JPH04124830A - 半導体装置 - Google Patents

半導体装置

Info

Publication number
JPH04124830A
JPH04124830A JP24460290A JP24460290A JPH04124830A JP H04124830 A JPH04124830 A JP H04124830A JP 24460290 A JP24460290 A JP 24460290A JP 24460290 A JP24460290 A JP 24460290A JP H04124830 A JPH04124830 A JP H04124830A
Authority
JP
Japan
Prior art keywords
region
base
collector
type
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24460290A
Other languages
English (en)
Inventor
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24460290A priority Critical patent/JPH04124830A/ja
Publication of JPH04124830A publication Critical patent/JPH04124830A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 二概要コ 高速動作可能で電流駆動能力の高いバイポーラ半導体装
置に関し、 コレクタ領域内における谷間遷移を抑止すると共に、他
に不都合な点を生じさせないヘテロバイポーラトランジ
スタ構造を有する半導体装置を提供することを目的とし
、 JnPを含む第1領域を有するコレクタ領域と、GaS
bを含み、第1領域に隣接して配置され、第1領域とヘ
テロ接合を形成する第2領域を有するベース領域とを有
するように構成する。
1産業上の利用分野コ 本発明は半導体装置に関し、特に高速動作可能で電流駆
動能力の高いバイポーラ半導体装置に関する。
シリコン等の単一物質で構成されたバイポーラトランジ
スタは、同じ物質で構成されたユニポーラトランジスタ
より一般的に高速動作、電流駆動能力に優れているか、
無視できない駆動(ベース)電流を必要とする。
エミッタ・ベース間に異種物質のヘテロ接合を採用した
ヘテロ接合バイポーラトランジスタ(HBT)は、ヘテ
ロ接合材料の選択により駆動電流を大幅に低減し、高い
電流増幅率を実現できる。
このため、高速動作もより推進される。
1従来の技術つ 従来のHBTとしては、■族生導体を用いたSi/5i
Ge(Si領域とSiとGeの混晶領域とのヘテロ接合
)を用いたものら知られているか、主には■−v族半導
体のヘテロ接合を用いたものか研究されている。
第2図に、従来の技術によるI−V族ヘテロ接合バイポ
ーラトランジスタの構成例を示す。
n型GaAs:7レクタ領域31の上に、p+型GaA
Sベース領域32か配置され、その上にn型AlGaA
sエミッタ領域33か配置され、エミッタ・ベース間に
ヘテロ接合を形成している。
エミッタ・ベース間に順バイアス電圧を印加すると、伝
導帯E に関して、エミッタからベースに移行する電子
に対する電位障壁は消滅して、電子の注入か生しるが、
この時にベース領域32からエミッタ領域33に移行す
る正孔に対しては一電位障壁か残存するため、正孔の注
入は極めて低い、このため、ベース電流は極めて小さい
値に保たれ、高い電流増幅率が実現される。エミッタ領
#i33からベース領域32に注入された電子は、ベー
ス領域内で適宜加速され、コレクタ領域31に注入され
て、強い電界によって強く加速される。
このコレクタ領域内の高い電界によって、電子が加速さ
れると、電子のエネルギが高くなり、伝導帯の「谷から
し谷への遷移(散乱)か生じる。GaAsにおいては、
伝導帯の「谷とL谷とのエネルギ差は、約0.33eV
であり、半導体中に高電界を印加すると、「谷からし谷
