JPS63289709A - Nonreducible dielectric ceramic constituent - Google Patents

Nonreducible dielectric ceramic constituent

Info

Publication number
JPS63289709A
JPS63289709A JP62124735A JP12473587A JPS63289709A JP S63289709 A JPS63289709 A JP S63289709A JP 62124735 A JP62124735 A JP 62124735A JP 12473587 A JP12473587 A JP 12473587A JP S63289709 A JPS63289709 A JP S63289709A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
main component
weight
parts
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124735A
Other languages
Japanese (ja)
Inventor
Masaru Fujino
優 藤野
Goro Nishioka
西岡 吾朗
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62124735A priority Critical patent/JPS63289709A/en
Publication of JPS63289709A publication Critical patent/JPS63289709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To aim at reduction in electrode cost with the promotion of large capacity in a laminated condenser by containing a specific amount of Mn and SiO2 in a main component to be expressed with a formular (Sr1-xCax)m(Ti1-yZry) O3 as a subcomponent. CONSTITUTION:A main component is expressed with formular (Sr1-xCax)m (Ti1-yZry)O3, and x, y and m are of 0.30<=x<=0.50, 0.92<=y<=0.98 and 0.95<=m<=1.08, respectively. And, Mn is converted into MnO2 and its 0.01-4pts. wt. and a 2.00-8.00pts.wt. of SiO2 are contained in this main component 100pts. wt. as a subcomponent. A nonreducible dielectric ceramic constituent of suchlike composition is used as material for a laminated condenser and, what is more, a base metal such as Ni, Fe, Cr or the like is usable as an internal electrode, thus reduction in cost of the electrode with the promotion of large capacity in the laminated condenser can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非還元性誘電体磁器組成物に関し、特にたと
えば積層コンデンサなどの誘電体材料として好適な非還
元性誘電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-reducible dielectric ceramic composition, and more particularly to a non-reducible dielectric ceramic composition suitable as a dielectric material for laminated capacitors and the like.

(従来技術) 従来、積層コンデンサを製造する際には、誘電体グリー
ンシートの上面にたとえば印刷することによって内部電
極となる金属層を形成し、それを複数枚積み重ねて圧着
、一体化した後、焼成するという工程が採用されている
(Prior art) Conventionally, when manufacturing a multilayer capacitor, a metal layer that will become an internal electrode is formed by printing on the top surface of a dielectric green sheet, and after stacking a plurality of layers and crimping and integrating them, A firing process is used.

(発明が解決しようとする問題点) 従来の誘電体磁器材料は、中性または還元性の低酸素分
圧下で焼成すると還元され、半導体化するという性質を
有していた。そのため、内部電極の材料として、誘電体
磁器材料の焼結する温度で熔融せず、かつ誘電体磁器材
料を半導体化しない高い酸素分圧の下で焼成しても酸化
されない、たとえばパラジウム、白金などの貴金属を用
いなければならず、製造される積層コンデンサの小型大
容量化および低価格化の大きな妨げとなっていた。
(Problems to be Solved by the Invention) Conventional dielectric ceramic materials have the property of being reduced and turned into semiconductors when fired under neutral or reducing low oxygen partial pressure. Therefore, materials such as palladium and platinum, which do not melt at the sintering temperature of the dielectric ceramic material and do not oxidize even when fired under high oxygen partial pressures that do not convert the dielectric ceramic material into a semiconductor, can be used as materials for the internal electrodes. This required the use of noble metals, which was a major hindrance to making multilayer capacitors smaller, larger in capacity, and lower in price.

そこで、上述の問題を解決するために、たとえばニッケ
ルなどの安価な卑金属を内部電極の材料として使用する
ことが望まれていた。しかし、このような卑金属を内部
電極の材料として使用し、従来の条件下で焼成すると、
電極材料が酸化したり溶融したりしてしまう。そのため
、このような卑金属を内部電極の材料として使用するた
めに、酸素分圧の低い中性または還元性の雰囲気中にお
いて低温で焼成しても半導体化せず、コンデンサ用の誘
電体磁器材料として十分な比抵抗と優れた誘電特性とを
有する誘電体磁器材料が必要とされていた。
Therefore, in order to solve the above-mentioned problems, it has been desired to use an inexpensive base metal such as nickel as a material for the internal electrodes. However, when such base metals are used as internal electrode materials and fired under conventional conditions,
The electrode material will oxidize or melt. Therefore, in order to use such base metals as materials for internal electrodes, they do not turn into semiconductors even when fired at low temperatures in a neutral or reducing atmosphere with low oxygen partial pressure, and are used as dielectric ceramic materials for capacitors. There was a need for dielectric porcelain materials with sufficient resistivity and excellent dielectric properties.

