JPH0419016A - パルス電流による電解加工法及びその装置 - Google Patents

パルス電流による電解加工法及びその装置

Info

Publication number
JPH0419016A
JPH0419016A JP2117637A JP11763790A JPH0419016A JP H0419016 A JPH0419016 A JP H0419016A JP 2117637 A JP2117637 A JP 2117637A JP 11763790 A JP11763790 A JP 11763790A JP H0419016 A JPH0419016 A JP H0419016A
Authority
JP
Japan
Prior art keywords
pulse
workpiece
electrolytic
tool electrode
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2117637A
Other languages
English (en)
Other versions
JP2547886B2 (ja
Inventor
Takahisa Masuzawa
隆久 増沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP2117637A priority Critical patent/JP2547886B2/ja
Priority to US07/696,120 priority patent/US5242556A/en
Priority to EP91304119A priority patent/EP0461756B1/en
Priority to DE69104134T priority patent/DE69104134T2/de
Priority to ES91304119T priority patent/ES2061181T3/es
Publication of JPH0419016A publication Critical patent/JPH0419016A/ja
Application granted granted Critical
Publication of JP2547886B2 publication Critical patent/JP2547886B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/10Pulsed electrochemical machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/10Pulsed electrochemical machining
    • B23H2300/12Positive and negative pulsed electrochemical machining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S204/00Chemistry: electrical and wave energy
    • Y10S204/09Wave forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解仕上げ加工など電解作用を利用して、
被加工材、特には超硬合金材などの加工に適したパルス
電流による電解加工法及びその装置に関するものである
[従来の技術] 金型部品の異形形状の成形加工には主に放電加工が用い
られているが、放電加工の加工面性状は微細なりレータ
−の集合であり、表面粗さは通常の仕上げ加工条件では
約5μlRmax以上あるのが普通である。又、放電加
工面には微細なりラックが多数存在しているが、これを
そのまま型部品として使用すると、荷重や熱衝撃により
、このクラックが大きく成長し、型の破損を招く結果と
なる。従って放電加工をした型部品は多くの場合、表面
粗さを改善し、又、微細なりラックを含む放電加工変質
層を除去する必要がある。
かかる放電加工変質層の除去には従来、ラッピング加工
や電解仕上げ加工法によって行われている。
[発明が解決しようとする課題] 従来行われていたラッピング加工は、加工形状が一般に
は複雑なことから、殆どの場合手作業によって行われて
おり、熟練した作業者が多大な時間を費やしてこの作業
を行わなければならないという欠点がある。又、電解仕
上げ加工法は、放電加工等によって形状の創成を行った