への遷移を生じることは避は離い。
L谷は、「谷の有効質量に対して、約3倍大きな有効質
量を有している。このため、「谷からL谷へ電子か遷移
すると、電子の質量か急激に重くなり、速度か遅くなっ
てしまう、このため、コレクタ領域31を走行する時間
か長くなってしまう。
この谷間遷移かHBTの動作速度を制限する原因の1つ
となる。
以上説明したような、谷間遷移を防止する方法として、 (1)、コレクタ領域内に生じる電界を低くすること、 (2)、 r’ −L谷間のエネルギ差の大きい材料を
用いること が考えられる。
第3図(A)〜(C)は、このような考えに基づき、第
2図HBTを改良する構成例を示す。
第3図(A)は、n型GaAsの代わりに、P−型Ga
ASをコレクタ領域として用いる構成を示す、すなわち
、第2図におけるn型GaAs領域31の代わりに、p
−型GaAs領域31bを配置し、電子を吸い出すコレ
クタコンタクトを形成するため、n++GaAs領域3
1aを接続した構成である。ベース領域32からp型コ
レクタ領域31bに移行する際には、pn#台か存在せ
ず、急激な電位勾配が防止されている。このため、コレ
クタ領域内における高電界を低減する役割を果す。
しかしなから、通常−ベース領域内においてもポテンシ
ャルレベルを傾斜させた傾斜ベース構造が採用されてお
り、電子かベース領域がらコレクタ領域に移行する際に
は、かなりのエネルギを得ている。コレクタ領域内にお
ける電界を制限しても、コレクタ領域としてGaAsを
用いる限り、約03eVという狭いエネルギ差しかない
「谷からL谷への遷移を防止することは離しい、このた
め、第3図(A)の構成を用いて、r−L谷間遷移を極
めて小さく抑制することは難しい。
第3図(B)は、コレクタ領域を形成する材料として、
1nGaAsを用いた構成を示す、この時、ベース領域
もJnGaAsで形成する。
n型1nGaAsrレクタ領域36の上に、p+型型口
nGaAsベース領域37か形成され、その上にn型り
n^IAsのエミッタ領域38か形成されている。In
GaAsは、「谷がらL谷へのエネルギ差か約0.72
eVと大きく、「−り谷間遷移を極めて低く制限できる
ベース領域とコレクタ領域に1nGaAsを用いた時は
、エミッタ領域としては、上に述べたようにInA I
Asを用いることか多いが、他にJnpを用いることも
できる。
JnGaAsは、高い「−り谷間エネルギを持つが、禁
制帯のエネルギ差Egが小さく、イオン化率が高い。こ
のため、コレクタ領域の耐圧を大きくすることか雛しく
、トランジスタ特性が悪くなるという性質を持つ。
コレクタ領域の71’1GaASの代わりに、禁制帯幅
が大きな]nA lGaAsを用いることも考えられる
が、への親戚を高くして禁制帯幅を拡げると、逆にP−
り谷間エネルギ差か小さくなってしまう。
r−L谷間エネルギのエネルギ差の大きな材料として、
1nGaASの他にJnPかある。TnPのr−L谷間
エネルギ差は約0.52eVと、InGaAsよりは小
さいか、それでもGaAsの約0,33eVと比べれば
十分大きな値である。]nPは、「−り谷間エネルギか
大きいばかりでなく、禁制御F 幅E gも約1.35
eVと大きく、イオン化率は小さい。
したかって、極めて有望な材料と言える。
コレクタ領域を1nPで形成した場合−一般的には、ベ
ース領域は]nGaAs、エミッタ領域はInPで形成
される。
第3図(C)にこのような構成を概略的に示す。
n型]nPのコレクタ領域41上にp十型]nGaAS
のベース領域42か形成され、さらにその上にn型1n
Pのエミッタ領域43か形成される。ベース領域42の
伝導帯のエネルギは、コレクタ領域41、エミッタ領域
43の伝導帯のエネルギよりも低く、ベース領域42内
のキャリアにとっては両側に電位障壁か形成される。
このため、ベース領域42に、エミッタ領域43に対し
て順方向のバイアス電圧を印加して、エミッタ領域43
からベース領域42にキャリアを注入しても、このキャ
リアはベース領域42とコレクタ領域41の間のヘテロ
接合によって生じる電位障壁により、進行を阻害されて