それゆえに、この発明の主たる目的は、酸素分圧の低い
中性または還元性の雰囲気中において、1.360℃以
下の温度で焼結し、かつ還元されることなく、静電容量
の温度係数の絶対値が100 p p ma℃以下で、
誘電率が40以上で、誘電損失が0.1%以下であり、
20°Cにおける比抵抗がlXl0”Ω−以上の、非還
元性誘電体磁器組成物を提供することである。
Therefore, the main object of the present invention is to sinter at a temperature of 1.360°C or lower in a neutral or reducing atmosphere with a low oxygen partial pressure, and to achieve a temperature coefficient of capacitance without being reduced. The absolute value of is below 100 pp ma℃,
The dielectric constant is 40 or more, the dielectric loss is 0.1% or less,
It is an object of the present invention to provide a non-reducible dielectric ceramic composition having a specific resistance at 20°C of 1X10''Ω- or more.

(問題点を解決するための手段) この発明は、一般式(S r+−x Ca、 )S  
(Ti1−、Zry)03で表され、この一般式〇モル
比率x、yおよびmが、それぞれ、0.30≦x≦0.
50,0.92≦y≦0.98、および0.95≦m≦
1.08の範囲にある主成分に、100重量部の主成分
に対して、副成分として、MnをMn0zに換算して0
.01〜4.00重量部、および5i02を2.00〜
8.00重量部含有した、非還元性誘電体磁器組成物で
ある。
(Means for Solving the Problems) This invention provides a general formula (S r+-x Ca, )S
It is represented by (Ti1-, Zry)03, and the molar ratios x, y and m of this general formula are 0.30≦x≦0.
50, 0.92≦y≦0.98, and 0.95≦m≦
For the main component in the range of 1.08, 100 parts by weight of the main component, as a subcomponent, Mn converted to Mn0z is 0.
.. 01 to 4.00 parts by weight, and 2.00 to 5i02
This is a non-reducible dielectric ceramic composition containing 8.00 parts by weight.

(発明の効果) この発明によれば、還元性雰囲気中において、1.36
0℃以下で焼結し、温度に対する静電容量の温度係数の
絶対値が1100pp/’c以下で、誘電率が40以上
で、誘電損失が0.1%以下であり、20℃における比
抵抗が1×10′3ΩCm以上の特性を有する非還元性
誘電体磁器組成物を得ることができる。したがって、こ
の非還元性誘電体磁器組成物を積層コンデンサ用材料と
して用いれば、Ni、Fe、Crなどの卑金属を内部電
極として使用することが可能になる。そのため、積層コ
ンデンサの大容量化にともなう電極のコストの増大を解
消することができ、低価格の積層コンデンサを提供する
ことができる。
(Effect of the invention) According to this invention, in a reducing atmosphere, 1.36
Sintered at 0°C or lower, the absolute value of the temperature coefficient of capacitance versus temperature is 1100 pp/'c or lower, the dielectric constant is 40 or higher, the dielectric loss is 0.1% or lower, and the specific resistance at 20°C is A non-reducible dielectric ceramic composition having a characteristic of 1×10'3 ΩCm or more can be obtained. Therefore, if this non-reducible dielectric ceramic composition is used as a material for a multilayer capacitor, base metals such as Ni, Fe, and Cr can be used as internal electrodes. Therefore, it is possible to eliminate the increase in cost of electrodes due to an increase in the capacity of a multilayer capacitor, and it is possible to provide a low-cost multilayer capacitor.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、出発原料として工業用の3rCOz、CacO3
,Zr0z 、Ti0z 、Mn0zおよびSin、を
準備した。そして、これらの原料を組成式(Srl−x
 Cax )m  (Tl+−y Zry )0、+M
nO2+SiO2において、表1に示す配合比になるよ
うに配合した。
(Example) First, industrial 3rCOz and CacO3 were used as starting materials.
, Zr0z, Ti0z, Mn0z and Sin were prepared. Then, these raw materials are given the composition formula (Srl-x
Cax )m (Tl+-y Zry)0, +M
In nO2+SiO2, the compositions were blended to have the blending ratio shown in Table 1.