部位の表面に若干の電解加工を施し、すなわち電解現象
によって表面を溶出させ、加工変質層を除去すると同時
に表面粗さを改善できるので、前記手作業のラッピング
に較べると非常に有用である。しかし、単極性の電解仕
上げ加工では、鉄をはじめとする金属の多くは、ワーク
を陽極、工具電極を陰極として、中性電解$c(通常は
硝酸ナトリウム水溶液)中で通電することによって、加
工を進めることが可能であるが、WC又はTiCの粒子
を多く含む超硬合金の場合、結合材であるCoは溶出す
るものの、WCやTICは表面にWO3、TiO2の被
膜を形成するため、加工を進行することは不可能である
。このため、超硬合金の電解仕上げ加工は、WO3やT
iO2を溶出させる性質をもつNaOH水溶液中での加
工が有効であるが、Na0kl水溶液は強度のアルカリ
性を示し有害であり、実用性に欠ける面がある。
この欠点を解消するために、交流電流や交番電流を用い
て超硬合金の電解仕上げ加工を硝酸ナトリウム水溶液中
で行うことも提案されている。この方法によれば、被加
工物と工具電極の極性が陽陰交互に置き換えられること
になり、陰極の表面にはNa”イオンが集り、これと水
が作用して陰極表面にはNaOH水溶液の層ができた状
態になり、これによって超硬合金の電解仕上げ加工の進
行が可能となる結果、かなり良い加工面が得られる。し
かし、工具電極もワークと同様に電解溶出作用を受ける
ため消耗するという欠点がある外、仕上げ加工時間や仕
上げ加工面に一層の改善が望まれる状態にある。
この発明はかかる点を改善するものである。
〔課題を解決するための手段〕
この発明の第1の発明は、被加工物(ワーク)と工具電
極とを中性電解液中に所定間隔をおいて対向配置し、こ
れら両者間に正負のパルス電流を交互に繰返し印加して
、被加工物に電解加工を施す方法において、ワークに印
加する負のパルスから正のパルスまでの時間間隔を、正
のパルスから負のパルスまでの時間間隔よりも小さくす
るパルス電流による電解加工法である。
すなわち、従来の正負のパルス電流を交互に繰返し印加
する電解加工法におけるワークに印加するパルス電流の
波形は、第1図(C)に示すようなパターンであるが、
この発明の場合は、第1図(a)あるいは(b)に示す
パターンである。
又、負のパルス幅は正のパルス幅よりも小さくするとよ
い。又、抜型においては電解液を常に流しながら加工す
れば良いが形彫り形状を有する型では中性電解液は正パ
ルスと負パルスの間で強制的に流し、負パルスと正パル
スの間では静止させるとよい。
この発明で用いる中性電解液としては前述の硝酸ナトリ
ウム(NaNO3)の他に、NaC1,NaNO2Na
ClO3、 NazCOs、Na3PO4、Na2SO4、Na 2
 B407.KNO3、KNO2、C*H+06KNa
などを単独あるいはこれらを適宜混合してなる複合液と
して利用することができる。
又、電極としては、放電加工の際に電極として用いられ
る銅、銅−タングステン合金、銀−タングステン合金、
グラファイト、黄銅、鉄などあるいは中性電解液中では
溶出したイオンが再び電着しないようにするために、水
素よりもイオン化傾向の高い元素か電解作用を受けない
元素例えば金、白金、アルミニウム、亜鉛、錫、鉛、ニ
ッケルなどを用いることができる。
電解仕上げ加工は一般に電流密度、パルス幅、加工ギャ
ップの大きさなどの影響を受けるのでこれらの値を適切
に選択しなければならない。
これらの値を選択するに際しての明確な基準は確立され
ていないが、概ね次のような相互関係が成り立つ。すな
わち一般に加工ギャップが小さいと、より小さな加工電
圧(ワークと電極間の電圧)によって放電現象が発生し
、電流密度を高くすると加工電圧が上昇する。更にパル
ス幅が大きいと、又は電流密度が高いとギャップ中の水
素ガス、酸素ガスその他の電解生成物の発生量が増大し
、ギャップの電気抵抗を高めるため、やはり放電現象に
結びつきやすくなる。
又、加工電圧が上昇すると放電を発生しなくも、より電
気抵抗の少ないギャップ外へ電流が漏洩しやすくなり、
この漏洩電流(漂遊電流)によってギャップ外に加工が
広がったり、電気的腐食が著しくなったりして、加工精
度の低下を招く。これらの現象はギャップが小さくギャ
ップ中に存在する電解液の量が少ないほど甚だしい。
したがって、安定した加工を可能にするためには、■電
流密度を低く設定する、■パルス幅を短くする、■大き
なギャップを確保する、ことが必要である。又、加工の
安定性からではなく加工品質からこれらを検討した場合
