JPH04104903A - 酸化物高温超電導薄膜の製造方法 - Google Patents

酸化物高温超電導薄膜の製造方法

Info

Publication number
JPH04104903A
JPH04104903A JP2220466A JP22046690A JPH04104903A JP H04104903 A JPH04104903 A JP H04104903A JP 2220466 A JP2220466 A JP 2220466A JP 22046690 A JP22046690 A JP 22046690A JP H04104903 A JPH04104903 A JP H04104903A
Authority
JP
Japan
Prior art keywords
substrate
oxide
thin film
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220466A
Other languages
English (en)
Inventor
Takashi Hase
隆司 長谷
Tadataka Morishita
忠隆 森下
Kazumi Ohata
一実 大圃
Hirohiko Izumi
泉 宏比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Hitachi Cable Ltd
Kobe Steel Ltd
Ulvac Corp Center
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Hitachi Cable Ltd
Kobe Steel Ltd
Ulvac Corp Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Hitachi Cable Ltd, Kobe Steel Ltd, Ulvac Corp Center filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP2220466A priority Critical patent/JPH04104903A/ja
Priority to PCT/JP1991/001086 priority patent/WO1992003376A1/ja
Priority to EP91914630A priority patent/EP0496897B1/en
Priority to US07/848,004 priority patent/US5281575A/en
Priority to DE69118676T priority patent/DE69118676T2/de
Publication of JPH04104903A publication Critical patent/JPH04104903A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5072Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with oxides or hydroxides not covered by C04B41/5025
    • C04B41/5074Copper oxide or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/732Evaporative coating with superconducting material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超電導体の薄膜化技術に関し、詳細には
レーザ光をターゲットに照射することによりターゲット
上の酸化物粒子を加熱蒸発させ基板上に成膜を行なう酸
化物高温超電導薄膜の製造方法に関するものである。
[従来の技術] 第2図はレーザによる酸化物高温超電導薄膜の製造方法
を示す概略図である。この方法において図示しないyA
Gレーザ装置、ArFエキシマレーザ装置等から発振さ
れたレーザ光1は、薄膜化用酸化物の配設されたターゲ
ット2の斜め上方から照射され、ターゲット構成粒子の
結合を切ると同時に該構成粒子を高エネルギー状態に励
起する。そしてブルームと呼ばれる活性蒸着粒子からな
