵抗値を、図3の特性
線A1、B1で示す。そして−40℃〜125℃までの
出力電圧Eoutを図3の特性線C1で示す。この特性
線C1は直線係数R2 =0.999である。直線係数は
2 =1のとき直線を示す。
The resistance values of NTC1 and NTC2 when the temperature is changed from -40 ° C. to 125 ° C. are shown by characteristic lines A1 and B1 in FIG. The output voltage Eout from −40 ° C. to 125 ° C. is shown by the characteristic line C1 in FIG. The characteristic line C1 has a linear coefficient R 2 = 0.999. The linear coefficient shows a straight line when R 2 = 1.

【0025】図4に示す例2では、従来のNTC1とし
て、例1と同じB25/85が4150KでR25が1
500Ωのものを使用した。低B定数のNTC2として
は、表1のNo.10に示すB25/85が500Kの
ものを使用し、R25として1500Ωのものを使用し
た。また固定抵抗R1 として420Ωの抵抗値のものを
使用した。
In Example 2 shown in FIG. 4, as the conventional NTC1, the same B25 / 85 as in Example 1 is 4150K and R25 is 1.
The one with 500 Ω was used. As NTC2 having a low B constant, No. 1 in Table 1 is used. B25 / 85 shown in 10 has a value of 500K, and R25 has a value of 1500Ω. A fixed resistor R 1 having a resistance value of 420Ω was used.

【0026】温度を−40℃から125℃まで変化させ
たときのNTC1及びNTC2の抵抗値を、図4の特性
線A2、B2で示す。そして−40℃〜125℃までの
出力電圧Eoutを、図4の特性線C2で示す。この特
性線C2は直線係数R2 =0.995である。
The resistance values of NTC1 and NTC2 when the temperature is changed from −40 ° C. to 125 ° C. are shown by characteristic lines A2 and B2 in FIG. The output voltage Eout from −40 ° C. to 125 ° C. is shown by the characteristic line C2 in FIG. This characteristic line C2 has a linear coefficient R 2 = 0.995.

【0027】図5に示す例3では、従来のNTC1とし
て、例1と同じB25/85が4150KでR25が1
00Ωのものを使用した。低B定数のNTC2として
は、表1のNo.13に示すB25/85が2500K
のものを使用し、R25として1500Ωのものを使用
した。また固定抵抗R1 として420Ωの抵抗値のもの
を使用した。
In Example 3 shown in FIG. 5, as a conventional NTC1, the same B25 / 85 as in Example 1 is 4150K and R25 is 1.
The one of 00Ω was used. As NTC2 having a low B constant, No. 1 in Table 1 is used. B25 / 85 shown in 13 is 2500K
And R25 was 1500Ω. A fixed resistor R 1 having a resistance value of 420Ω was used.

【0028】温度を−40℃から125℃まで変化させ
たときのNTC1及びNTC2の抵抗値を図5の特性線
A3、B3で示す。そして−40℃〜125℃までの出
力電圧Eoutを、図4の特性線C3で示す。この特性
線C3は直線係数R2 =0.995である。
The resistance values of NTC1 and NTC2 when the temperature is changed from -40.degree. C. to 125.degree. C. are shown by characteristic lines A3 and B3 in FIG. The output voltage Eout from −40 ° C. to 125 ° C. is shown by the characteristic line C3 in FIG. This characteristic line C3 has a linear coefficient R 2 = 0.995.

【0029】図6に示す例4では、従来のNTC1とし
て、例1と同じB25/85が4150KでR25が1
500Ωのものを使用した。低B定数のNTC2として
は、表1のNo.8に示すB25/85が420Kのも
のを使用し、R25として1500Ωのものを使用し
た。また固定抵抗R1 として270Ωの抵抗値のものを
使用した。
In Example 4 shown in FIG. 6, as the conventional NTC1, the same B25 / 85 as in Example 1 was 4150K and R25 was 1.
The one with 500 Ω was used. As NTC2 having a low B constant, No. 1 in Table 1 is used. B25 / 85 shown in 8 was 420K, and R25 was 1500Ω. A fixed resistance R 1 having a resistance value of 270Ω was used.