には、大きな電流密度を用いて、ある範囲のパルス幅で
加工した方が、光沢が強く滑らかな加工面を得やすい。
 これらの観点から正及び負のパルス幅は0.3〜10
m5.電流密度は50〜200 A/cm2、加工ギャ
ップは0.03〜2.5■の範囲内がよい。
又、負のパルス幅は正のパルス幅よりも小さくするとよ
い。
[作 用] 超硬合金の電解加工ではワークが陽極となった際に結合
材であるCoが溶出する反応と同時に、WC,Tic粒
子の表面では WC−4WO3 TiC−+TiO2 の反応が生ずる。又、一方ワークが陰極となった際には
陰極(ワーク)の周囲にNaOH水溶液が生じ、この中
で WO3−=Na2WO4 Ti02−Ti  (OH) 4 という反応が起りそれぞれ電解液中に溶出される訳であ
るが、従来の加工方法ではこの2つの反応が別個に行わ
れるのに対し、本発明の方法の場合は(−)電流パルス
と(+)電流パルスの間隔が短いことから、NaOHの
水溶液中で上記2つの反応が同時に進行すると考えられ
る。
つまり、本発明の方法では(−)パルス電流によって生
成したNaOHの水溶液中で(+)電流を作用させるこ
とにより、WO3、TlO2が生成されると同時にNa
 2 WO4、Ti (OH) 4となって溶出する反
応が繰返しCoの溶出と共に行われる訳である。
このようにWC又はTiCとCoの溶出が同時に進行す
る結果、滑らかで光沢の強い面に仕上がり、ワーク表面
にWO3、TiO2の層が殆ど成長しないことから電解
生成物の付着が抑制される。
又、従来の加工法ではある厚みを持ったWO3、TiO
2の被膜が生成する訳であるから、これを効率的に溶出
させるためには一定以上の時間(−)電流を印加して、
ある濃度のNa0B水溶液の層を維持する必要がある。
これに対し本発明の方法では上記二つの反応が同時に進
行するため、反応が円滑に進み、NaOHを有効に作用
されることができるから、生成させるNaOHの量が少
量で済む。
このため(−)電流パルス幅を短くして全通電時間に占
める負の電流パルスの割合を小さくし、以て電極の消耗
を抑制することが可能となる。
[実施例] 実施例1 第2図に示すように電解加工槽1内にワーク(10mm
’ X 5g+sh)  2を固定装置3に固定すると
ともに、ワーク 2と同寸法の5KSB製の工具電極4
を電極支持装W5に固定した後、工具電極4を下降させ
てワーク 2との間に50μ麿の間隙(以下ギャップと
いう)を保ってワーク 2と対向させる。次いで電解加
工槽1内に電解液6としてNaNO3の40vt%水溶
液を入れ、ワーク 2と工具電極4とが電解液6内に位
置するようにする。このようにして前準備が終った後、
集中コントロール装置7を起動する。集中コントロール
装置7は予めセットされた加工サイクルにしたがって、
電源装置8に、第3図に示した波形のパルス電流を発生
させて、工具電極4とワーク 2にそれを印加すると同
時に、電磁バルブ9を開けて電解液タンク10から電解
液を25℃、0.8kg/cm2の圧力をもって、電解
液ノズルllを通じて、工具電極4とワーク 2との間
に連続的に供給する。
比較例1 パルス波形を第4図に示すようにした以外は実施例1と
同一の加工条件で加工をした。
上記実施例]並びに比較例1において、十と−のパルス
幅を変化させたときの試験結果を表1にまとめて示す。
各間中左側は実施例1の結果を示し、右側は比較例1の
結果を示す。モして各側の三段の示す意味は下記のとお
りである。
上:電解生成物の付着状態 O・・・無 ×・・・付着又は固着 中:仕上面の光沢 ◎・・銀色 ○・・・銀灰色 △・・・加工面不拘−又は暗灰色 X・・・加工不能 下二工具電極面の性状 ○・・・光沢面 Δ・・・褐色 ×・・荒れる 表1 (+)パルス幅3.0■Sでの実験範囲とその結果実施
例2 下記の如き加工条件で、第5図に示すパルス波形をもっ
て実施した。なお、第5図において、フラッシングとは
(+)パルス電流印加後、電解液ノズルから電解液を2
5℃、0.8kg/Cm’の圧力で供給することを示し
、全体止とは電解液ノズ、リ ルかり、電解液ノズルを停止した状態であり、フラッシ
ング後、電解液が静止状態で通電することを示している
ワーク材:YCl3(超硬合金) 同寸法:10”X5’膳1 工具組1SKS3 電解液:NllNO340豐t%水溶液加工ギャノブ:
50μ腸 電流密度: 50A/cs’ (−1−)通電量: 180c/c■2実施例3 加工条件は実施例2と同しで、第6図に示すパルス波形
をもって実施した。ただし、電解液は25℃、0.8k
