JPH04124018A - 酸化物超電導体及びその製造法 - Google Patents

酸化物超電導体及びその製造法

Info

Publication number
JPH04124018A
JPH04124018A JP2243286A JP24328690A JPH04124018A JP H04124018 A JPH04124018 A JP H04124018A JP 2243286 A JP2243286 A JP 2243286A JP 24328690 A JP24328690 A JP 24328690A JP H04124018 A JPH04124018 A JP H04124018A
Authority
JP
Japan
Prior art keywords
oxide superconductor
strontium
calcium
nitrogen atmosphere
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243286A
Other languages
English (en)
Inventor
Keiji Sumiya
圭二 住谷
Hideji Kuwajima
秀次 桑島
Shozo Yamana
章三 山名
Toranosuke Ashizawa
寅之助 芦沢
Shuichiro Shimoda
下田 修一郎
Minoru Ishihara
稔 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2243286A priority Critical patent/JPH04124018A/ja
Publication of JPH04124018A publication Critical patent/JPH04124018A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造法に関する。
(従来の技術) 従来の酸化物超電導体としては、1988年金属材料技
術研究所の前圧総合研究官らによって発見されたビスマ
ス、ストロンチウム、カルシウム及び銅を主成分とする
B1−8r−Ca−Cu−0系(以下B11kとする)
の酸化物超電導体があるが、このBi系の酸化物超電導
体は、電気抵抗が零になる臨界温度(以下T czer
oとする)が110に付近の2223相が生成しにくい
という問題があった。このためT czeroは低いが
、生成温度領域が広い2212相の活用が試みられてい
る。
(発明が解決しようとする課題) しかしながらBi系の酸化物超電導体の2212相!!
、 T a”r0カ80KN近テアルt:?b液体窒素
の冷却(77K)では”1” czaroとの差が小さ
く超電導特性が不安定で使用できないおそれがある。
2212相のT c””を高める方法として、ジャパニ
ーズ、ジャーナル、オブ、アプライド、フィジックス(
Japanese  Journalof  Appl
ied  Physics)Vo127.9号(198
8年9月刊> 、 Lxa26iLl 628頁及びF
IVo127,12号(1988年12月刊)、L23
27渭L2329号並びIこアトパンセス、イン、スー
パーコンダクティビイティII (Advances 
 jn  5uper−ハ conductivi tyn)t  149〜152
頁に示されるように500〜880”Cの温度で熱処理
した後、液体窒素中又は空気中で急冷して得る方法が報
告されている。
この方法は急冷する工程を含むため小型の成形体を作製
することは出来ても大型の成形体を作製することは困難
であるという欠点がある。
本発明は急冷工程を経ることなしに90により高い”l
−cZeroを示す2212相のBi系の酸化物超電導
体及びその製造法を提供することを目的とするものであ
る。
(課題を解決するための手段) 本発明はビスマス、ストロンチウム、カルシウム、リチ
ウム、バリウム及び銅を主成分とし。
一般式Bit、oS I”ACa!1LlcBaDCu
+。
±o2Ox (但しA=0.6〜1.2.B=0.35〜0.7゜C
=0.05〜0.2.D=0.05〜0.2.数字は原
子比を表わす) で示される組成からなる酸化物超電導体及び上記の組成
となるようにビスマス、ストロンチウム。
カルシウム、リチウム、バリウム及び銅を含む各原料を
秤量し、ついで混合したのち、仮焼、粉砕し、成形後窒
素雰囲気中又は酸素を10体積%未満で含有する窒素雰
囲気中で焼成する酸化物超電導体の製造法並びに上記の
組成となるようにビスマス、ストロンチウム、カルシウ
ム、リチウム。
バリウム及び銅を含む各原料を秤量し、ついで混合した
後仮焼,一次焼成し、さらに粉砕後、成形し、再度窒素
雰囲気中又は酸素を7体積%未満で含有する窒素雰囲気
中で二次焼成する酸化物超電導体の製造法に関する。
本発明において酸化物超電導体を構成する主成分のビス
マス、ストロンチウム、カルシウム、リチウム、バリウ
ム及び鋼を含む原料については特に制限はないが9例え
ば酸化物、炭Ml@、硝酸塩、しゆう酸塩等の1種又は
2種以上が用いられる。
ビスマス、ストロンチウム、カルシウム、リチウム、バ
リウム及び銅の配合割合は原子比でビスマスが1.0.