次に、これらの配合原料をボールミルで湿式混合し、粉
砕した後蒸発乾燥し、自然雰囲気中において1,150
℃で2時間仮焼した。そして、仮焼した原料に結合材と
して酢酸ビニル系バインダを5重量部加え、ボールミル
で湿式混合した。さらに、この混合物を蒸発乾燥した後
整粒して粉末原料を得た。得られた粉末原料を2.5t
on/CII!の圧力で直径20龍、厚さ1.2mmの
円板状に成形した。
Next, these blended raw materials were wet mixed in a ball mill, pulverized, and then evaporated to dryness.
It was calcined at ℃ for 2 hours. Then, 5 parts by weight of a vinyl acetate binder was added as a binding material to the calcined raw materials, and wet-mixed in a ball mill. Furthermore, this mixture was evaporated to dryness and then sized to obtain a powder raw material. 2.5 tons of the obtained powder raw material
on/CII! It was molded into a disk shape with a diameter of 20mm and a thickness of 1.2mm under a pressure of .

次に、この円板状の成形物をジルコニア粉末を敷粉とし
たアルミナ質の箱に入れ、自然雰囲気中において500
℃で2時間酢酸ビニル系バインダを燃焼させた。その後
、体積比率でH2:Nz=3:100の還元ガス雰囲気
中において、円板状の成形物を1,300〜1,440
℃で2時間焼成して、素子を得た。得られた素子の両面
にIn−Ga合金を塗布して電極を形成し、試料(コン
デンサ)を作成した。
Next, this disc-shaped molded product was placed in an alumina box lined with zirconia powder, and left in a natural atmosphere for 500 min.
The vinyl acetate binder was burned for 2 hours at .degree. Thereafter, in a reducing gas atmosphere with a volume ratio of H2:Nz=3:100, the disc-shaped molded product was heated to 1,300 to 1,440
The device was baked at ℃ for 2 hours to obtain a device. An In-Ga alloy was applied to both sides of the obtained element to form electrodes, thereby creating a sample (capacitor).

そして、得られた試料の誘電率ε、誘電損失tanδ、
静電容量の温度係数α(ppm/”C)および比抵抗ρ
(Ω印)を測定した。
Then, the dielectric constant ε, dielectric loss tan δ,
Temperature coefficient of capacitance α (ppm/”C) and specific resistance ρ
(Ω mark) was measured.

なお、誘電損失tanδは、1kHz、IVrms、2
0℃の条件で測定した。
Note that the dielectric loss tan δ is 1kHz, IVrms, 2
Measurement was performed at 0°C.

さらに、静電容量の温度係数α(ppm/”C)は、2
0℃における静電容量CtOおよび85°Cにおける静
電容量C115から次式によって求めた。
Furthermore, the temperature coefficient α (ppm/”C) of capacitance is 2
It was determined from the capacitance CtO at 0°C and the capacitance C115 at 85°C using the following equation.

また、比抵抗ρ(Ωcm)は、20℃において500■
の直流電圧を印加したときに流れる電流値より求めた。
In addition, the specific resistance ρ (Ωcm) is 500■ at 20°C.
It was determined from the current value that flows when a DC voltage of .

そして、これらの結果を表2に示した。These results are shown in Table 2.

次に、この発明にかかる非還元性誘電体磁器組成物の主
成分の数値を限定した理由について説明する。
Next, the reason for limiting the numerical values of the main components of the non-reducible dielectric ceramic composition according to the present invention will be explained.

つまり、試料番号1のようにXが0.30より小さいか
、または試料番号5のようにXが0.50より大きいと
、焼成温度が1,360℃を超え、かつ静電容量の温度
係数の絶対値が1100pp/℃より大きくなって好ま
しくない。
In other words, if X is smaller than 0.30 as in Sample No. 1, or larger than 0.50 as in Sample No. 5, the firing temperature will exceed 1,360°C and the temperature coefficient of capacitance will increase. The absolute value of is greater than 1100 pp/°C, which is not preferable.

また、試料番号9のようにyが0.92より小さいと、
静電容量の温度係数の絶対値が100pp m / ”
Cより大きくなり、かつ比抵抗が1×10′3Ω■より
小さくなって好ましくない。さらに、試料番号6のよう
に、yが0.98より大きいと、焼成温度が1,360
℃を超え、かつ静電容量の温度係数の絶対値が1100
pp/’Cより大きくなって好ましくない。
Also, if y is smaller than 0.92 as in sample number 9,
The absolute value of the temperature coefficient of capacitance is 100 ppm/”
C, and the specific resistance becomes less than 1×10'3 Ω■, which is not preferable. Furthermore, as in sample number 6, when y is larger than 0.98, the firing temperature is 1,360
℃ and the absolute value of the temperature coefficient of capacitance is 1100
pp/'C, which is undesirable.