【0030】温度を−40℃から125℃まで変化させ
たときのNTC1及びNTC2の抵抗値を図6の特性線
A4、B4で示す。そして−40℃〜125℃までの出
力電圧Eoutを図6の特性線C4で示す。この特性線
C4の直線係数はR2 =0.994で小さく直線性があ
まり良くない。しかもEoutの変化量が−40℃〜1
25℃までの間で1V未満(正確には表4の例4に示す
如く、0.677V)と小さく、感度が良くない。
The resistance values of NTC1 and NTC2 when the temperature is changed from -40 ° C. to 125 ° C. are shown by characteristic lines A4 and B4 in FIG. The output voltage Eout from −40 ° C. to 125 ° C. is shown by the characteristic line C4 in FIG. The linear coefficient of the characteristic line C4 is R 2 = 0.994, and the linearity is not so good. Moreover, the amount of change in Eout is -40 ° C to 1
It is as small as less than 1 V up to 25 ° C. (more precisely, 0.677 V as shown in Example 4 of Table 4) and the sensitivity is not good.

【0031】図7に示す例では、従来のNTC1とし
て、例1と同じB25/85が4150KでR25が1
00Ωのものを使用した。低B定数のNTC2としては
表1のNo.14に示すB25/85が2910Kのも
のを使用し、R25として1500Ωのものを使用し
た。また固定抵抗R1として420Ωのものを使用し
た。
In the example shown in FIG. 7, as the conventional NTC1, the same B25 / 85 as in Example 1 is 4150K and R25 is 1.
The one of 00Ω was used. The NTC2 having a low B constant is No. 1 in Table 1. B25 / 85 shown in 14 was 2910K, and R25 was 1500Ω. Further, a fixed resistor R1 having a resistance of 420Ω was used.

【0032】温度を−40℃から125℃まで変化させ
たときのNTC1及びNTC2の抵抗値を図7の特性線
A5、B5で示す。そして−40℃〜125℃までの出
力電圧Eoutを図7の特性線C5で示す。この特性線
C5の直線係数はR2 =0.990であり、直線性がな
いこと明らかである。
The resistance values of NTC1 and NTC2 when the temperature is changed from -40.degree. C. to 125.degree. C. are shown by characteristic lines A5 and B5 in FIG. The output voltage Eout from −40 ° C. to 125 ° C. is shown by the characteristic line C5 in FIG. The linear coefficient of this characteristic line C5 is R 2 = 0.990, and it is clear that there is no linearity.

【0033】なお図3〜図7における−40℃〜125
℃の各特性線の値を表4で示す。
-40 ° C. to 125 in FIGS.
Table 4 shows the values of the respective characteristic lines of ° C.

【0034】これよりNTC2のB定数が2500Kよ
りも大きい場合はR2 が0.995未満であって出力電
圧に直線性が得られず、また500K未満の場合は出力
電圧の変化量が小さく、しかも直線性も良くないことが
わかる。
When the B constant of NTC2 is larger than 2500K, R 2 is less than 0.995 and the output voltage is not linear, and when it is less than 500K, the change amount of the output voltage is small. Moreover, it can be seen that the linearity is not good.

【0035】本発明によれば抵抗体付きNTCサーミス
タチップを複数個並列接続することなく、温度に対する
抵抗値変化を直線化できるので、リニア性の高い複合型
NTCサーミスタチップを提供できる。
According to the present invention, since the resistance value change with temperature can be linearized without connecting a plurality of NTC thermistor chips with resistors in parallel, a composite NTC thermistor chip with high linearity can be provided.

【0036】積層チップNTCサーミスタ構造のため積
層時にそれぞれのグリーンシートを成形し、一体で焼結
してチップを作製できる。
Laminated Chip Due to the NTC thermistor structure, each green sheet can be molded at the time of lamination and sintered together to produce a chip.