g/c■2の圧力で常時供給した。
実施例2及び3の試験結果を表2に示す。表2中各欄左
側が実施例2、右側が実施例3を示す。
表2 (+)パルス幅4.0■Sの実験範囲とその結果(+)
パルス幅8.0■Sの実験範囲とその結果(+)パルス
幅10.0■Sの実験範囲とその結果同寸法: 10”
 X 5’ *m 電極材質:グラファイト(Gr) 電解液:NaN0ゴ40讐t%水溶液 フラッシング時に25℃Ikg/cm’で供給 比較例2 実施例4並びに5と同じ加工条件で、ただしパルス波形
を第8図に示すものをもって実施した。
実施例4並びに5及び比較例2における加工ギャップそ
の他の具体的数値を表3に示す。
表3 実施例4並びに5 下記に示す加工条件で、第7図に示すパルス波形をもっ
て実施した。
ワーク材+YDI5(超硬合金) そして、通電jl(実電流密度X通電時間)と表面粗さ
との関係を第9図に、表面粗さと除去深さとの関係を第
10図に示す。
次に加工ギャップ、電流密度、パルス幅を適宜選択して
良好な結果を得た例について実施例6として表4に示す
実施例6 表4 (注)加工状慎己号の説明 上段 電解生成物の付着状態 O付着せず 中段、ワーク仕上面の色(光沢) 下段 工具電極面の性状 O光沢面又は変化なし △・・・褐色面 この結果から電流密度は概ね50〜200 A/cm’
の範囲、パルス幅は概ね0゜3〜10■Sの範囲、加工
ギャップは概ね003〜2.5msの範囲から選択すれ
ばよいことが判った。
比較例3 第12因に示すようなパルス波形、すなわち(+)電流
とく−)電流の順序を逆にして下記加工条件で加工をし
た。
ワーク材・YD15(超硬合金) 同寸法: 10′X 5’ s− 工具電極: 5KS3 加工ギヤ・ノブ 5Du磨 電流密度 100 A/cs ’ 電解液 N a N O:l 4[1vt%水溶液を連
続供給 この例では加工ギャップに電解生成物が充満し品<、強
い光沢面が得られない等の弊害が目立ち、従来法に比べ
て良い結果は得られなかった。
なお、以上の実施例ではワークの加工面が平坦なものを
用いているが、第13図に示すように表面に凹凸のある
形彫り形状のワーク2゛に対しても、同様にこの発明を
適用することができる。この場合には、工具電極4°と
ワーク2°との間にパルス電流を印加している間は第1
3図に示すように工具電極4°とワーク2゛とは所定の
ギャップまで接近させるが第14図に示すように電解液
ノズル11から電解液をフラッシングするときは、工具
電極4とワーク2とを大きく引き離して、凹凸部間に電
解生成物が滞留しないようにするのが好ましい。
〔発明の効果] この発明の効果を列記すれば下記のとおりである。
(1)従来の電解加工法に比べて、ワークや工具電極の
表面に電解生成物が付着しにくいので、安定した加工が
可能である。
(2)従来法に比べ、より長いパルスによって良い加工
面が得られるため従来法に比べて加工時間を短縮するこ
とができる。
(3)従来の電解加工法に比べて、光沢度及び表面粗さ
の両方において優れた加工面を得ることができる。
(4)全通電時間に占める負の電流パルスの割合を小さ
くできるので、電極の消耗を抑制することができる。
(5)装置は集中コントロール装置にワーク固定装置、
工具電極支持装置、電源装置、電解液供給装置を集中的
に制御させることにより、この発明の方法を容易にしか
も確実に実施することができる。
【図面の簡単な説明】
第1図(a) 、(b)はこの発明の実施に用いるパル
ス波形の説明図、同(C)は従来法のパルス波形の説明
図、第2図はこの発明の実施に適した装置の説明図、第
3図はこの発明の実施例1に用いるパルス波形の説明図
、第4図は比較例1に用いるパルス波形の説明図、第5
図は実施例2に用いるパルス波形の説明図、第6図は実
施例3に用いるパルス波形の説明図、第7図は実施例4
.5に用いるパルス波形の説明図、第8図は比較例2に
用いるパルス波形の説明図、第9図は実施例4.5.6
並びに比較例2の通電量と表面粗さとの関係を示すグラ
フ、第10図は表面粗さと除去深さとの関係を示すグラ
フ、第11図は実施例6中で用いるパルス波形の説明図
、第12図は比較例3に用いるパルス波形の説明図、第
13図並びに第14図は表面に凹凸のあるワークの実施
例の説明図である。 1・・・電解加工槽、2・・・ワーク、3・・・ワーク
固定装置、4・工具電極、5・・・電極支持装置、8・
・電解液、7・・・集中コントロール装置、8・電源装
置、9・・・電磁バルブ、10・・・電解液タンク、1
1・・・電解液ノズル。