しまう、このなめ、約0−52eVという大きなr−L
谷間のエネルギ差および約1.35eVと広い禁制帯幅
を有する利点を十分活用することができない。
″L発明が解決しようとする課題〕 以上説明したように、従来の技術によれば、コレクタ領
域内の谷間遷移(散乱)を防止することが難しく、有効
質量の小さな谷から有効質量の大きな谷へキャリアが遷
移することによって、キャリアのコレクタ走行時間が長
くなってしまった。
また、この点を改良しようとすると、他の部分に不都合
が表われ、全体的に良好な特性を発揮することか離しか
った。
本発明の目的は、コレクタ領域内における谷間遷移を抑
止すると共に、他に不都合な点を生じさせないヘテロバ
イポーラトランジスタ構造を有する半導体装置を提供す
ることである。
1課題を解決するための手段] 第1図は、本発明の原理説明図である。
コレクタ領域は、]nPを主成分とする第1領域1を有
し、この第1領域に接してGaSbを主成分とする材料
のベース領域の第2領域2か形成されている+ GaS
bを主成分とする材料は格子整合のため一他の物質を含
んでもよい。たとえば、GaAsSbである。
エミッタ領域の第3領域3は、好ましくはTn^Asで
形成される。
このようにして、たとえば、npnダブルヘテロバイポ
ーラトランジスタ構造が構成される。
3作用] InPは、r−L谷間のエネルギ差が、約0.52eV
と大きく、r−L谷間遷移(散乱)か生じにくい。この
ため、高電界下での電子速度を高くすることができる。
また、JnPの禁制帯幅は約1゜35eVと広く、イオ
ン化率は低く、耐圧を十分大きくしやすい、このような
1nPをコレクタ領域とし、ベース領域をGaSbを主
成分とする材料で形成すると、ベース・コレクタ間には
、約o、25eVのエネルギ差がΔEc2生じるが、こ
のエネルギ差ΔEc2はコレクタ領域1の方か低いエネ
ルギ差である。このため、ベースから注入される電子に
とっては、電位障壁は存在せず、逆に高エネルギ状態の
電子をコレクタに注入できる。さらに、p型GaSbは
t極金属とのショットキー障壁か極めて低いなめ、コン
タクト抵抗を下げることかでき、高周波特性を上げるこ
とかできるという利点がある。
エミッタとして、]nAlAsを用いると、エミッタ・
ベース間の伝導帯の不連続ΔEC1か約0.1eV以下
となる。このため、電子をエミッタからベースに注入す
る場合、障壁かほとんど存在しない、また、ベースGa
AsSbの禁制帯幅が約0.7eVと小さい、このため
、ベース電圧の変化に対するコレクタ電流の変化を考慮
した時、コレクタ電流の立上がるベース電圧を非常に小
さな値に設定できる。つまり、低消費電力動作が可能と
なる。
また、1n^IAsは、GaSbを主成分とする材料と
の価電子帯の不連続ΔEvか約0.7eVと大きい。
このため、ベース領域の正孔に対する閉込め作用か極め
て良くなる。このため、大きな電流利得か容易に得られ
る。
:実施例; 第4図に本発明の実施例によるヘテロバイポーラトラン
ジスタ半導体装置を示す、半絶縁性JnP基板11の上
に、バッファ層としてi型]nP領域12かエピタキシ
ャル成長され、その上に格子整合したn4型JnGaA
s領域13かコレクタ領域のコンタクト層として、エピ
タキシャル成長されている。この上に、n型1nPコレ
クタ領域14かエピタキシャル成長され、その上に格子
整合したP′型GaAsSbベース領域15がエピタキ
シャル成長されている。ベース領域の主な特性は、主成
分のGa5bによって定まる。 GaSbは格子整合の
目的て入っている。ベース領域15上には、]nPと格
子整合したn型1nAIAsエミツタ領域16、n型T
nAIGaAS中間領域17、n十型1nGaAsコン
タクト領域18か、エミッタ領域に対してコンタクトを
形成するための領域として成長されている。各コンタク
ト領域の表面は露出され、コレクタコンタクト領域13
上にはコレクタ電極21、ベース領域15上にはベース
電極22、エミッタコンタクト領域18上にはエミッタ
電@23かCr/Au、Ti/P t / A u等の