【0037】なお本発明において、Ca:Mnを0.8
mol:1.2molにするとき、その温度−出力電圧
特性を示す特性線を傾度の大きい、つまり感度が良好で
あって、しかも直線性の優れているB定数が1800K
(表1のNo.2参照)の温度特性直線化補償用サーミ
スタ組成物を提供することができる。
In the present invention, Ca: Mn is 0.8.
When the mol is 1.2 mol, the characteristic curve showing the temperature-output voltage characteristic has a large gradient, that is, the sensitivity is good and the linearity is excellent.
The thermistor composition for temperature characteristic linearization compensation (see No. 2 in Table 1) can be provided.

【0038】また、Ca:Mnを1.0mol:1.0
molとし、添加物としてCo、Al及びSnのいずれ
かを0.1mol%含有させることにより、その温度−
出力電圧特性を示す特性線を傾度の大きい、つまり感度
が良好であって、しかも直線性の優れているB定数が1
740K〜1290K(表1.2のNo.12、No.
22、No.28参照)の温度特性直線化補償用サーミ
スタ組成物を提供することができる。
Further, Ca: Mn is 1.0 mol: 1.0
mol, and by adding 0.1 mol% of any of Co, Al, and Sn as an additive, the temperature
The characteristic curve showing the output voltage characteristic has a large gradient, that is, the sensitivity is good, and the linearity is excellent.
740K to 1290K (No. 12, No. 12 in Table 1.2).
22, No. 28), the temperature characteristic linearization compensating thermistor composition can be provided.

【0039】そして、Sr:Feを1.0mol:1.
0molとし、添加物としてZnを0又は0.1mol
%含有させることにより、感度が良好であって、しかも
直線性の優れているB定数が1610K、1320K
(表3のNo.57、No.60参照)の温度特性直線
化補償用サーミスタ組成物を提供することができる。
Then, 1.0 mol of Sr: Fe: 1.
0 mol, Zn as an additive is 0 or 0.1 mol
%, The B constant with good sensitivity and excellent linearity is 1610K, 1320K.
(See No. 57 and No. 60 in Table 3) The thermistor composition for temperature characteristic linearization compensation can be provided.

【0040】本発明では、NTCサーミスタは、その構
造が遷移金属で構成され、特性が類似しており、焼結温
度も一定であり、同じ様な材質のグリーンシートを積層
するので、焼結時の縮率等によるデラミネーション及び
クラックの発生が起きない、すぐれたものが得られる。
In the present invention, the NTC thermistor has a structure composed of a transition metal, has similar characteristics, has a constant sintering temperature, and stacks green sheets of the same material. An excellent product is obtained in which delamination and cracks do not occur due to the shrinkage ratio of

【0041】また積層順番を種々に変更できるので、温
度に対する抵抗値変化を調整することもでき、温度に対
する抵抗値変化のリニア性の精度向上が容易である。
Further, since the stacking order can be changed variously, it is possible to adjust the change in resistance value with respect to temperature, and it is easy to improve the accuracy of the linearity of change in resistance value with respect to temperature.

【0042】このように本発明では、従来のチップ形状
そのままで、温度に対する抵抗値変化のリニアな積層N
TCサーミスタが提供できる。
As described above, according to the present invention, the linear stacking N in which the resistance value changes with temperature while maintaining the conventional chip shape is used.
A TC thermistor can be provided.

【0043】[0043]

【発明の効果】本発明により、B定数が500K〜25
00Kと小さな値のNTCサーミスタ組成物を得ること
ができる。これを従来の3000K〜5500Kという
大きな値のNTCサーミスタ組成物と接続して使用する
ことにより温度特性を直線化することができ、しかもこ
れらのNTCサーミスタのグリーンシートを重ねること
によりワンチップ構成とすることができるので、非常に
安価に、使用面積もほとんど増加することなく、温度特
性を直線化することができる。
According to the present invention, the B constant is 500K to 25K.
NTC thermistor compositions with values as low as 00K can be obtained. By connecting this to a conventional NTC thermistor composition having a large value of 3000K to 5500K, the temperature characteristics can be linearized, and the green sheets of these NTC thermistors can be stacked to form a one-chip configuration. Therefore, the temperature characteristic can be linearized at a very low cost with almost no increase in the used area.