Claims (7)

    【特許請求の範囲】
  1. (1)被加工物(ワーク)と工具電極とを中性電解液中
    に所定間隔をおいて対向配置し、これら両者間に正負の
    パルス電流を交互に繰返し印加して、ワークに電解加工
    を施す方法において、ワークに印加する負のパルスから
    正のパルスまでの時間間隔を、正のパルスから負のパル
    スまでの時間間隔よりも小さくすることを特徴とするパ
    ルス電流による電解加工法。
  2. (2)負のパルスから正のパルスまでの時間間隔を零と
    する請求項(1)記載のパルス電流による電解加工法。
  3. (3)ワークと工具電極との間に、正パルスと負パルス
    の間で電解液を強制的に流し、負パルスと正パルスの間
    で電解液を静止させる請求項(1)記載のパルス電流に
    よる電解加工法。
  4. (4)負のパルス幅は正のパルス幅よりも小さい請求項
    (1)記載のパルス電流による電解加工法。
  5. (5)正及び負のパルス幅は0.3〜10mS、電流密
    度は50〜200A/cm^2、加工ギャップは0.0
    3〜2.5mmの範囲内に設定されている請求項(1)
    記載の電解加工法。
  6. (6)電解加工槽の中に、ワークを支持するためのワー
    ク固定装置と、このワークの加工面にならった面形状の
    電極面を有する工具電極を、前記ワークの加工面との間
    に適宜間隔を保って位置させることのできる工具電極支
    持装置と、前記ワークと前記工具電極との間に極性が交
    互に変り、負の電流パルスから正の電流パルスまでの時
    間間隔が正の電流パルスから負の電流パルスまでの時間
    間隔より小さい電流波形を繰返し印加するための電源装
    置と、前記ワークと前記工具電極との間に電解液を供給
    するための電解液供給装置と、これらワーク固定装置、
    工具電極支持装置、電源装置、電解液供給装置を制御す
    る集中コントロール装置とからなるパルス電流による電
    解加工装置。
  7. (7)工具電極支持装置はワークに向う方向とワークか
    ら離れる方向に移動可能であり、電解液供給装置は対向
    して配置されているワークと工具電極との間に電解液を
    間欠的に又は連続的に供給でき、かつ、電源装置、工具
    電極支持装置及び電解液供給装置は、集中コントロール
    装置に予めセットされた加工サイクルにしたがって作動
    する請求項(6)記載のパルス電流による電解加工装置
JP2117637A 1990-05-09 1990-05-09 パルス電流による電解加工法及びその装置 Expired - Fee Related JP2547886B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2117637A JP2547886B2 (ja) 1990-05-09 1990-05-09 パルス電流による電解加工法及びその装置
US07/696,120 US5242556A (en) 1990-05-09 1991-05-06 Electrolytic machining using pulsed electric current
EP91304119A EP0461756B1 (en) 1990-05-09 1991-05-08 Electrolytic machining using pulsed electric current
DE69104134T DE69104134T2 (de) 1990-05-09 1991-05-08 Elektrolytische Bearbeitung unter Verwendung eines pulsierenden Stromes.
ES91304119T ES2061181T3 (es) 1990-05-09 1991-05-08 Mecanizado electrolitico que utiliza una corriente electrica pulsatoria.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117637A JP2547886B2 (ja) 1990-05-09 1990-05-09 パルス電流による電解加工法及びその装置