る発光領域が形成され、ヒータ4等により加熱された基
板3上に該ブルームが到達すると高温超電導薄膜が得ら
れる。
一般に酸化物超電導薄膜のTc endの向上を図る面
からは成膜中の酸素分圧を高くすることが望ましいと考
えられている。しかし成膜中の酸素分圧が高くなるとブ
ルームの形状が小さくなり基板上に活性な粒子が到達す
る確率も低くなる。そこでターゲットと基板の間隔を狭
めてブルームを到達しやすくすることも考えられるが、
ターゲットと基板の間はレーザ光を照射する上で一定の
距離を有していることが必要であるからこの方法は採用
できない。
従ってこれまでは酸素分圧を低くして成膜し、成膜後に
酸素雰囲気中で冷却保持する等の後処理を施して酸素粒
子を膜中に取り込みTc endを高める方法がとられ
ていた。
しかしながらこの方法では膜中に酸素が取り込まれて結
晶構造が正方晶から斜方晶に変態するときに、格子定数
の歪みを緩和するため双晶面が形成される。該双晶面は
超電導薄膜を超電導デバイスとして実用化した場合に磁
束のトラップを生じることが知られており、ノイズの原
因となるという問題を有している。
[発明が解決しようとする課題] 本発明は上記事情に着目してなされたものであって、成
膜後の後処理を行なわなくともTc endの高い酸化
物超電導薄膜が製造できる方法を開発し、超電導デバイ
スとした際にもノイズのない高Tc endを有する酸
化物超電導薄膜の製造方法を提供しようとするものであ
る。
[課題を解決するための手段コ 上記目的を達成した本発明とは酸化物ターゲットにレー
ザ光を照射して酸化物基板上に酸化物薄膜を形成する酸
化物高温超電導薄膜の製造方法において、前記酸化物基
板を透過するレーザ光を該基板背面から照射して該基板
中を透過させた後、前記酸化物ターゲットに照射させる
ことを要旨とするものである。
[作用] 第1図は本発明に係る製造方法に好適に用いられる装置
の代表例を示すものである。所定の酸化物組成を有する
ターゲット2は上下左右に可動であると共に回転自在に
構成されたターゲットホルダー5により保持されている
。基板3は該ターゲット2に対面して配設され基板ホル
ダー6によって固定されている。レーザ装置7は基板3
の背面法線上に配設されている。
従ってレーザ光1は基板3の背面側から照射されて基板
3を透過し、ターゲット2に照射されて基板3上に酸化
物を蒸着させて成膜を行なうものである。
本発明の製造方法によればターゲットを基板に十分近づ
けて成膜することが可能であり、従来よりも著しく高い
酸素分圧の雰囲気下であってもブルームが基板に届く条
件で成膜できる。
従って成膜後に酸素雰囲気下で冷却保持する後処理を行
なわなくとも結晶構造中に酸素を充分に取り込んだ超電
導薄膜が形成でき、双晶面が形成されることもないので
超電導デバイスに適用するに際して高い丁c end及
び高いJcを示すと共に磁束トラップが少ない薄膜を作
製することができる。
尚本発明によれば従来の様にヒータ等の特別な加熱装置
を用いなくともレーザ吸収膜を形成すればレーザ光を基
板に透過する際に加熱でき、またレーザ光の照射が終了
すると共に急冷される。
さらに基板とターゲット間を可及的に接近させることが
できるので、従来に比べ3桁速い高速で成膜することが
可能になると共に、ターゲット材料が高い確率で基板上
に膜化して蒸着効率が高まる。
またレーザ光が基板を透過する際に、光化学的な反応に
より基板表面をクリーニングすることが可能となった。
加えて成膜後の後処理が不要となったため、製造時間の
大幅な短縮が図れると共に後処理工程で用いていた酸素
も節約できる。
[実施例] 実施例1 第1図に示した装置においてレーザ装置としてはYAG
レーザ装置を用い、波長355nm(第3高調波)のレ
ーザ光を照射して第1表に示す実験条件で成膜を行った
。得られた膜の膜厚。
Tc end、実用温度77KにおけるJcを測定した
結果を第1表に示す。
また比較例として従来の代表的方法である第2図に示し
た装置において、実施例1と同様のレーザ装置を用いて
成膜を行フた。実験条件及び評価結果は第1表に併記す
る。
第   1 表 実施例1によれば比較例より3桁も速い速度で成膜でき
、しかも比較例と同等のTc endを有し、比較例よ
り高いJcが得られる。
また成膜速度が速いということは1パルス当たりの膜厚
が厚いということであり、ターゲットの利用効率も向上
できることがわかる。