【図面の簡単な説明】[Brief description of drawings]

【図1】NTCサーミスタ特性補償接続状態説明図であ
る。
FIG. 1 is an explanatory view of an NTC thermistor characteristic compensation connection state.

【図2】NTCサーミスタの積層状態説明図である。FIG. 2 is an explanatory diagram of a stacked state of an NTC thermistor.

【図3】低B定数NTCサーミスタを使用した補償特性
説明図(その1)である。
FIG. 3 is an explanatory diagram (part 1) of compensation characteristics using a low B constant NTC thermistor.

【図4】低B定数NTCサーミスタを使用した補償特性
説明図(その2)である。
FIG. 4 is an explanatory view (No. 2) of compensation characteristics using a low B constant NTC thermistor.

【図5】低B定数NTCサーミスタを使用した補償特性
説明図(その3)である。
FIG. 5 is an explanatory view (No. 3) of compensation characteristics using a low B constant NTC thermistor.

【図6】低B定数NTCサーミスタを使用した補償特性
説明図(その4)である。
FIG. 6 is an explanatory view (No. 4) of compensation characteristics using a low B constant NTC thermistor.

【図7】低B定数NTCサーミスタを使用した補償特性
説明図(その5)である。
FIG. 7 is an explanatory view (No. 5) of compensation characteristics using a low B constant NTC thermistor.

【符号の説明】[Explanation of symbols]

1 電極 2、3 グリーンシート NTC1 高B定数特性を有するNTCサーミスタ NTC2 低B定数特性を有するNTCサーミスタ N 複合型サーミスタ 1 electrode A few green sheets NTC1 NTC thermistor having high B constant characteristics NTC2 NTC thermistor with low B constant characteristic N compound type thermistor

フロントページの続き Fターム(参考) 4G030 AA07 AA08 AA09 AA10 AA11 AA12 AA13 AA16 AA17 AA20 AA21 AA25 AA27 AA28 AA29 AA32 AA36 AA39 BA06 GA03 GA04 GA08 GA14 GA22 GA27 5E034 BA09 BB01 BC03 BC05 DA07 DB03 DC01 Continued front page    F-term (reference) 4G030 AA07 AA08 AA09 AA10 AA11                       AA12 AA13 AA16 AA17 AA20                       AA21 AA25 AA27 AA28 AA29                       AA32 AA36 AA39 BA06 GA03                       GA04 GA08 GA14 GA22 GA27                 5E034 BA09 BB01 BC03 BC05 DA07                       DB03 DC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】主成分の組成が(Ax・By)O3 で表さ
れ、 A=Ca、Ba、Srの1つであり B=Mn、Co、Feの1つであり xが0.8≦x≦1.4、yが0.6≦y≦1.2でか
つx+y=2であり、 必要に応じて添加物としてZn、Sm、Co、Mg、A
l、Ti、Ni、Y、Zr、Nb、Sn、La、Ta群
から選ばれた少なくとも1種以上を元素換算で合計0.
20mol%まで含有することを特徴とする温度特性直
線化補償用サーミスタ組成物。
1. The composition of the main component is represented by (AxBy) O 3 , where A = one of Ca, Ba and Sr and B = one of Mn, Co and Fe and x is 0.8. ≦ x ≦ 1.4, y is 0.6 ≦ y ≦ 1.2, and x + y = 2, and Zn, Sm, Co, Mg, and A are added as additives if necessary.
1, Ti, Ni, Y, Zr, Nb, Sn, La, Ta and at least one or more selected from the group of 0.
A thermistor composition for compensating for linearization of temperature characteristics, which contains up to 20 mol%.
【請求項2】その組成が(Cax・Mny)O3 で表さ
れ、 xが0.8、yが1.2であることを特徴とする温度特
性直線化補償用サーミスタ組成物。
Wherein the composition is represented by (Cax · Mny) O 3, x is 0.8, y is the temperature characteristic linearization compensation thermistor composition characterized in that 1.2.
【請求項3】主成分の組成が(Cax・Mny)O3
表され、 xが1.0、yが1.0であり、 添加物としてCo、Al及びSnのいずれかを0.1m
ol%含有することを特徴とする温度特性直線化補償用
サーミスタ組成物。
3. The composition of the main component is represented by (Cax.Mny) O 3 , x is 1.0 and y is 1.0, and 0.1 m of any one of Co, Al and Sn is added as an additive.
A thermistor composition for temperature characteristic linearization compensation, characterized in that the thermistor composition contains ol%.
【請求項4】主成分の組成が(Srx・Fey)O3
表され、 xが1.0、yが1.0であり、 添加物としてZnを0又は0.1mol%含有すること
を特徴とする温度特性直線化補償用サーミスタ組成物。
4. The composition of the main component is represented by (Srx.Fey) O 3 , x is 1.0, y is 1.0, and 0 or 0.1 mol% of Zn is contained as an additive. A characteristic thermistor composition for temperature characteristic linearization compensation.
JP2002058247A 2002-03-05 2002-03-05 Composite NTC thermistor Expired - Lifetime JP3996411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058247A JP3996411B2 (en) 2002-03-05 2002-03-05 Composite NTC thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058247A JP3996411B2 (en) 2002-03-05 2002-03-05 Composite NTC thermistor