また、試料番号10のように、mが0.95より小さい
と、比抵抗が1×1013Ωcmより小さくなり、かつ
誘電損失が0.1%より大きくなって好ましくない。さ
らに、試料番号14のように、mが1.08より大きい
と、焼成温度が1,360°Cを超えて好ましくない。
Further, as in sample number 10, if m is smaller than 0.95, the specific resistance becomes smaller than 1×10 13 Ωcm and the dielectric loss becomes larger than 0.1%, which is not preferable. Furthermore, as in sample number 14, when m is larger than 1.08, the firing temperature exceeds 1,360°C, which is not preferable.

次に、副成分の含有量の限定理由について説明する。Next, the reason for limiting the content of subcomponents will be explained.

試料番号15のように、主成分100重量部に対してM
nO,の含有量が0.03重量部より少ないと、焼成温
度が1.360℃を超え、かつ誘電損失が0.1%より
大きくなり、さらに比抵抗も1×10′3Ω国より小さ
くなって好ましくない。
As in sample number 15, M per 100 parts by weight of the main component.
If the content of nO is less than 0.03 parts by weight, the firing temperature will exceed 1.360°C, the dielectric loss will be greater than 0.1%, and the resistivity will also be smaller than 1 x 10'3 Ω. I don't like it.

また、試料番号19のようにM n O2の含有量が4
.00重量部より多いと、比抵抗が1×10′3Ω備よ
り小さくなって好ましくない。
In addition, as in sample number 19, the content of M n O2 is 4
.. If the amount is more than 0.00 parts by weight, the specific resistance becomes less than 1×10'3 Ω, which is not preferable.

さらに、試料番号20のように主成分100重量部に対
してSin、の含有量が2.00重量部より少ないと、
焼成温度が1.360℃を超えて好ましくない。
Furthermore, if the content of Sin is less than 2.00 parts by weight with respect to 100 parts by weight of the main component, as in sample number 20,
It is not preferable that the firing temperature exceeds 1.360°C.

また、試料番号24のようにSiO□の含有量が8.0
0重量部より多いと、誘電率が40より小さくなり、か
つ比抵抗がlXl0”Ωcmより小さくなって好ましく
ない。
In addition, as in sample number 24, the content of SiO□ is 8.0
If the amount is more than 0 parts by weight, the dielectric constant will be less than 40 and the resistivity will be less than 1X10'' Ωcm, which is not preferable.

それに対して、この発明の範囲内の試料では、1.36
0℃以下で焼結し、静電容量の温度係数の絶対値が11
00pp/’C以下で、誘電率が40以上で、誘電損失
が0.1%以下であり、2゜°Cにおける比抵抗が1×
10′3Ω口以上である。
In contrast, for samples within the scope of this invention, 1.36
Sintered at temperatures below 0°C, with an absolute value of temperature coefficient of capacitance of 11
00pp/'C or less, dielectric constant is 40 or more, dielectric loss is 0.1% or less, and resistivity at 2°C is 1×
It is 10'3Ω or more.

なお、この実施例では、N z  Hzからなる還元性
雰囲気中で、円板状の成形物を焼成したが、Ar、Co
、Cot 、Hz 、Nzおよびこれらの混合ガス雰囲
気中で円板状の成形物を焼成してもよい。
In this example, the disc-shaped molded product was fired in a reducing atmosphere consisting of N z Hz, but Ar, Co
, Cot , Hz , Nz , or a mixed gas atmosphere thereof, the disc-shaped molded product may be fired.

Claims (1)

【特許請求の範囲】 一般式(Sr_1_−_xCa_x)_m(Ti_1_
−_yZr_y)O_3で表され、この一般式のモル比
率x、yおよびmが、それぞれ、 0.30≦x≦0.50、 0.92≦y≦0.98、および 0.95≦m≦1.08 の範囲にある主成分に、 100重量部の前記主成分に対して、副成分として、 MnをMnO_2に換算して0.01〜4.00重量部
、および SiO_2を2.00〜8.00重量部含有した、非還
元性誘電体磁器組成物。
[Claims] General formula (Sr_1_−_xCa_x)_m(Ti_1_
−_yZr_y)O_3, and the molar ratios x, y, and m of this general formula are 0.30≦x≦0.50, 0.92≦y≦0.98, and 0.95≦m≦, respectively. 1.08 parts by weight of the main component, as subcomponents, Mn is 0.01 to 4.00 parts by weight converted to MnO_2, and SiO_2 is 2.00 to 4.00 parts by weight. A non-reducible dielectric ceramic composition containing 8.00 parts by weight.
JP62124735A 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent Pending JPS63289709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124735A JPS63289709A (en) 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124735A JPS63289709A (en) 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent

Publications (1)

Publication Number Publication Date
JPS63289709A true JPS63289709A (en) 1988-11-28

Family

ID=14892815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124735A Pending JPS63289709A (en) 1987-05-20 1987-05-20 Nonreducible dielectric ceramic constituent

Country Status (1)

Country Link
JP (1) JPS63289709A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204301A (en) * 1992-01-31 1993-04-20 Murata Manufacturing Co., Ltd. Non-reduction type dielectric ceramic composition
US5296425A (en) * 1992-07-31 1994-03-22 Taiyo Yuden Co., Ltd. Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom
WO2000018701A1 (en) 1998-09-30 2000-04-06 Tdk Corporation Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
KR100415559B1 (en) * 2000-03-31 2004-01-24 삼성전기주식회사 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
US6790801B2 (en) 2001-12-27 2004-09-14 Samsung Electro-Mechanics Co., Ltd. Nonreducible dielectric ceramic composition
US6858554B2 (en) 2001-12-27 2005-02-22 Samsung Electro-Mechanics Co., Ltd. Nonreducible dielectric ceramic composition
US7916451B2 (en) * 2005-04-07 2011-03-29 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
CN112687467A (en) * 2019-10-17 2021-04-20 太阳诱电株式会社 Ceramic electronic device and method for manufacturing the same
US11158457B2 (en) * 2018-10-23 2021-10-26 Murata Manufacturing Company, Ltd. Dielectric ceramic composition and multilayer ceramic capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204301A (en) * 1992-01-31 1993-04-20 Murata Manufacturing Co., Ltd. Non-reduction type dielectric ceramic composition
US5296425A (en) * 1992-07-31 1994-03-22 Taiyo Yuden Co., Ltd. Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom
WO2000018701A1 (en) 1998-09-30 2000-04-06 Tdk Corporation Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
KR100415559B1 (en) * 2000-03-31 2004-01-24 삼성전기주식회사 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
US6790801B2 (en) 2001-12-27 2004-09-14 Samsung Electro-Mechanics Co., Ltd. Nonreducible dielectric ceramic composition
US6858554B2 (en) 2001-12-27 2005-02-22 Samsung Electro-Mechanics Co., Ltd. Nonreducible dielectric ceramic composition
US7916451B2 (en) * 2005-04-07 2011-03-29 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
US7923395B2 (en) * 2005-04-07 2011-04-12 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
US11158457B2 (en) * 2018-10-23 2021-10-26 Murata Manufacturing Company, Ltd. Dielectric ceramic composition and multilayer ceramic capacitor
CN112687467A (en) * 2019-10-17 2021-04-20 太阳诱电株式会社 Ceramic electronic device and method for manufacturing the same
JP2021068734A (en) * 2019-10-17 2021-04-30 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH04218207A (en) Dielectric porcelain composition
JPS63289709A (en) Nonreducible dielectric ceramic constituent
JPS63289707A (en) Nonreducible dielectric ceramic constituent
JPS63289710A (en) Nonreducible dielectric ceramic constituent
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JPS63289708A (en) Nonreducible dielectric ceramic constituent
JPS63224108A (en) Non-reducing dielectric ceramic composition
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS63224109A (en) Non-reducing dielectric ceramic composition
JP5668569B2 (en) Dielectric porcelain composition and electronic component
JPH0824006B2 (en) Non-reducing dielectric ceramic composition
JPH04264306A (en) Dielectric ceramic composition
JPH0528448B2 (en)
JPS6139314A (en) Nonreduced dielectric porcelain composition
JP3089833B2 (en) Dielectric ceramic composition for temperature compensation
JP2958820B2 (en) Non-reducing dielectric porcelain composition
JPH0734326B2 (en) Non-reducing dielectric ceramic composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JPH04331765A (en) Non-reducing dielectric ceramic composition
JPH04169003A (en) Unreducing dielectric porcelain composition
JP3291748B2 (en) Dielectric ceramic composition for temperature compensation
JPH04368709A (en) Nonreducing dielectric porcelain composition material
JP2023117898A (en) Dielectric ceramic composition
JP2568565B2 (en) Dielectric porcelain composition
JPS63121209A (en) Non-reducing dielectric ceramic composition