ストロンチウムが0.6〜1.2゜カルシウムが0.3
5〜047.リチウムが0.05〜0.2.バリウムが
0.05〜0.2及び鋼が1.0±0.2の範囲とされ
、この範囲から外れると急冷工程なしではT cz@r
oが90に台の2212相のBi系の酸化物超電導体を
得ことが△ 困難である。
混合方法については特に制限はないが1例えば合成樹脂
製のボールミルに合成樹脂で被覆したボール、エタノー
ル、メタノール等の溶媒及び原料を充填し、湿式混合す
ることが好ましい。
仮焼条件において、仮焼温度は各原料の配合割合などに
より適宜選定されるが、780〜870℃の範囲で仮焼
することが好ましく、また仮焼雰囲気は、大気中、Il
素雰囲気中、真空中、還元雰囲気中、中性雰囲気中等で
仮焼することができる。
粉砕及び成形法については特に制限はなく、従来公知の
方法で行なうことができる。
焼成条件において、焼成温度は各原料の配合割合などに
より適宜選定されるが、試料が溶融する温度近傍以下の
温度2例えば780〜950”Cの範囲で焼成すること
が好ましく、810〜900℃のIINで焼成すればさ
らに好ましい。
一方焼成雰囲気は、1回焼成の場合、窒素雰囲気中又は
酸素を10体積%未満含有する窒泰奪聞気中で焼成する
ことが必要とされ、また焼成を2回行なう場合、1次焼
成は大気中、酸素雰囲気中、真空中、還元雰囲気中、中
性雰囲気中等特に制限はないが、2次焼成は窒素S囲気
中又は酸素を7体積%未満含有する窒素雰囲気中で焼成
することが必要とされ、上記以外の条件で焼成を行なう
と急冷工程なしではT cffie I’Qが90に台
の2212相のBi系の酸化物超電導体を得ることが困
難である。なお本発明において、仮焼後、必要に応じ粉
砕及び成形を行ない、その後1次焼成してもよい焼成時
間は、5〜10時間でも差し支えはないが、結晶の均質
性を高めるには20〜100時間行なうことが好ましい
本発明の組成においてO(酸素)の量は、Cuの量及び
Cuの酸化状態によって定まる。しかし酸化状態がどの
ようになっているかを厳密にそして精度よく測定するこ
とができない。そのため本発明においてXで表わすこと
にした。
(実施例) 以下本発明の詳細な説明する。
実施例1〜2 ビスマス、ストロンチウム、リチウム、バリウム、カル
シウム及び銅の比率が原子比で111表に示す組成にな
るように二酸化ビスマス(高純度化学研究新製、純度9
9,9%)、炭酸ストロンチウム(レアメタリック製、
純度99.9%)、炭酸リチウム(高純度化学研究新製
、純度99.9%)、炭酸バリウム(高純度化学研究新
製、純度99.9%)、炭酸カルシウム(高純度化学研
究新製、純度99.9%及び酸化第二銅(高純度化学研
究新製、純度99,9%)を秤量し出発原料とした。
次に上記の出発原料を合成樹n1Ilのボールミル内に
合成樹脂で被覆した鋼球ボール及びメタノールと共に充
填し、46分50回転の条件で72時時間式混合した。
乾燥後アルミナこう鉢に入れ電気炉を用いて大気中で8
00℃で10時間仮焼し。
ついで乳鉢で粗粉砕して酸化物超電導体用組成物を得た
。この後肢酸化物超電導体用組成物を147MPaの圧
力で直径30 m m v厚さ1mmのペレットにプレ
ス成形後1体積比で02: N2=1:20の低酸素雰
囲気中で840℃100時間焼成してBユ系の酸化物超
電導体を得た。
実施例3〜4 ビスマス、ストロンチウム、リチウム、バリウム、カル
シウム及び銅(いずれも実施例1〜2と同一原料を使用
)の比率が原子比で112表に示す組成になるように秤
量し出発原料とした。
以下実施例1〜2と同様の工程を経て酸化物超電導体用
組成物を得た。この後a酸化物超電導体用組成物を体積
比で酸素雰囲気中で900℃で15時間−次焼成し、つ
いで粉砕した後、147MPaの圧力で直径30 m 
m *厚さ1mmのペレットにプレス成形後9体積比で
、○e : N2= 1 :20の低酸素雰囲気中で8
30℃で100時間二次焼成してBi系酸化物超電導体
を得た。
(比較例) 比較例1〜2 ビスマス、ストロンチウム、カルシウム及び銅の比率が
第3表に示す組成になるように二酸化ビスマス(高純度
化学研究所製9M度99.9%)。
炭酸ストロンチウム(レアメタリック製、純度99.9
%)、炭酸カルシウム(高純度化学研究新製、純度99
.9%)及び酸化第二銅(高純度化学研究所製純度99
.9%)を秤量し、以下実施例1〜2と同様の工程を経
てBi系の酸化物超電導体を得た。
比較例3〜4 ビスマス、ストロンチウム、カルシウム及び銅(いずれ
も比較例1〜2と同一の原料を使用)の比率が原子比で
第4表に示す組成になるように秤量し出発原料とした。
以下実施例3〜4と同様の工程を経てB11kの酸化物
超電導体を得た。
次に実施例1〜4及び比較例1〜4で得たBi系の酸化
物超電導体を四端子法で’l” c!@roを測定した
。その結果を第5表に示す。
315表に示されるように本発明の実施例になる酸化物
超電導体は、90に以上のTct@toを有することが
わかる。また結晶相を調べたところ第 表 2212相であることが確認された。
(発明の効果) 本発明によれば、急冷工程を経ることなく90に以上の
TcZeroを示す2212相の酸化物超電導体を得る
ことができる。