Publications (2)

Publication Number Publication Date
JP2003257706A true JP2003257706A (en) 2003-09-12
JP3996411B2 JP3996411B2 (en) 2007-10-24

Family

ID=28668264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058247A Expired - Lifetime JP3996411B2 (en) 2002-03-05 2002-03-05 Composite NTC thermistor

Country Status (1)

Country Link
JP (1) JP3996411B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078576A (en) * 2006-09-25 2008-04-03 Tdk Corp Ntc composition and ntc element
JP2008205384A (en) * 2007-02-22 2008-09-04 Tdk Corp Thermistor composition and thermistor element
WO2009025178A1 (en) * 2007-08-22 2009-02-26 Murata Manufacturing Co., Ltd. Semiconductor ceramic material and ntc thermistor
CN100555479C (en) * 2005-09-30 2009-10-28 中国科学院新疆理化技术研究所 A kind of deep low temperature oxide thermosensitive resistor material and manufacture method thereof
KR101220312B1 (en) 2012-06-28 2013-01-10 태성전장주식회사 Ceramic composition for thermistor temperature sensor and thermistor element peepared by the composition
CN102924064A (en) * 2012-11-23 2013-02-13 江苏聚盛电子科技有限公司 Wide-temperature range NTC thermosensitive ceramic material and preparation method thereof
CN109485402A (en) * 2018-12-14 2019-03-19 中国科学院新疆理化技术研究所 A method of improving manganese ferro-cobalt base thermal sensitive ceramics agglutinating property
CN110357586A (en) * 2019-06-13 2019-10-22 山东格仑特电动科技有限公司 A kind of NTC thermistor material and preparation method thereof that consistency is good
CN111499355A (en) * 2019-12-16 2020-08-07 南京先正电子股份有限公司 NTC thermistor
CN115894026A (en) * 2022-11-29 2023-04-04 唐山恭成科技有限公司 NTC thermistor material with low resistivity and high B value and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732034A (en) * 2016-02-22 2016-07-06 电子科技大学 Ultra-low-specific-resistance low-B-value NTC thermosensitive resistance material and preparation method thereof
CN108794018A (en) * 2017-05-02 2018-11-13 中国振华集团云科电子有限公司 A kind of NTC thermal sensitive ceramic materials and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100555479C (en) * 2005-09-30 2009-10-28 中国科学院新疆理化技术研究所 A kind of deep low temperature oxide thermosensitive resistor material and manufacture method thereof
JP2008078576A (en) * 2006-09-25 2008-04-03 Tdk Corp Ntc composition and ntc element
JP4492598B2 (en) * 2006-09-25 2010-06-30 Tdk株式会社 NTC composition and NTC element
JP4548431B2 (en) * 2007-02-22 2010-09-22 Tdk株式会社 Thermistor composition and thermistor element
JP2008205384A (en) * 2007-02-22 2008-09-04 Tdk Corp Thermistor composition and thermistor element
CN101765569B (en) * 2007-08-22 2012-11-28 株式会社村田制作所 Semiconductor ceramic material and NTC thermistor
JPWO2009025178A1 (en) * 2007-08-22 2010-11-25 株式会社村田製作所 Semiconductor ceramic material and NTC thermistor
US8035474B2 (en) 2007-08-22 2011-10-11 Murata Manufacturing Co., Ltd. Semi-conductive ceramic material and NTC thermistor using the same
WO2009025178A1 (en) * 2007-08-22 2009-02-26 Murata Manufacturing Co., Ltd. Semiconductor ceramic material and ntc thermistor
JP5398534B2 (en) * 2007-08-22 2014-01-29 株式会社村田製作所 Semiconductor ceramic material and NTC thermistor