金属を用いて形成されている。
たとえば、i型JnPバッファ層12は厚さ約5000
人、n十型1nGaAsコレクタコンタクト領域13は
不純物濃度lX1018■−3、厚さ約3000人、n
型1nPコレクタ領域14は、不純物濃度的3 X 1
0 ’6cz−3、厚さ約3000人、p中型Ga^s
Sbベース領域15は、たとえば不純物濃度的1×10
18all−3、厚さ約1000人、n型1n^1^S
エミツタ領域16は不純物濃度的5 ×1017.−3
厚さ約1500人、このエミッタ領域16とコンタクト
領域18を接続する中間領域17は、InAlAsから
]nGaAsの組成勾配層であって、不純物濃度的5 
×101EI、−3、厚さ約500人、n中型TnGa
Asコンタクト層18は、不純el濃度約lX1018
■゛3、厚さ約1000人を有する。これらのエピタキ
シャル層は、それぞれたとえば、MOMBE法で成長で
きる。
エミッタ・ベース間に順バイアスを印加すると、エミッ
タ領域16とベース領域15の間の伝導帯の不連続は約
0.1eV以下であるため、ベースバイアス電圧の印加
と共に急激にエミッタからベースへ電流か注入される。
この時、ベース領域15内の正孔に対しては、価電子帯
の不連続か約0゜7eVあるので、ベース電流はほとん
ど流れない。
このため、高いt流増幅率か得られる。ベース領域15
からコレクタ領域14に注入される電子は、コレクタ領
域に注入されると共に、約0.25e■のエネルギを得
、コレクタ領域14中を高速度で走行する。コレクタ領
域14は、r−L谷間エネルギが、約0.52eVと大
きく、谷間遷移による散乱を小さく抑制することかでき
る。
また、lnPは、禁制帯幅か約1.35eVと大きく、
イオン化率も低いため、耐圧を大きくすることかできる
このようにして、動作速度、耐圧、@、流増幅率等の点
に関して優れたヘテロ接合バイポーラトランジスタか得
られる。
なお、コレクタ領域として、n型1nF’を用いる場合
を説明したが、n型]nP領域の代わりにp型InP領
域を用いることもできる。この場合、ベース領域からコ
レクタ領域に注入された電子に印加される電界を小さく
することか容易となる。また、p型GaAsSbベース
領域の代わりに、p型AlGaAsSbベース領域を用
いることもできる。この場合、ベース領域内に組成勾配
を形成し、ベース領域内で電子を加速することか好まし
い、エミッタ領域として、n型1nA I^Sを用いる
場合を説明しなか、代わりにn型1nPを用いてもよい
以上実施例に沿って本発明を説明したが、本発明はこれ
らに制限されるものではない4たとえは、種々の変更、
改良、組み合わせ等か可能なことは当業者に自明であろ
う。
U発明の効果] 以上説明したように、本発明によれば、コレクタ領域内
における「−り谷間遷移か低く抑制されるなめ、コレク
タ領域の走行時間を小さくすることかてきる。
この時、ベースからコレクタに注入されるキャリアに対
しては、障壁か存在しない、このため、効率よく電子を
コレクタに供給できる。
エミッタを1n^IAsで構成した場合は、小さなベー
ス電圧でコレクタ電流を大きく立上げることが可能とな
り、消費電力の低減が容易となる。また、ベース電流を
低減することにより、大きな電流増幅率を得ることか容
易となる。
【図面の簡単な説明】
第1図は、本発明の原理説明図、 第2図は、従来技術によるヘテロバイポーラトランジス
タの構造を説明するためのバンドタイヤグラム、 第3図(A)〜(C)は、従来技術の他の例を説明する
ためのバンドタイヤグラム、 第4図は、本発明の実施例によるヘテロバイポーラトラ
ンジスタ半導体装置の梢遣を示す断面図である。 図において、 1  第1領域(コレクタ領域) 2  第2領域(ベース領域) 3  第3領域(エミッタ領域) 11  半絶縁性1nP基板 13   n十型1nGaAsrレクタコンタク14 
  n型1nPコレクタ領域 15   p生型GaAsSbベース領域16   n
型1nA IASエミッタ領域ト領域 第1図 第2図 (A)p型コレクタ (B) (C) 従来技術の他の例 第3図 第4図