Claims (3)

    【特許請求の範囲】
  1. 1.ビスマス,ストロンチウム,カルシウム,リチウム
    ,バリウム及び銅を主成分とし, 一般式Bi_1_._0Sr_ACa_BLi_CBa
    _DCu_1_._0_±_0_._2O_x (但しA=0.6〜1.2,B=0.35〜0.7,C
    =0.05〜0.2,D=0.05〜0.2,数字は原
    子比を表わす) で示される組成からなる酸化物超電導体。
  2. 2.請求項1記載の組成となるようにビスマス,ストロ
    ンチウム,カルシウム,リチウム,バリウム及び銅を含
    む各原料を秤量し,ついで混合した後,仮焼,粉砕し成
    形後,窒素雰囲気中又は酸素を10体積%未満で含有す
    る窒素雰囲気中で焼成することを特徴とする酸化物超電
    導体の製造法。
  3. 3.請求項1記載の組成となるようにビスマス,ストロ
    ンチウム,カルシウム,リチウム,バリウム及び銅を含
    む各原料を秤量し,ついで混合した後,仮焼,一次焼成
    し,さらに粉砕後,成形し,再度窒素雰囲気中又は酸素
    を7体積%未満で含有する窒素雰囲気中で二次焼成する
    ことを特徴とする酸化物超電導体の製造法。
JP2243286A 1990-09-13 1990-09-13 酸化物超電導体及びその製造法 Pending JPH04124018A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243286A JPH04124018A (ja) 1990-09-13 1990-09-13 酸化物超電導体及びその製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243286A JPH04124018A (ja) 1990-09-13 1990-09-13 酸化物超電導体及びその製造法

Publications (1)

Publication Number Publication Date
JPH04124018A true JPH04124018A (ja) 1992-04-24

Family

ID=17101592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243286A Pending JPH04124018A (ja) 1990-09-13 1990-09-13 酸化物超電導体及びその製造法

Country Status (1)

Country Link
JP (1) JPH04124018A (ja)

Similar Documents

Publication Publication Date Title
JPH04124018A (ja) 酸化物超電導体及びその製造法
JPH04124021A (ja) 酸化物超電導体及びその製造法
JPH04124025A (ja) 酸化物超電導体及びその製造法
JPH04124019A (ja) 酸化物超電導体及びその製法
JPH04124017A (ja) 酸化物超電導体及びその製法
JPH04124024A (ja) 酸化物超電導体及びその製法
JPH04124020A (ja) 酸化物超電導体及びその製造方法
JPH04124022A (ja) 酸化物超電導体及びその製法
JPH04124029A (ja) 酸化物超電導体及びその製造法
JPH04124028A (ja) 酸化物超電導体及びその製法
JPH04124026A (ja) 酸化物超電導体及びその製法
JPH04124023A (ja) 酸化物超電導体及びその製法
JPH04124015A (ja) 酸化物超電導体及びその製法
JPH04124027A (ja) 酸化物超電導体及びその製造方法
JPH04124030A (ja) 酸化物超電導体の製造法
JPH04124016A (ja) 酸化物超電導体及びその製造方法
JPH04124031A (ja) 酸化物超電導体及びその製造方法
JPH05262527A (ja) 酸化物超電導体及びその製造法
JP2596021B2 (ja) 超伝導材の製造法
JPH04124014A (ja) 酸化物超電導体及びその製造法
JP3286327B2 (ja) 酸化物超電導体の製造方法
JPH03265561A (ja) 高密度酸化物超電導体の製造方法
JPH03290318A (ja) 酸化物超電導体及びその製造法
JPH07247120A (ja) Bi系超電導体及びその製造法
JPH03223118A (ja) 酸化物超電導体の製造法