KR101220312B1 (en) 2012-06-28 2013-01-10 태성전장주식회사 Ceramic composition for thermistor temperature sensor and thermistor element peepared by the composition
WO2014003322A1 (en) * 2012-06-28 2014-01-03 태성전장주식회사 Ceramic composition for thermistor temperature sensors and thermistor device manufactured from said composition
CN102924064A (en) * 2012-11-23 2013-02-13 江苏聚盛电子科技有限公司 Wide-temperature range NTC thermosensitive ceramic material and preparation method thereof
CN109485402A (en) * 2018-12-14 2019-03-19 中国科学院新疆理化技术研究所 A method of improving manganese ferro-cobalt base thermal sensitive ceramics agglutinating property
CN110357586A (en) * 2019-06-13 2019-10-22 山东格仑特电动科技有限公司 A kind of NTC thermistor material and preparation method thereof that consistency is good
CN111499355A (en) * 2019-12-16 2020-08-07 南京先正电子股份有限公司 NTC thermistor
CN115894026A (en) * 2022-11-29 2023-04-04 唐山恭成科技有限公司 NTC thermistor material with low resistivity and high B value and preparation method thereof
CN115894026B (en) * 2022-11-29 2023-08-08 唐山恭成科技有限公司 NTC thermistor material with low resistivity and high B value and preparation method thereof

Also Published As

Publication number Publication date
JP3996411B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JPH03276510A (en) Porcelain dielectric for temperature compensation
JP5398534B2 (en) Semiconductor ceramic material and NTC thermistor
JP5413458B2 (en) Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
JP2003257706A (en) Compensating thermistor composition for making temperature characteristics rectilinear
WO2011086850A1 (en) Semiconductor ceramic composition for ntc thermistor and ntc thermistor
US20210257135A1 (en) NTC Compound, Thermistor and Method for Producing the Thermistor
WO2010038770A1 (en) Barium titanate-based semiconductor ceramic composition and ptc thermistor
JP2003272904A (en) Composite laminated chip ntc thermistor
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JP4548431B2 (en) Thermistor composition and thermistor element
JPH07235405A (en) Thermistor sintered body
JPS63289709A (en) Nonreducible dielectric ceramic constituent
JP3319471B2 (en) Laminated semiconductor porcelain for PTC thermistor and method of manufacturing the same
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP3202273B2 (en) Composition for thermistor
US6538318B2 (en) Semiconductor ceramic for thermistors and chip-type thermistor including the same
JPH04206109A (en) Nonreduced dielectric ceramic composition
JPS63289710A (en) Nonreducible dielectric ceramic constituent
JP4370135B2 (en) Piezoelectric ceramic composition
JP4492234B2 (en) Thermistor composition and thermistor element
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2001328862A (en) Barium lead titanate semiconductor porcelain composition
JPH0766007A (en) Thermistor for high temperature
JP3559405B2 (en) Composition for thermistor
JPS6211202A (en) Composition for thermistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050620

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050722

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term