第3図に実施例1及び比較例で作製した膜のX線回折結
果を示す。双方ともC軸方向にきれいに配向した膜であ
ることがわかる。
第4図は試料を膜表面内で回転し、膜面内の配向性を調
べたX線回折結果を示したものである。実験はθ= 7
deg、 (固定)、2θ= 30.15deg。
(固定)で行ない、(017)面からの反射X線を測定
した。第4図を見ると比較例の場合90deg、間隔で
ピークが存在していることからa軸が90deg、の間
隔をおいて膜面内で2方向に配向しており、双晶面が存
在していることがわかる。これに対し実施例1の場合1
80deg、間隔でピークが存在しており、膜面内でa
軸が1方向に配向し、双晶面がほとんどないことがわか
る。
尚実施例1の場合に双晶面が形成されない理由は次の様
に説明できる。即ち実施例1では非常に高い酸素分圧下
で成膜されることから、成膜の過程ですでに斜方晶構造
となっており、またレーザパルスが通過した後は自然に
急冷されるため膜中の酸素も外部に出ていかず結晶構造
に歪が生じることがないからであると考えられる。
実施例2 レーザ光が基板表面を透過する際に、光化学的な反応に
より基板表面がクリーニングされることが期待される。
その効果を確認するためMgO(100)を基板として
用い、10−’Torrの真空度でレーザ照射出力密度
3.OJ/cm2、レーザパルス数1の条件でレーザ光
をターゲットに照射することなく基板を貫通させた6レ
ーザ光を照射する前後における基板表面状態をRHEE
D  (反射高速電子線回折法)を用いて観察比較した
。結果は第4図に示す。
第5図を見るとレーザ光を照射した後で、回折強度が強
くなり基板がクリーニングされていることがわかる。
実施例3 基板に石英ガラス基板を用いレーザ吸収膜を成膜せずに
ヒータを用いて700 t:に加熱した以外は実施例1
と同様にして成膜を行りた。Jcが3.0×10’ A
/cm2である以外はaS、成膜速度、 Tc end
のいずれも実施例1と同程度であった。
但し得られた薄膜は単結晶でなく多結晶であったが、該
薄膜をマイクロブリッジに加工し、超電導結晶間の弱結
合を利用して、電磁波センサーに応用することが可能で
ある。
実施例4 基板3に対して平行に配設していたターゲット2を、第
6図に示す如く所定の角度θを形成して配設した以外は
、実施例1と同様にしてレーザ光1を10パルス照射し
、薄膜を形成した。該薄膜の特性評価を行ったところ実
施例1と同様の結果が得られた。
この方法によれば基板表面のレーザ透過部分には成膜さ
れないのでレーザ光の連続照射が可能であり、そのため
基板を移動させれば広範囲に成膜することができる。
実施例5 第7図に示す如く基板3の加熱方法として基板3上にレ
ーザ吸収膜を成膜せずに基板3とレーザ装置7間に多層
膜ミラー1oを配設し、2700nmの赤外光13を該
多層膜ミラー1oに反射させて基板3を加熱した以外は
実施例1と同様にして薄膜を形成した。該薄膜の特性を
評価したところ実施例1と同程度の結果が得られた。尚
上記多層膜ミラーとしては、レーザ光(355nm )
を透過して赤外光(2700nm )を反射するもので
あって第8図に示す特性をもつミラーを使用した。
マタ基板ニサ7 y イア 、 LaAl5O,LiN
bO3゜LaGaOsを用い上記と同様の成膜、評価を
行ったところ実施例1と同程度の結果が得られた。
[発明の効果] 本発明は以上の様に構成されているので、成膜後に酸素
雰囲気下で冷却保持する後処理が不要になり成膜中に基
板表面をクリーニングしながら、高速成膜が可能な酸化
物高温超電導薄膜の製造方法が提供できることとなった
【図面の簡単な説明】
第1図は本発明に係る成膜方法を示す概略説明図、第2
図は従来の成膜方法を示す概略説明図、第3.4図は実
施例及び比較例のX線回折結果を示すグラフ、第5図は
レーザ照射前後における基板の電子線回折結果を示すグ
ラフ、第6.7図は本発明に係る他の成膜方法を示す概
略説明図、第8図は本発明に用いることのできる多層膜
ミラーの特性を示すグラフである。 1・・・レーザ     2・・・ターゲット3・・・
基板       4・・・ヒータ5・・・ターゲット
ホルダー 6・・・基板ホルダー  7・・・レーザ発振装置10
・・・多層膜ミラー  11・・・拡散ポンプ12・・
・油回転ポンプ  13・・・赤外線第1図 第3図 第2図 第4図 面内回転角(cleg、)