Publications (2)

Publication Number Publication Date
JPH0419016A true JPH0419016A (ja) 1992-01-23
JP2547886B2 JP2547886B2 (ja) 1996-10-23

Family

ID=14716633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117637A Expired - Fee Related JP2547886B2 (ja) 1990-05-09 1990-05-09 パルス電流による電解加工法及びその装置

Country Status (5)

Country Link
US (1) US5242556A (ja)
EP (1) EP0461756B1 (ja)
JP (1) JP2547886B2 (ja)
DE (1) DE69104134T2 (ja)
ES (1) ES2061181T3 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285719A (ja) * 1993-04-06 1994-10-11 Yuken Kogyo Kk 連続電解研磨方法及び連続電解研磨装置
US5486282A (en) * 1994-11-30 1996-01-23 Ibm Corporation Electroetching process for seed layer removal in electrochemical fabrication of wafers
JPH0899222A (ja) * 1994-09-15 1996-04-16 Ind Elektronik Agie Losone Locarno:Ag 被加工体を電食加工するための方法及びパルス発生器
JP2004291163A (ja) * 2003-03-27 2004-10-21 Ngk Insulators Ltd ハニカム構造体成形用口金の裏孔形成方法
US6896024B2 (en) 2003-06-12 2005-05-24 Munekata Co., Ltd. Thermo-welding equipment used for thermoplastic resin moled goods
WO2009041412A1 (ja) * 2007-09-28 2009-04-02 National Institute Of Advanced Industrial Science And Technology 微細加工用超硬材料工具
JP2012223130A (ja) * 2011-04-20 2012-11-15 Shimano Inc スピニングリールのフェースギア製造方法、フェースギア、及びドライブギア組立体
JP2013500873A (ja) * 2009-08-05 2013-01-10 イクストルード ホーン ゲーエムベーハー 被加工品を電解加工する電解加工方法
JP5601435B1 (ja) * 2013-11-05 2014-10-08 三菱電機株式会社 電解加工方法、電解加工装置および電解加工液
JP2015231642A (ja) * 2014-06-09 2015-12-24 三菱電機株式会社 超硬合金の電解加工方法および電解加工装置
JP2018202503A (ja) * 2017-05-31 2018-12-27 国立大学法人 東京大学 複合加工装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333935A1 (de) * 1993-10-05 1995-04-06 Axel Dipl Ing Fechner Verfahren und Anordnung zum Ätzen von Edelmetallen
US5486280A (en) * 1994-10-20 1996-01-23 Martin Marietta Energy Systems, Inc. Process for applying control variables having fractal structures
US5660708A (en) * 1994-11-21 1997-08-26 Sumitomo Metal Mining Company, Limited Process for manufacturing a lead frame
NL1006463C2 (nl) * 1997-07-03 1999-01-05 Leuven K U Res & Dev Werkwijze voor elektrochemische depositie en/of wegetsing en een dergelijke elektrochemische cel.
US6007694A (en) * 1998-04-07 1999-12-28 Phillips Plastics Corporation Electrochemical machining
US6402931B1 (en) * 1998-05-18 2002-06-11 Faraday Technology Marketing Group, Llc Electrochemical machining using modulated reverse electric fields
US6139715A (en) * 1998-11-02 2000-10-31 General Electric Company Electrochemical deburring or radiusing
US6723389B2 (en) 2000-07-21 2004-04-20 Toshiba Tungaloy Co., Ltd. Process for producing coated cemented carbide excellent in peel strength
DE60030708T2 (de) * 2000-07-24 2007-09-13 Tungaloy Corporation, Kawasaki Beschichtete Hartmetallkörper
WO2002090029A1 (en) * 2001-05-08 2002-11-14 Koninklijke Philips Electronics N.V. Method for a removal of cathode depositions by means of bipolar pulses
US7175752B2 (en) * 2002-05-24 2007-02-13 Federal-Mogul Worldwide, Inc. Method and apparatus for electrochemical machining
EP1714725B1 (de) * 2005-04-18 2007-12-12 Wilhelm Mahler Verfahren und Schaltanordnung zur elektrochemischen Metallbearbeitung
US20110017608A1 (en) * 2009-07-27 2011-01-27 Faraday Technology, Inc. Electrochemical etching and polishing of conductive substrates
RU2456138C1 (ru) * 2011-01-12 2012-07-20 Общество С Ограниченной Ответственностью "Есм" Способ электрохимической обработки
RU2567415C2 (ru) * 2014-01-29 2015-11-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка" (ФГБНУ ГОСНИТИ) Способ электроискрового нанесения толстослойных покрытий повышенной сплошности
EP3263264A4 (en) * 2015-02-27 2018-11-14 The University of Tokyo Electrochemical machining device and electrochemical machining method
WO2017210709A1 (de) * 2016-06-09 2017-12-14 Ritter & Stark Gmbh Konfigurationsanordnung der apparatur für die herstellung der züge in läufen von feuerwaffen mittels pecm verfahren
SG11202005062SA (en) 2016-07-13 2020-06-29 Alligant Scientific Llc Electrochemical methods, devices and compositions
CN110144618A (zh) * 2019-06-03 2019-08-20 河南四方达超硬材料股份有限公司 一种去除聚晶金刚石复合片中金属钴的方法
CN113319386B (zh) * 2021-04-15 2022-06-14 青岛理工大学 一种提高合金构件微区表面质量的加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274811A (ja) * 1985-05-30 1986-12-05 Fanuc Ltd 放電加工電源
JPH01228725A (ja) * 1988-03-03 1989-09-12 Shizuoka Seiki Co Ltd 電解仕上げ加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616346A (en) * 1967-03-20 1971-10-26 Inoue K Ion-control method for electrochemical machining
US3654116A (en) * 1968-08-07 1972-04-04 Inoue K Adaptive ion-control system for electrochemical machining
DE7330369U (de) * 1975-07-31 1976-03-18 Languepin, Carel Fouche, Paris VorrichtUng zur elektrischen Bearbeitung von Werkstücken
US4842702A (en) * 1987-04-23 1989-06-27 Shizuoka Seiki Co., Ltd. Method for finishing a work