Claims (2)

    【特許請求の範囲】
  1. (1)、InPを含む第1領域(1)を有するコレクタ
    領域と、 GaSbを含み、前記第1領域に隣接して配置され、前
    記第1領域とヘテロ接合を形成する第2領域(2)を有
    するベース領域と を有する半導体装置。
  2. (2)、請求項1記載の半導体装置であって、さらに、
    InAlAsを含み、前記第2領域に隣接して配置され
    、前記第2領域とヘテロ接合を形成する第3領域(3)
    を有するエミッタ領域を有する半導体装置。
JP24460290A 1990-09-14 1990-09-14 半導体装置 Pending JPH04124830A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24460290A JPH04124830A (ja) 1990-09-14 1990-09-14 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24460290A JPH04124830A (ja) 1990-09-14 1990-09-14 半導体装置

Publications (1)

Publication Number Publication Date
JPH04124830A true JPH04124830A (ja) 1992-04-24

Family

ID=17121171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24460290A Pending JPH04124830A (ja) 1990-09-14 1990-09-14 半導体装置

Country Status (1)

Country Link
JP (1) JPH04124830A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571994A2 (en) * 1992-05-28 1993-12-01 Hughes Aircraft Company NPN heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
JP2006303474A (ja) * 2005-03-23 2006-11-02 Sony Corp ヘテロ接合バイポーラトランジスタ
JP2007027294A (ja) * 2005-07-14 2007-02-01 Nippon Telegr & Teleph Corp <Ntt> ヘテロ接合バイポーラトランジスタ
RU2468466C2 (ru) * 2008-06-19 2012-11-27 Интел Корпорейшн Способ формирования буферной архитектуры (варианты), микроэлектронная структура, сформированная таким образом

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571994A2 (en) * 1992-05-28 1993-12-01 Hughes Aircraft Company NPN heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
JPH0637104A (ja) * 1992-05-28 1994-02-10 Hughes Aircraft Co 半絶縁性燐化インジュウム基体上に形成されたアンチモン化合物ベースを含むnpn型ヘテロ接合バイポーラトランジスタ
EP0571994A3 (en) * 1992-05-28 1994-07-27 Hughes Aircraft Co Npn heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
JP2006303474A (ja) * 2005-03-23 2006-11-02 Sony Corp ヘテロ接合バイポーラトランジスタ
JP2007027294A (ja) * 2005-07-14 2007-02-01 Nippon Telegr & Teleph Corp <Ntt> ヘテロ接合バイポーラトランジスタ
RU2468466C2 (ru) * 2008-06-19 2012-11-27 Интел Корпорейшн Способ формирования буферной архитектуры (варианты), микроэлектронная структура, сформированная таким образом

Similar Documents

Publication Publication Date Title
US4727403A (en) Double heterojunction semiconductor device with injector
US5631477A (en) Quaternary collector InAlAs-InGaAlAs heterojunction bipolar transistor
JP2501625B2 (ja) ヘテロ接合バイポ―ラ・トランジスタ
JPH038340A (ja) ヘテロ接合バイポーラトランジスタ
JPH05243256A (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
JPH0669222A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JPH0637104A (ja) 半絶縁性燐化インジュウム基体上に形成されたアンチモン化合物ベースを含むnpn型ヘテロ接合バイポーラトランジスタ
US6696710B2 (en) Heterojunction bipolar transistor (HBT) having an improved emitter-base junction
JP3159198B2 (ja) 電界効果トランジスタ
JPH0665216B2 (ja) 半導体装置
US6762480B2 (en) Thin gallium-arsenide-antimonide base heterojunction bipolar transistor (HBT) having improved gain
JPH05190834A (ja) 高速動作半導体装置およびその製造方法
JPH04124830A (ja) 半導体装置
JPH0665217B2 (ja) トランジスタ
JP2692558B2 (ja) ヘテロ接合型バイポーラトランジスタ
US4916495A (en) Semiconductor device with semi-metal
JP2007027294A (ja) ヘテロ接合バイポーラトランジスタ
JPS6242451A (ja) ヘテロ接合バイポ−ラ半導体装置
JPH07161727A (ja) ヘテロバイポーラトランジスタ
JP2004014922A (ja) ヘテロ接合バイポーラトランジスタ
JP2692559B2 (ja) ヘテロ接合バイポーラトランジスタ
JP2855629B2 (ja) ヘテロ接合バイポーラトランジスタ
JP6096503B2 (ja) ヘテロ接合バイポーラトランジスタ
JP3789566B2 (ja) 共鳴トンネルダイオード
JPH0812914B2 (ja) 半導体装置