Claims (1)

    【特許請求の範囲】
  1. 酸化物ターゲットにレーザ光を照射して酸化物基板上に
    酸化物薄膜を形成する酸化物高温超電導薄膜の製造方法
    において、前記酸化物基板を透過するレーザ光を該基板
    背面から照射して該基板中を透過させた後、前記酸化物
    ターゲットに照射させることを特徴とする酸化物高温超
    電導薄膜の製造方法。
JP2220466A 1990-08-21 1990-08-21 酸化物高温超電導薄膜の製造方法 Pending JPH04104903A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2220466A JPH04104903A (ja) 1990-08-21 1990-08-21 酸化物高温超電導薄膜の製造方法
PCT/JP1991/001086 WO1992003376A1 (en) 1990-08-21 1991-08-15 Method for manufacturing high temperature superconductive oxide thin film
EP91914630A EP0496897B1 (en) 1990-08-21 1991-08-15 Method for manufacturing high temperature superconductive oxide thin film
US07/848,004 US5281575A (en) 1990-08-21 1991-08-15 Laser ablation method for forming oxide superconducting films
DE69118676T DE69118676T2 (de) 1990-08-21 1991-08-15 Verfahren zur herstellung einer dünnen schicht aus hochtemperatur-supraleiteroxyd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220466A JPH04104903A (ja) 1990-08-21 1990-08-21 酸化物高温超電導薄膜の製造方法

Publications (1)

Publication Number Publication Date
JPH04104903A true JPH04104903A (ja) 1992-04-07

Family

ID=16751562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220466A Pending JPH04104903A (ja) 1990-08-21 1990-08-21 酸化物高温超電導薄膜の製造方法

Country Status (5)

Country Link
US (1) US5281575A (ja)
EP (1) EP0496897B1 (ja)
JP (1) JPH04104903A (ja)
DE (1) DE69118676T2 (ja)
WO (1) WO1992003376A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198396A (ja) * 2007-02-08 2008-08-28 National Institute Of Advanced Industrial & Technology 超電導酸化物材料の製造方法
JP2010275119A (ja) * 2009-05-26 2010-12-09 Japan Steel Works Ltd:The 超電導酸化物材料の製造方法及び装置
JP2012084430A (ja) * 2010-10-13 2012-04-26 Fujikura Ltd 酸化物超電導導体の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814152A (en) * 1995-05-23 1998-09-29 Mcdonnell Douglas Corporation Apparatus for coating a substrate
US5612099A (en) * 1995-05-23 1997-03-18 Mcdonnell Douglas Corporation Method and apparatus for coating a substrate
US6709720B2 (en) 1997-03-21 2004-03-23 Kabushiki Kaisha Yaskawa Denki Marking method and marking material
JP3704258B2 (ja) * 1998-09-10 2005-10-12 松下電器産業株式会社 薄膜形成方法
US6440503B1 (en) 2000-02-25 2002-08-27 Scimed Life Systems, Inc. Laser deposition of elements onto medical devices
JP2002222694A (ja) * 2001-01-25 2002-08-09 Sharp Corp レーザー加工装置及びそれを用いた有機エレクトロルミネッセンス表示パネル
JP4345278B2 (ja) * 2001-09-14 2009-10-14 セイコーエプソン株式会社 パターニング方法、膜形成方法、パターニング装置、有機エレクトロルミネッセンス素子の製造方法、カラーフィルタの製造方法、電気光学装置の製造方法、及び電子装置の製造方法
US7608308B2 (en) * 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487684A (en) * 1977-12-21 1979-07-12 Ibm Vacuum evaporation method
JPH02250222A (ja) * 1989-02-13 1990-10-08 Hitachi Ltd 薄膜形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743463A (en) * 1986-02-21 1988-05-10 Eastman Kodak Company Method for forming patterns on a substrate or support
US4970196A (en) * 1987-01-15 1990-11-13 The Johns Hopkins University Method and apparatus for the thin film deposition of materials with a high power pulsed laser
JP2660248B2 (ja) * 1988-01-06 1997-10-08 株式会社 半導体エネルギー研究所 光を用いた膜形成方法
DE3816192A1 (de) * 1988-05-11 1989-11-23 Siemens Ag Verfahren zur herstellung einer schicht aus einem metalloxidischen supraleitermaterial mittels laser-verdampfens
DE3822502C1 (ja) * 1988-07-03 1989-08-24 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De
JPH02197565A (ja) * 1989-01-25 1990-08-06 Fujikura Ltd レーザ蒸着装置用ターゲット
US4987006A (en) * 1990-03-26 1991-01-22 Amp Incorporated Laser transfer deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487684A (en) * 1977-12-21 1979-07-12 Ibm Vacuum evaporation method
JPH02250222A (ja) * 1989-02-13 1990-10-08 Hitachi Ltd 薄膜形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198396A (ja) * 2007-02-08 2008-08-28 National Institute Of Advanced Industrial & Technology 超電導酸化物材料の製造方法
JP2010275119A (ja) * 2009-05-26 2010-12-09 Japan Steel Works Ltd:The 超電導酸化物材料の製造方法及び装置
JP2012084430A (ja) * 2010-10-13 2012-04-26 Fujikura Ltd 酸化物超電導導体の製造方法