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274811A (ja) * 1985-05-30 1986-12-05 Fanuc Ltd 放電加工電源
JPH01228725A (ja) * 1988-03-03 1989-09-12 Shizuoka Seiki Co Ltd 電解仕上げ加工方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285719A (ja) * 1993-04-06 1994-10-11 Yuken Kogyo Kk 連続電解研磨方法及び連続電解研磨装置
JPH0899222A (ja) * 1994-09-15 1996-04-16 Ind Elektronik Agie Losone Locarno:Ag 被加工体を電食加工するための方法及びパルス発生器
US5874703A (en) * 1994-09-15 1999-02-23 Agie Sa Method and apparatus for impulse generator for electroerosive machining of workpieces
US5486282A (en) * 1994-11-30 1996-01-23 Ibm Corporation Electroetching process for seed layer removal in electrochemical fabrication of wafers
US5543032A (en) * 1994-11-30 1996-08-06 Ibm Corporation Electroetching method and apparatus
JP2004291163A (ja) * 2003-03-27 2004-10-21 Ngk Insulators Ltd ハニカム構造体成形用口金の裏孔形成方法
US6896024B2 (en) 2003-06-12 2005-05-24 Munekata Co., Ltd. Thermo-welding equipment used for thermoplastic resin moled goods
CN1296196C (zh) * 2003-06-12 2007-01-24 宗形株式会社 用于热塑性树脂模制件的热焊接设备
WO2009041412A1 (ja) * 2007-09-28 2009-04-02 National Institute Of Advanced Industrial Science And Technology 微細加工用超硬材料工具
JP2009082936A (ja) * 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology 微細加工用超硬材料工具
JP2013500873A (ja) * 2009-08-05 2013-01-10 イクストルード ホーン ゲーエムベーハー 被加工品を電解加工する電解加工方法
US8956527B2 (en) 2009-08-05 2015-02-17 Kennametal Extrude Hone GmbH Method for the electrochemical machining of a workpiece
JP2012223130A (ja) * 2011-04-20 2012-11-15 Shimano Inc スピニングリールのフェースギア製造方法、フェースギア、及びドライブギア組立体
JP5601435B1 (ja) * 2013-11-05 2014-10-08 三菱電機株式会社 電解加工方法、電解加工装置および電解加工液
WO2015068184A1 (ja) * 2013-11-05 2015-05-14 三菱電機株式会社 電解加工方法、電解加工装置および電解加工液
CN105705283A (zh) * 2013-11-05 2016-06-22 三菱电机株式会社 电解加工方法、电解加工装置以及电解加工液
CN105705283B (zh) * 2013-11-05 2019-02-19 三菱电机株式会社 电解加工方法、电解加工装置以及电解加工液
JP2015231642A (ja) * 2014-06-09 2015-12-24 三菱電機株式会社 超硬合金の電解加工方法および電解加工装置
JP2018202503A (ja) * 2017-05-31 2018-12-27 国立大学法人 東京大学 複合加工装置