Also Published As

Publication number Publication date
WO1992003376A1 (en) 1992-03-05
EP0496897B1 (en) 1996-04-10
DE69118676T2 (de) 1996-10-02
US5281575A (en) 1994-01-25
DE69118676D1 (de) 1996-05-15
EP0496897A4 (en) 1993-04-14
EP0496897A1 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
CN110607506B (zh) 脉冲激光镀膜装置
JPH04104903A (ja) 酸化物高温超電導薄膜の製造方法
JPH01179473A (ja) 光を用いた膜形成方法
CN108220888B (zh) 适用于脉冲激光镀膜的加热装置及其脉冲激光镀膜装置
JPH05804A (ja) 大面積複合酸化物超電導薄膜の成膜装置
Lu et al. Pulsed excimer (KrF) laser induced crystallization of PbZr0. 44Ti0. 56O3 amorphous films
Gyorgy et al. Role of laser pulse duration and gas pressure in deposition of AlN thin films
JP3465041B2 (ja) Yag第5高調波パルスレーザ蒸着による薄膜の作製方法およびその装置
JP3192667B2 (ja) 酸化物超電導薄膜の製造方法
JPH0347959A (ja) 有機超伝導薄膜
JPH0885865A (ja) レーザ蒸着法による薄膜の作製方法
JPH03174306A (ja) 酸化物超電導体の製造方法
JPH03174307A (ja) 酸化物超電導体の製造方法
JP3790809B2 (ja) ラマンシフトパルスレーザ蒸着による薄膜の作製方法及びその装置
JPH02149402A (ja) 酸化物超電導体の製造方法および製造装置
Burmester et al. Crystalline growth of cubic (Eu, Nd): Y 2 O 3 thin films on α-Al 2 O 3 by pulsed laser deposition
CN2245620Y (zh) 镀膜系统用的激光自动消颗粒装置
JP3522402B2 (ja) 酸化物超電導導体の製造方法及び製造装置
JP3507883B2 (ja) 基板表面処理方法と同方法で作製した膜作製用基板
JPS60108400A (ja) 分子線結晶成長装置
JPH04187507A (ja) 酸化物超電導薄膜の作製方法
Valyavko et al. Submicron-size laser treatment of the solid state surface
Lyanguzov et al. Effect of thicknesses of copper catalyst and oxide sublayer on morphology of ZnO nanorods
JPH02156072A (ja) 酸化物超電導膜の合成法
JPH02149664A (ja) 酸化物超電導体の製造装置