Also Published As

Publication number Publication date
JP2547886B2 (ja) 1996-10-23
DE69104134D1 (de) 1994-10-27
ES2061181T3 (es) 1994-12-01
DE69104134T2 (de) 1995-01-26
US5242556A (en) 1993-09-07
EP0461756A1 (en) 1991-12-18
EP0461756B1 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JPH0419016A (ja) パルス電流による電解加工法及びその装置
US6558231B1 (en) Sequential electromachining and electropolishing of metals and the like using modulated electric fields
JP4774177B2 (ja) エレクトロプラズマ技術を用いて金属表面を洗浄及び/又は被覆する改良された方法及び装置
Masuzawa et al. Electrochemical surface finishing of tungsten carbide alloy
JP3376174B2 (ja) 放電加工による表面処理方法および装置
CA2233329A1 (en) Method for electrolytic deposition of metal coatings
CA2253214A1 (en) An electrolytic process for cleaning and coating electrically conducting surfaces
GB2052562A (en) Scanning electroplating method and apparatus
DE2008664A1 (en) Galvanically or chemically assisted mechanic
US3727489A (en) Die-making process
US5045161A (en) Method and apparatus for electrolytically assisting the mechanical shaping of a workpiece
US3331760A (en) Electrolytic milling
US4052274A (en) Electrochemical wire cutting method
Kalra et al. Experimental study on developed electrochemical micro machining of hybrid MMC
JPH08257841A (ja) 放電表面改質方法及びその装置
Chak Electro chemical discharge machining: process capabilities
JPH0283119A (ja) 放電加工方法
JP4892682B2 (ja) ワイヤ放電加工の表面改質方法
Sun et al. The applications of CM-ECM technology to metal surface finishing
JPS629823A (ja) 電解複合研摩方法
McGeough Electrochemical machining (ECM)
JPH1043948A (ja) 電解加工による仕上げ加工方法
JPS60186318A (ja) チタンおよびその合金の鏡面加工方法
CN211135823U (zh) 一种原位共液电化学复合加工装置
CA1335437C (en) Method and apparatus for electrolytically assisting the mechanical shaping of a workpiece

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees